Sunrise Terrace
 La Center, Washington

Date:

July 7, 2015

PREPARED FOR:

RK Land Development LLC
Prepared By:
Max Scheideman
Daniel Stumpf, EI
Todd Mobley, PE, PTOE

Table of Contents

Executive Summary 3
Project Description
Introduction. 4
Location Description 4
Vicinity Streets. 5
Study Intersections 5
Traffic Counts 6
Trip Generation \& Distribution
Trip Generation 9
Trip Distribution 9
Operational Analysis
Background Traffic 12
Capacity Analysis 15
Safety Analysis
Warrant Analysis 18
Sight Distance 18
Crash Data Analysis 20
Conclusions 21
Appendix 22

Executive Summary

1. A proposed 120 -lot residential subdivision is located west of NE $24^{\text {th }}$ Avenue, south of NE $339^{\text {th }}$ Street, and north of NE Lockwood Creek Road in La Center, Washington. The project site is comprised of three tax lots and part of a fourth, which total approximately 34 acres. Two of the tax lots are vacant while the other two are occupied by one single-family detached home and additional structures used for agricultural purposes.
2. The trip generation calculations show that the proposed development, minus the existing singlefamily home, will generate an estimated 89 trips during the morning peak hour with 23 trips entering and 66 trips exiting the site. During the evening peak hour, the property is projected to generate an estimated 119 trips with 75 entering and 44 exiting the site.
3. Left-turn lane warrants were not projected to be met for any of the site access study area intersections under any of the analysis scenarios.
4. Traffic signal warrants were examined for each of the applicable study intersections and were not found to be met for any of the analysis scenarios. No new traffic signals are recommended.
5. Based on the detailed analysis, adequate sight distance is available for the proposed new intersection access approaches to NE Lockwood Creek Road, NE $24^{\text {th }}$ Avenue, and NE $339^{\text {th }}$ Street. No sight distance mitigations are necessary or recommended.
6. A detailed examination of the crash history at the study intersections shows no significant safety hazards and no trends that are indicative of design deficiencies. No safety mitigations are recommended.
7. Each of the study intersections is projected to operate within the performance standards established by the City of La Center through the year 2017, either with or without the addition of site trips from the proposed development. No operational mitigations are recommended.

Project Description

INTRODUCTION

This Transportation Impact Study (TIS) addresses the development of a proposed 120-lot residential subdivision located west of NE $24^{\text {th }}$ Avenue, south of NE $339^{\text {th }}$ Street, and north of NE Lockwood Creek Road in La Center, Washington. The project site is comprised of three tax lots and part of a fourth which total approximately 34 acres. Two of the tax lots are vacant while the other two are occupied by a single-family detached home and additional structures used for agricultural purposes.

This report addresses the traffic impacts of the proposed development on the transportation system in the vicinity of the site. Based on the scope of work provided by the City of La Center, the report includes safety and capacity/level-of-service analyses at the following intersections:

- NE $24^{\text {th }}$ Avenue at NE $339^{\text {th }}$ Street
- NE $24^{\text {th }}$ Avenue at NE Lockwood Creek Road
- NE Lockwood Creek Road at NE Highland Avenue
- W $4^{\text {th }}$ Street at Aspen Avenue
- NE Pacific Highway at W $4^{\text {th }}$ Street

Upon development of the project site, the following site access intersections were analyzed:

- NE $24^{\text {th }}$ Avenue at North Local Access Drive
- NE $24^{\text {th }}$ Avenue at South Local Access Drive
- NE $339^{\text {th }}$ Street at Local Access Drive
- NE Lockwood Creek Road at Local Access Drive

The purpose of the study is to determine whether the transportation system in the vicinity of the site is capable of safely and efficiently supporting the existing and proposed uses, and to determine any mitigation that might be necessary to do so.

All supporting data and calculations are included in the technical appendix to this report.

LOCATION DESCRIPTION

The project site is located west of and adjacent to NE $24^{\text {th }}$ Avenue, south and adjacent to NE $339^{\text {th }}$ Street, and north and adjacent to NE Lockwood Creek Road in La Center, Washington.

The subject site is located in a predominately agricultural area, with single-family detached homes and farmland to the north, south and east. A single-family detached housing subdivision is located southwest of the site and a La Center High School is located to the west.

VICINITY STREETS

NW Pacific Highway is classified as a Major Collector by the City of La Center. The roadway generally has one travel lane in each direction with a posted speed of 25 mph north of the East Fork Lewis River and a posted speed of 50 mph south of the river. Curbs and sidewalks are provided on both sides of the roadway north of the river.

W $4^{\text {th }}$ Street, E $4^{\text {th }}$ Street and NE Lockwood Creek Road are classified as Major Collectors by the City of La Center. W $4^{\text {th }}$ Street has a three-lane cross-section and is located between NW Pacific Highway and Aspen Avenue. E 4 ${ }^{\text {th }}$ Street has a two-lane cross-section and is located between Aspen Avenue and E Ivy Avenue/NE Highland Avenue, where it then becomes NE Lockwood Creek Road. NE Lockwood Creek Road also has a two-lane cross-section with one travel lane in each direction. The posted speeds along this route, west and east of the proposed site access onto NE Lockwood Creek Road, are 25 mph and 35 mph , respectively. A school speed zone with a posted speed of 20 mph is in effect during school hours between E Cedar Avenue and NE John Storm Avenue. Bicycle lanes are provided for a short distance to the right of each directional outer travel lane of the roadway at the intersection of NE Lockwood Creek Road at NE Highland Avenue. On-street parking is partially allowed along $\mathrm{W} 4^{\text {th }}$ Street and E $4^{\text {th }}$ Street within the downtown area. Curbs and sidewalks are provided along both sides of the $\mathrm{W} 4^{\text {th }}$ Street and generally on both sides of E $4^{\text {th }}$ Street. NE Lockwood Creek Road has curbs and sidewalks along the roadway west of the proposed site access along NE Lockwood Creek Road.

Aspen Avenue is classified as a Minor Collector by the City of La Center. It has a two-lane crosssection with a posted speed limit of 25 mph . On-street parking is generally allowed on both sides of the roadway. Curbs and sidewalks are provided along both sides of the roadway.

NE Highland Avenue and NE $339^{\text {th }}$ Street are classified as Minor Collectors by the City of La Center. NE Highland Avenue becomes NE $339^{\text {th }}$ Street to the east of the intersection with NE $14^{\text {th }}$ Avenue. Both roadways generally have a two-lane cross-section with one travel lane in each direction. NE Highland Avenue has a posted speed of 25 mph while NE $339^{\text {th }}$ Street generally has a posted speed of 35 mph . A school speed zone with a posted speed of 20 mph is in effect during school hours between E $4^{\text {th }}$ Street and the eastern edge of the school property line. Limited bicycle lanes are provided to the right of each directional outer travel lane along the route for a short distance north from the intersection of NE Lockwood Creek Road at NE Highland Avenue. Curbs and sidewalks partially provided along NE Highland Avenue.

NE $24^{\text {th }}$ Avenue is classified as a Minor Collector by the City of La Center. The roadway has a twolane cross-section without centerline striping. There is no posted speed limit; therefore a statutory speed of 25 mph is applied to the roadway. Curbs, sidewalks, and bicycle lanes are not provided and the roadway does not have enough width to allow for on-street parking.

Study Intersections

The intersection of NE 24th Avenue at NE 339th Street is a four-legged intersection that is two-way stop controlled for the northbound approach of NE 24th Avenue and the southbound approach of NE 340th Circle. All four approaches have a single shared left-turn/through/right-turn lane.

The intersection of NE $24^{\text {th }}$ Avenue at NE Lockwood Creek Road is a four-legged intersection, where the northbound approach is a local access driveway. The intersection is stop controlled along the southbound approach of NE $24^{\text {th }}$ Avenue and while un-controlled traffic along the access driveway is expected to stop and yield to traffic along NE Lockwood Creek Road. All intersection approaches have a single full-movement turn lane.

The intersection of NE Lockwood Creek Road at NE Highland Avenue is a four-legged intersection and is two-way stop controlled for the northbound approach of E Ivy Avenue and the southbound approach of NE Highland Avenue. The all intersection approaches have one left-turn lane and one shared through/right-turn lane with a bicycle lane to the right of the outer travel lane. Intersection crosswalks are marked on all intersection legs.

The intersection of W $4^{\text {th }}$ Street at Aspen Avenue is a three-legged intersection that is stop controlled for the southbound approach of Aspen Avenue. The southbound approach has one left-turn lane and one right-turn lane. The eastbound approach of $\mathrm{W} 4^{\text {th }}$ Street has one left-turn lane and one through lane. The westbound approach of $\mathrm{E} 4^{\text {th }}$ Street has a single shared through/right-turn lane. Intersection crosswalks are striped on the northern and western intersection legs.

The intersection of NE Pacific Highway at W $4^{\text {th }}$ Street is a four-legged intersection and is two-way stop controlled for the eastbound approach of the Chips Casino driveway access and the westbound approach of $\mathrm{W} 4^{\text {th }}$ Street. The northbound approach has one right-turn lane and one shared leftturn/through lane. The southbound approach has one left-turn lane and one shared through/right-turn lane. The westbound approach has one left-turn and one right-turn lane. The eastbound approach is striped as having one right-turn lane, however this striping is not always observed and vehicles occasionally make through movements. Intersection crosswalks are marked on the northern, eastern, and western intersection legs. The southern leg of the intersection does not provide a marked crosswalk.

A vicinity map displaying the project site, vicinity streets, and the study area intersections with their associated lane configurations is shown in Figure 1 on page 7.

Traffic Counts

Traffic counts were conducted at the study area intersections on Thursday, June $4^{\text {th }}, 2015$ from 7:00 AM to 9:00 AM and from 4:00 PM to 6:00 PM. Data corresponding to each intersection's peak hour was used for analysis.

Figure 2 on page 8 shows the existing AM and PM peak hour traffic volumes for the study area intersections.

Trip Generation \& Distribution

Trip Generation

The proposed development will construct 120 single-family detached houses and the remove one existing single-family detached home and existing farmland. To estimate the number of trips that will be generated by the proposed development, trip rates from the TRIP GENERATION MANUAL, Ninth Edition, published by the Institute of Transportation Engineers (ITE), were used. Data from land-use code 210, Single-Family Detached Housing, was used to estimate the proposed development's trip generation based on the number of dwelling units.

The trip generation calculations show that the proposed development, minus the existing singlefamily home, is projected to generate a total of 89 trips during the morning peak hour, with 23 trips entering and 66 trips exiting the site. During the evening peak hour, the property is projected to generate a total of 119 trips with 75 entering and 44 exiting the site. During a typical weekday, the site is projected to generate total of 1,132 daily trips, with half entering and half exiting the site.

The trip generation estimates are summarized in Table 1. Detailed trip generation calculations are included in the technical appendix to this report.

Table 1: Trip Generation Summary									
	ITE			Peak	Hour		Peak	Hour	Weekday
	Code	Size	In	Out	Total	In	Out	Total	Total
Proposed									
Single-Family Detached Housing	210	120 units	23	67	90	76	44	120	1,142
Existing									
Single-Family Detached Housing	210	(1 unit)	0	(1)	(1)	(1)	0	(1)	(10)
Total New Trips		119 units	23	66	89	75	44	119	1,132

TRip Distribution

The directional distribution of site trips to and from the proposed development was estimated based on locations of likely trip destinations, locations of major transportation facilities in the site vicinity, and existing travel patterns at study area intersections.

The following trip distribution was estimated and used for analysis:

- 75 percent to and from the south along NW Pacific Highway.
- 10 percent to and from the north along NW Pacific Highway.
- 10 percent to and from the east along NE Lockwood Creek Road.
- 5 percent to and from the south along E Ivy Avenue (primarily to schools).

The proposed development is planned to have four accesses connecting the project site to adjacent roadways; two accesses intersecting NE $24^{\text {th }}$ Avenue, one access intersecting NE Lockwood Creek Road, and one access intersecting NE $339^{\text {th }}$ Street. Based on the site layout and trip distribution, projected trips generated by the project site are anticipated to utilize site accesses accordingly:

- 37 percent of trips generated will utilize the access along NE Lockwood Creek Road.
- 30 percent of trips generated will utilize the access along NE $339^{\text {th }}$ Street.
- 20 percent of trips generated will utilize the south access along NE $24^{\text {th }}$ Avenue.
- 13 percent of trips generated will utilize the north access along NE $24^{\text {th }}$ Avenue.

The trip distribution and assignment of site trips generated by the proposed development during the morning and evening peak hours is shown in Figure 3 on page 11.

Operational Analysis

BACKGROUND TRAFFIC

To provide analysis of the impact of the proposed development on the nearby transportation facilities, an estimate of future traffic volumes is required. In order to calculate the future traffic volumes, a compounded growth rate of two percent per year for an assumed build-out condition of two years was applied to the measured existing traffic volumes to approximate year 2017 background conditions.

Figure 4 on page 13 shows the projected year 2017 background volumes for the morning and evening peak hour traffic volumes of the study area intersections.

Background Plus Site Trips

Peak hour trips calculated to be generated form the proposed development, as described earlier within the Trip Generation section, were added to the project year 2017 background traffic volumes to obtain the projected 2017 background plus site trips.

Figure 5 on page 14 shows the projected year 2017 peak hour background traffic volumes with the addition of site trips from the proposed development.

Intersection CApacity and Level of Service Analysis

To determine the performance of the study intersections, a capacity analysis was conducted for the morning and evening peak hours for existing conditions, year 2017 background conditions, and year 2017 background plus site trips from the proposed development. The analysis was conducted according to the unsignalized intersection analysis methodology given in the HIGHWAY CAPACITY MANUAL (HCM) published by the Transportation Research Board.

Levels of service (LOS) can range from LOS A, which indicates very little or no delay experience by vehicles, to LOS F, which indicates a high degree of congestion and delay. The City of La Center's operating standards, outlined in the La Center Urban Area Capital Facilities Plan (2008), require LOS D or better for signalized intersections and LOS E or better for unsignalized intersections. Intersections comprised of local streets do not have an LOS standard.

The intersection of NE $24^{\text {th }}$ Avenue at NE $339^{\text {th }}$ Street currently operates at LOS A during the morning and evening peak hours and is expected to remain LOS A for the morning and evening peak hours through year 2017. With added project trips, the intersection is expected to increase to LOS B during the morning peak hour and remain LOS A during the evening peak hour.

The intersection of NE $24^{\text {th }}$ Avenue at NE Lockwood Creek Road currently operates at LOS B for morning and evening peak hours. The intersection is expected to remain LOS B during the morning and evening peak hours through year 2017, with or without added project trips.

The intersection of NE Lockwood Creek Road and NE Highland Avenue currently operates at LOS C during morning and evening peak hours. Under year 2017 background conditions, the intersection is projected to increase to LOS D during the morning peak hour and remain LOS C during the evening peak hour. Upon competition of the proposed development, the intersection is expected to increase to LOS E during the morning peak hour and remain at LOS C during the evening peak hour.

The intersection of W $4^{\text {th }}$ Street at Aspen Avenue currently operates at LOS C for morning and evening peak hours. The intersection is expected to remain LOS C during the morning and evening peak hours through year 2017, with or without added project trips.

The intersection of NE Pacific Highway and W $4^{\text {th }}$ Street currently operates at LOS B during the morning peak hour and LOS C during the evening peak hour. Under year 2017 background conditions, the intersection is projected to increase to LOS C during the morning peak hour and remain LOS C during the evening peak hour. With added project trips in year 2017, the intersection is expected to remain at LOS C during the morning and evening peak hours.

Upon competition of the proposed development, four new site access intersections were analyzed. The intersection of NE $24^{\text {th }}$ Avenue at the North Local Access Drive is projected to operate at LOS A during morning and evening peak hours. Likewise, the intersection of NE $24^{\text {th }}$ Avenue at the South Local Access Drive is projected to operate at LOS A during morning and evening peak hours. The intersection of NE $339^{\text {th }}$ Street at the Local Access Drive is projected to operate at LOS B during the morning and evening peak hours. The intersection of NE Lockwood Drive and Local Access Drive is expected to operate at LOS B during the morning peak hour and LOS A during the evening peak hour.

Based on the detailed analysis, all studied intersections are projected to operate within the performance standards established by the City of La Center through the year 2017, with or without the trips from the proposed development. Accordingly, no operational mitigations are required or recommended.

The results of the capacity analysis, along with the levels of service, delay, and v/c ratios are shown in Table 2 on the following page. Detailed calculations, as well as tables showing the relationships between delay and level of service are included in the technical appendix to this report.

Table 2: Capacity Analysis Summary

NE 24th Ave at NE 339th St						
2015 Existing	A	10	0.02	A	9	0.03
2017 Background	A	10	0.02	A	9	0.03
2017 Background + Site	B	10	0.04	A	10	0.04
NE 24th Ave at NE Lockwood Creek Rd						
2015 Existing	B	11	0.19	B	10	0.09
2017 Background	B	11	0.19	B	10	0.09
2017 Background + Site	B	11	0.20	B	11	0.10
NE Lockwood Creek Rd at NE Highland Ave						
2015 Existing	C	23	0.39	C	18	0.22
2017 Background	D	26	0.42	C	19	0.22
2017 Background + Site	E	39	0.53	C	24	0.25
W 4th St at Aspen Ave						
2015 Existing	C	17	0.29	C	16	0.27
2017 Background	C	18	0.30	C	17	0.28
2017 Background + Site	C	20	0.34	C	19	0.32
NE Pacific Hwy at W 4th St						
2015 Existing	B	15	0.49	C	16	0.32
2017 Background	C	16	0.53	C	17	0.43
2017 Background + Site	C	18	0.61	C	19	0.51
NE 24th Ave at North Local Access Drive						
2017 Background + Site	A	9	0.02	A	9	0.02
NE 24th Ave at South Local Access Drive						
2017 Background + Site	A	9	0.02	A	9	0.02
NE 339th St at Local Access Drive						
2017 Background + Site	B	10	0.08	B	14	0.38
NE Lockwood Creek Rd at Local Access Drive						
2017 Background + Site	B	11	0.22	A	10	0.13

Safety Analysis

WARRANT ANALYSIS

Left-turn lane and traffic signal warrants were examined for each of study intersections where such treatments would be applicable.

A left-turn refuge is primarily a safety consideration for the major street, removing left-turning vehicles from the through traffic stream. The left-turn lane warrants used were developed from the National Cooperative Highway Research Project's (NCHRP) Report 457. The turn lane warrants were evaluated based on the number of advancing and opposing vehicles as well as the number of left-turning vehicles, the travel speed, and the number of through travel lanes.

Left-turn lane warrants were not projected to be met for any of the site access study area intersections under any of the analysis scenarios.

Traffic signal warrants were examined at study area intersection to determine whether the installation of a new traffic signal will be warranted at the intersection upon build-out of the proposed development. Due to insufficient main and side-street traffic volumes, traffic signal warrants are not met for any unsignalized study area intersections under any of the analysis scenarios. No new installations of traffic signals are recommended.

Sight Distance

Intersection sight distance was evaluated at each of the proposed accesses for the proposed development. The minimum required intersection sight distance was determined in accordance with A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS, published in 2011 by the American Association of State Highway and Transportation Officials (AASHTO). Intersection sight distance measurements are based on an approaching driver's eye height of 3.5 feet above the road and an eye height of 3.5 feet with the opposing driver's eye 15 feet behind the edge of the near-side travel lane.

NE Lockwood Creek Road

The access on NE Lockwood Creek Road will be located approximately 100 feet east of the western edge of the project site that intersects NE Lockwood Creek Road. Based on the posted speed limit of 35 mph , a minimum of 390 feet of intersection sight distance is required in both directions of the access to ensure uninterrupted flow of through traffic. Intersection sight distance for vehicles turning right and left from the proposed site access are 890 feet to the east, limited by foliage along the roadway, and 1,490 feet to the west, limited by the crest of a hill, respectively. Left-turning vehicles from NE Lockwood Creek Road to the site access have a sight distance of 1,546 feet to the east, limited by a combination of roadside vegetation and a power pole.

NE $24^{\text {th }}$ Avenue - South Access

The south access on NE $24^{\text {th }}$ Avenue will be located approximately 125 feet north of the southern edge of the project site that intersects with NE $24^{\text {th }}$ Avenue. The proposed access is situated on a
roadway sloping uphill to the north at a 6.25 percent grade. Based on the statutory residential speed limit of 25 mph , a minimum of 280 feet of intersection sight distance is required in both directions. Intersection sight distance for northbound vehicles is measured at 637 feet, limited by a tree along the western edge of NE $24^{\text {th }}$ Avenue. For southbound vehicles intersection sight distance was measured to be 253 feet, where sight distance is obstructed by the crest of the vertical curve of a hill. Since 253 feet is less than the 280 feet required for intersection sight distance, stopping sight distance was investigated.

As explained in the AASHTO manual, stopping sight distance is considered the minimum requirement to ensure safe operation of the driveway. This is the distance that allows an oncoming driver to see a hazard n the roadway, react, and come to a complete stop if necessary to avoid a collision. Conversely, intersection sight distance is an operational measure, intended to provide sufficient line of sight along the major street so that a driver could turn from the driveway without impeding traffic flow.

In this case, stopping sight distance is the appropriate standard since NE 24th Avenue is a local rural street with features that already require the attention of drivers traveling the road, such as narrow driveways that are lined with natural vegetation.

Based on the posted speed limit of 25 mph and an upward grade of 6.25 percent to the north, a minimum of 165 feet of stopping sight distance is required for southbound vehicles and 143 feet for northbound vehicles. Since sight distance for northbound vehicles is measured at 637 feet and 253 feet for southbound vehicles, adequate stopping sight distance is available looking both to the north and the south from the subject access location.

NE $24^{\text {th }}$ Avenue - North Access

The north access on NE $24^{\text {th }}$ Avenue will be located approximately 500 feet south of NE $339^{\text {th }}$ Street. Based on the posted speed limit of 25 mph , a minimum of 280 feet of intersection sight distance is required in both directions of the access. Intersection sight distance for vehicles turning right and left from the proposed site access are 533 feet to the north and 637 feet to the south, respectively. Left-turning vehicles from the NE $24^{\text {th }}$ Avenue to the north site access have a sight distance of 1,369 feet to the north. Obstructions to sight distance in both the north and south directions are caused the crest of hills along NE $24^{\text {th }}$ Avenue.

NE 339 ${ }^{\text {th }}$ Street

The access on NE $339^{\text {th }}$ Street will be located approximately 145 feet east of the western property line of the project site. Based on the posted speed limit of 35 mph , a minimum of 390 feet of intersection sight distance is required in both directions of the access. Intersection sight distance for vehicles turning right and left from the proposed site access are 665 feet to the west and 671 feet to the east, respectively. Left-turning vehicles from the NE $339^{\text {th }}$ Street to the site access have a sight distance of 665 feet to the west. Obstructions to sight distance in both directions are caused the crest of hills along NE $339^{\text {th }}$ Street.

Based on the detailed analysis, adequate sight distance is available for the proposed new intersection access approaches to NE Lockwood Creek Road, NE $24^{\text {th }}$ Avenue, and NE $339^{\text {th }}$ Street. No sight distance mitigations are necessary or recommended.

CRASH DATA ANALYSIS

Using data obtained from WSDOT's Crash Data and Reporting Branch, a review was performed for the most recent five years of available crash data (January of 2010 through December of 2014) at each of the study area intersections. A crash rate was calculated under the common assumption that traffic counted during the evening peak period represents 10 percent of the average daily traffic (ADT) at the intersection. Crash rates greater than 1.0 crashes per million entering vehicles (CMEV) are generally indicative of a need for further investigation and possible mitigation.

The intersection of NE $24^{\text {th }}$ Avenue at NE $339^{\text {th }}$ Street had no reported crashes during the five year analysis period.

The intersection of NE $24^{\text {th }}$ Avenue at NE Lockwood Creek Road had a total of two crashes during the analysis period. One of the crashes was a rear-end collision while the other was a fixed object collision, where the motorist drove off the road. One crash reported "property damage only" while the other crash reported "possible injury". The crash rate for the intersection was calculated to be 0.31 CMEV.

The intersection of NE Lockwood Creek Road at NE Highland Avenue reported four crashes during the analysis period. Two of the crashes were turning-type collisions, one was a rear-end collision, and one was a fixed object collision caused by speeding. All crashes reported "property damage only". The crash rate for the intersection was calculated to be 0.30 CMEV .

The intersection of W $4^{\text {th }}$ Street at Aspen Avenue had a total of three crashes during the analysis period. There were two rear-end collisions and a fixed object collision, where an alcohol intoxicated driver crashed into a building. The two rear-end collisions resulted in "property damage only" while the fixed object collision resulted in "serious injuries". The crash rate for the intersection was calculated to be 0.19 CMEV .

The intersection of NE Pacific Highway at $\mathrm{W} 4^{\text {th }}$ Street had a total of five crashes during the analysis period. Three of these crashes were turning-type collisions, one was a rear-end collision, and one was a collision with a pedestrian. Two of the crashes were resulted in "property damage only", two resulted in "possible injury", and one resulted in "serious injury". The crash resulting in "serious injury" involved a pedestrian crossing NE Pacific Highway whereby a northbound motorist failed to yield right-of-way to the pedestrian. The crash rate for the intersection was calculated to be 0.24 CMEV.

Based on detailed review of all crash data, no significant patterns are evident and the crash data does not appear to be indicative of a significant safety hazard. Accordingly, no safety mitigations are recommended.

Conclusions

Each of the study intersections is projected to operate within the performance standards established by the City of La Center through the year 2017, either with or without the addition of site trips from the proposed development. No operational mitigations are recommended.

A detailed examination of the crash history at the study intersections shows no significant patterns are evident and the crash data does not appear to be indicative of a significant safety hazard. No safety mitigations are recommended.

Sight distance was examined at the site access locations. All site access locations were determined to have acceptable intersection sight distance, with the exception of NE $24^{\text {th }}$ Avenue at the South Local Access Drive, which was observed to have acceptable stopping sight distance.

Signal warrants were examined for all studied intersections and were not met under any of the analysis scenarios. Traffic volumes on the major and minor-street approaches at the remaining study intersections were too low to meet traffic signal warrants. No new traffic signals are recommended.

Left-turn lane warrants were examined at the site access locations and were not met under any of the analysis scenarios. No left-turn lane mitigation is recommended.

Based on the analysis, the transportation system in the site vicinity is capable of safely supporting the proposed development.

ApPENDIX

TRIP GENERATION CALCULATIONS

Land Use: Single-Family Detached Housing
Land Use Code: 210
Variable: Dwelling Units
Variable Value: 119

AM PEAK HOUR

Trip Rate: 0.75

	Enter	Exit	Total
Directional Distribution	25%	75%	
Trip Ends	$\mathbf{2 2}$	$\mathbf{6 7}$	$\mathbf{8 9}$

WEEKDAY
Trip Rate: 9.52

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{5 6 6}$	$\mathbf{5 6 6}$	$\mathbf{1 , 1 3 2}$

PM PEAK HOUR
Trip Rate: 1.00

	Enter	Exit	Total
Directional Distribution	63%	37%	
Trip Ends	$\mathbf{7 5}$	$\mathbf{4 4}$	$\mathbf{1 1 9}$

SATURDAY

Trip Rate: 9.91

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{5 9 0}$	$\mathbf{5 9 0}$	$\mathbf{1 , 1 8 0}$

LEVEL OF SERVICE

Level of service is used to describe the quality of traffic flow. Levels of service A to C are considered good, and rural roads are usually designed for level of service C . Urban streets and signalized intersections are typically designed for level of service D. Level of service E is considered to be the limit of acceptable delay. For unsignalized intersections, level of service E is generally considered acceptable. Here is a more complete description of levels of service:

Level of service A: Very low delay at intersections, with all traffic signal cycles clearing and no vehicles waiting through more than one signal cycle. On highways, low volume and high speeds, with speeds not restricted by other vehicles.

Level of service B: Operating speeds beginning to be affected by other traffic; short traffic delays at intersections. Higher average intersection delay than for level of service A resulting from more vehicles stopping.

Level of service C: Operating speeds and maneuverability closely controlled by other traffic; higher delays at intersections than for level of service B due to a significant number of vehicles stopping. Not all signal cycles clear the waiting vehicles. This is the recommended design standard for rural highways.

Level of service D: Tolerable operating speeds; long traffic delays occur at intersections. The influence of congestion is noticeable. At traffic signals many vehicles stop, and the proportion of vehicles not stopping declines. The number of signal cycle failures, for which vehicles must wait through more than one signal cycle, are noticeable. This is typically the design level for urban signalized intersections.

Level of service E: Restricted speeds, very long traffic delays at traffic signals, and traffic volumes near capacity. Flow is unstable so that any interruption, no matter how minor, will cause queues to form and service to deteriorate to level of service F. Traffic signal cycle failures are frequent occurrences. For unsignalized intersections, level of service E or better is generally considered acceptable.

Level of service F: Extreme delays, resulting in long queues which may interfere with other traffic movements. There may be stoppages of long duration, and speeds may drop to zero. There may be frequent signal cycle failures. Level of service F will typically result when vehicle arrival rates are greater than capacity. It is considered unacceptable by most drivers.

LEVEL OF SERVICE CRITERIA FOR SIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (Seconds)
A	<10
B	$10-20$
C	$20-35$
D	$35-55$
E	$55-80$
F	>80

LEVEL OF SERVICE CRITERIA

FOR UNSIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (Seconds)
A	<10
B	$10-15$
C	$15-25$
D	$25-35$
E	$35-50$
F	>50

	4		\leftarrow	4	\checkmark	\downarrow	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	\%	\uparrow	\uparrow		\%	「'	
Sign Control		Free	Free		Stop		
Grade		0\%	0\%		0\%		
Volume (veh/h)	27	241	390	70	61	11	
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	
Hourly flow rate (vph)	34	301	488	88	76	14	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type					None		
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC , conflicting volume	575				900	531	
vC 1 , stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol	575				900	531	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free \%	97				74	97	
cM capacity (veh/h)	998				299	548	
Direction, Lane \#	EB 1	EB 2	WB 1	SB 1	SB 2		
Volume Total	34	301	575	76	14		
Volume Left	34	0	0	76	0		
Volume Right	0	0	88	0	14		
cSH	998	1700	1700	299	548		
Volume to Capacity	0.03	0.18	0.34	0.26	0.03		
Queue Length 95th (ft)	3	0	0	25	2		
Control Delay (s)	8.7	0.0	0.0	21.1	11.7		
Lane LOS	A			C	B		
Approach Delay (s)	0.9		0.0	19.7			
Approach LOS				C			
Intersection Summary							
Average Delay			2.1				
Intersection Capacity Utilization			34.8\%		ICU Leve	of Service	A
Analysis Period (min)			15				

	$\stackrel{ }{ }$			7			4	\dagger	\%		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			$\stackrel{7}{ }$	\%	\uparrow			\uparrow	F'	\%	$\hat{\beta}$	
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	0	0	6	377	1	26	5	62	206	68	278	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	7	410	,	28	5	67	224	74	302	3
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
VC , conflicting volume	559	754	304	535	532	67	305			291		
vC 1 , stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	559	754	304	535	532	67	305			291		
tC, single (s)	7.1	6.5	6.2	*6.0	*6.0	*6.0	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	*2.5	*2.5	*2.5	2.2			2.2		
p0 queue free \%	100	100	99	39	100	98	100			94		
cM capacity (veh/h)	409	317	736	667	666	1317	1238			1270		
Direction, Lane \#	EB 1	WB 1	WB 2	NB 1	NB 2	SB 1	SB 2					
Volume Total	7	410	29	73	224	74	305					
Volume Left	0	410	0	5	0	74	0					
Volume Right	7	0	28	0	224	0	3					
cSH	736	667	1271	1238	1700	1270	1700					
Volume to Capacity	0.01	0.61	0.02	0.00	0.13	0.06	0.18					
Queue Length 95th (ft)	1	105	2	0	0	5	0					
Control Delay (s)	9.9	18.6	7.9	0.6	0.0	8.0	0.0					
Lane LOS	A	C	A	A		A						
Approach Delay (s)	9.9	17.9		0.2		1.6						
Approach LOS	A	C										
Intersection Summary												
Average Delay			7.6									
Intersection Capacity Utilization			49.0\%		ICU Leve	I of Servir	vice		A			
Analysis Period (min)			15									

	$\stackrel{ }{*}$		4	4		\checkmark	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	\%			\uparrow	$\hat{\beta}$		
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Volume (veh/h)	0	18	7	16	22	0	
Peak Hour Factor	0.70	0.70	0.70	0.70	0.70	0.70	
Hourly flow rate (vph)	0	26	10	23	31	0	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft / s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	74	31	31				
$\mathrm{vC1}$, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu, unblocked vol	74	31	31				
tC , single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free \%	100	98	99				
cM capacity (veh/h)	923	1043	1581				
Direction, Lane \#	EB 1	NB 1	SB 1				
Volume Total	26	33	31				
Volume Left	0	10	0				
Volume Right	26	0	0				
cSH	1043	1581	1700				
Volume to Capacity	0.02	0.01	0.02				
Queue Length 95th (ft)	2	0	0				
Control Delay (s)	8.5	2.3	0.0				
Lane LOS	A	A					
Approach Delay (s)	8.5	2.3	0.0				
Approach LOS	A						
Intersection Summary							
Average Delay			3.3				
Intersection Capacity Utilization			17.0\%	ICU Level of Service			A
Analysis Period (min)			15				

	\rightarrow		\dagger		4	7	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	$\hat{\beta}$			$\stackrel{1}{4}$	${ }^{1 /}$		
Sign Control	Free			Free	Stop		
Grade	0\%			0\%	0\%		
Volume (veh/h)	33	7	0	151	20	0	
Peak Hour Factor	0.25	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	132	8	0	164	22	0	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type					None		
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC , conflicting volume			140		300	136	
vC 1 , stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol			140		300	136	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free \%			100		97	100	
cM capacity (veh/h)			1444		692	913	
Direction, Lane \#	EB 1	WB 1	NB 1				
Volume Total	140	164	22				
Volume Left	0	0	22				
Volume Right	8	0	0				
cSH	1700	1444	692				
Volume to Capacity	0.08	0.00	0.03				
Queue Length 95th (ft)	0	0	2				
Control Delay (s)	0.0	0.0	10.4				
Lane LOS			B				
Approach Delay (s)	0.0	0.0	10.4				
Approach LOS			B				
Intersection Summary							
Average Delay			0.7				
Intersection Capacity Utilization			17.9\%		ICU Leve	of Service	A
Analysis Period (min)			15				

	4	-	1		\cdots	4	
Movement	EBL	EBR	SBL	SBR	NWL	NWR	
Lane Configurations	M		*		M		
Sign Control	Free		Stop		Free		
Grade	0\%		0\%		0\%		
Volume (veh/h)	21	194	14	13	130	23	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	
Hourly flow rate (vph)	24	220	16	15	148	26	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None				
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC , conflicting volume	174		429	161			
$\mathrm{vC1}$, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol	174		429	161			
tC, single (s)	4.1		6.4	6.2			
tC, 2 stage (s)							
tF (s)	2.2		3.5	3.3			
p0 queue free \%	98		97	98			
cM capacity (veh/h)	1403		573	884			
Direction, Lane \#	EB 1	SB 1	NW 1				
Volume Total	244	31	174				
Volume Left	24	16	0				
Volume Right	0	15	26				
cSH	1403	690	1700				
Volume to Capacity	0.02	0.04	0.10				
Queue Length 95th (ft)	1	3	0				
Control Delay (s)	0.9	10.5	0.0				
Lane LOS	A	B					
Approach Delay (s)	0.9	10.5	0.0				
Approach LOS		B					
Intersection Summary							
Average Delay			1.2				
Intersection Capacity Utilization			35.1\%	ICU Level of Service			A
Analysis Period (min)			15	ICU Level of Service			

	$\stackrel{ }{ }$		4	\dagger		\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	M			\uparrow	\uparrow		
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Volume (veh/h)	0	13	21	23	16	0	
Peak Hour Factor	0.70	0.70	0.70	0.70	0.70	0.70	
Hourly flow rate (vph)	0	19	30	33	23	0	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC , conflicting volume	116	23	23				
$\mathrm{vC1}$, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu , unblocked vol	116	23	23				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free \%	100	98	98				
cM capacity (veh/h)	864	1054	1592				
Direction, Lane \#	EB 1	NB 1	SB 1				
Volume Total	19	63	23				
Volume Left	0	30	0				
Volume Right	19	0	0				
cSH	1054	1592	1700				
Volume to Capacity	0.02	0.02	0.01				
Queue Length 95th (ft)	1	1	0				
Control Delay (s)	8.5	3.6	0.0				
Lane LOS	A	A					
Approach Delay (s)	8.5	3.6	0.0				
Approach LOS	A						
Intersection Summary							
Average Delay			3.7				
Intersection Capacity Utilization			19.0\%	ICU Level of Service			A
Analysis Period (min)			15				

	\rightarrow		7		4	7	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	$\hat{\beta}$			\uparrow	M		
Sign Control	Free			Free	Stop		
Grade	0\%			0\%	0\%		
Volume (veh/h)	156	24	0	67	13	0	
Peak Hour Factor	0.25	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	624	26	0	73	14	0	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type					None		
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC , conflicting volume			650		710	637	
vC 1 , stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol			650		710	637	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free \%			100		96	100	
cM capacity (veh/h)			936		400	477	
Direction, Lane \#	EB 1	WB 1	NB 1				
Volume Total	650	73	14				
Volume Left	0	0	14				
Volume Right	26	0	0				
cSH	1700	936	400				
Volume to Capacity	0.38	0.00	0.04				
Queue Length 95th (ft)	0	0	3				
Control Delay (s)	0.0	0.0	14.3				
Lane LOS			B				
Approach Delay (s)	0.0	0.0	14.3				
Approach LOS			B				
Intersection Summary							
Average Delay			0.3				
Intersection Capacity Utilization			19.7\%		ICU Lev	of Service	A
Analysis Period (min)			15				

Left-Turn Lane Warrant Analysis

Project: 15089 - Sunrise Terrace
Intersection: Site Access at NE 339th Street
Date: 7/7/2015
Scenario: 2017 Background + Site Conditions - AM Peak Hour

2-lane roadway (English)

INPUT

Variable	Value
$5^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	0%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh $/ \mathrm{h:}$	151
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	40

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	\#DIV/0!
Guidance for determining the need for a major-road left-turn bay:	
\#DIV/0!	

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, $\mathrm{s}:$	3.0
Critical headway, $\mathrm{s}:$	5.0
Average time for left-turn vehicle to clear the advancing lane, $\mathrm{s}:$	1.9

Left-Turn Lane Warrant Analysis

Project: 15089 - Sunrise Terrace
Intersection: Site Access at NE 339th Street
Date: 7/7/2015
Scenario: 2017 Background + Site Conditions - PM Peak Hour

2-lane roadway (English)

INPUT

Variable	Value
$5^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	0%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	67
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	147

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	\#DIV/0!
Guidance for determining the need for a major-road left-turn bay:	
\#DIV/0!	

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, $\mathrm{s}:$	3.0
Critical headway, $\mathrm{s}:$	5.0
Average time for left-turn vehicle to clear the advancing lane, $\mathrm{s}:$	1.9

Left-Turn Lane Warrant Analysis

Project: 15089 - Sunrise Terrace
Intersection: North Site Access at NE 24th Avenue
Date: 7/7/2015
Scenario: 2017 Background + Site Conditions - AM Peak Hour

2-lane roadway (English)

INPUT

Variable	Value
$5^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	0%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh $/ \mathrm{h:}$	16
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	25

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	\#DIV/0!
Guidance for determining the need for a major-road left-turn bay:	
\#DIV/0!	

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, $\mathrm{s}:$	3.0
Critical headway, $\mathrm{s}:$	5.0
Average time for left-turn vehicle to clear the advancing lane, $\mathrm{s}:$	1.9

Left-Turn Lane Warrant Analysis

Project: 15089 - Sunrise Terrace
Intersection: North Site Access at NE 24th Avenue
Date: 7/7/2015
Scenario: 2017 Background + Site Conditions - PM Peak Hour

2-lane roadway (English)

INPUT

Variable	Value
$5^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	0%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh $/ \mathrm{h:}$	23
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	26

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	\#DIV/0!
Guidance for determining the need for a major-road left-turn bay:	
\#DIV/0!	

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, $\mathrm{s}:$	3.0
Critical headway, $\mathrm{s}:$	5.0
Average time for left-turn vehicle to clear the advancing lane, $\mathrm{s}:$	1.9

Left-Turn Lane Warrant Analysis

Project: 15089 - Sunrise Terrace
Intersection: South Site Access at NE 24th Avenue
Date: 7/7/2015
Scenario: 2017 Background + Site Conditions - AM Peak Hour

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	30%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	22
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	23

OUTPUT

Variable	Value	
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	390	
Guidance for determining the need for a major-road left-turn bay:		
Left-turn treatment NOT warranted.		

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, $\mathrm{s}:$	3.0
Critical headway, $\mathrm{s}:$	5.0
Average time for left-turn vehicle to clear the advancing lane, $\mathrm{s}:$	1.9

Left-Turn Lane Warrant Analysis

Project: 15089 - Sunrise Terrace
Intersection: South Site Access at NE 24th Avenue
Date: 7/7/2015
Scenario: 2017 Background + Site Conditions - PM Peak Hour

2-lane roadway (English)

INPUT

Variable	Value
$5^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	48%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	44
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	16

OUTPUT

Variable	Value	
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	362	
Guidance for determining the need for a major-road left-turn bay:		
Left-turn treatment NOT warranted.		

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, $\mathrm{s}:$	3.0
Critical headway, $\mathrm{s}:$	5.0
Average time for left-turn vehicle to clear the advancing lane, $\mathrm{s}:$	1.9

Left-Turn Lane Warrant Analysis

Project: 15089 - Sunrise Terrace
Intersection: Site Access at NE Lockwood Creek Road
Date: 7/7/2015
Scenario: 2017 Background + Site Conditions - AM Peak Hour

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	7%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	88
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	243

OUTPUT

Variable	Value	
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	551	
Guidance for determining the need for a major-road left-turn bay:		
Left-turn treatment NOT warranted.		

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, $\mathrm{s}:$	3.0
Critical headway, $\mathrm{s}:$	5.0
Average time for left-turn vehicle to clear the advancing lane, $\mathrm{s}:$	1.9

Left-Turn Lane Warrant Analysis

Project: 15089 - Sunrise Terrace
Intersection: Site Access at NE Lockwood Creek Road
Date: 7/7/2015
Scenario: 2017 Background + Site Conditions - PM Peak Hour

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	9%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	247
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh/h:	147

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	543

Guidance for determining the need for a major-road left-turn bay:
Left-turn treatment NOT warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, $\mathrm{s}:$	3.0
Critical headway, $\mathrm{s}:$	5.0
Average time for left-turn vehicle to clear the advancing lane, $\mathrm{s}:$	1.9

Traffic Signal Warrant Analysis

Project:	15089 - Sunrise Terrace		
Date:	6/26/2015		
Scenario:	Background plus Site Conditions		
Major Street:	NW Pacific Highway	Minor Street:	W 4th Street
Number of Lanes:	2	Number of Lanes:	2
PM Peak Hour Volumes:	1021	PM Peak Hour Volumes:	271

Warrant Used:

| X |
| :--- | 100 percent of standard warrants used 70 percent of standard warrants used due to 85th percentile speed in excess of 40 mph or isolated community with population less than 10,000 .

Traffic Signal Warrant Analysis

[^0]
Traffic Signal Warrant Analysis

Project:	15089 - Sunrise Terrace				
Date:	6/26/2015				
Scenario:	Background plus Site Conditions				
Major Street:	E 4th Street		Minor Street:	NE Highland Avenue	
Number of Lanes:	1		Number of Lanes:	1	
PM Peak Hour Volumes:	727		PM Peak Hour Volumes:	108	
Warrant Used:					
X	100 percent of standard warrants used				
	70 percent of standard warrants used due to 85th percentile speed in excess				
of 40 mph or isolated community with population less than 10,000.					
Number of Lanes for Moving Traffic on Each Approach:		ADT on Major St. (total of both approaches)		ADT on Minor St. (higher-volume approach)	
WARRANT 1, CO	DITION A	100\%	70\%	100\%	70\%
Major St.	Minor St.	Warrants	Warrants	Warrants	Warrants
1	1	8,850	6,200	2,650	1,850
2 or more	1	10,600	7,400	2,650	1,850
2 or more	2 or more	10,600	7,400	3,550	2,500
1	2 or more	8,850	6,200	3,550	2,500
WARRANT 1, CONDITION B					
1	1	13,300	9,300	1,350	950
2 or more	1	15,900	11,100	1,350	950
2 or more	2 or more	15,900	11,100	1,750	1,250
1	2 or more	13,300	9,300	1,750	1,250
		Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume			
		Approach	Minimum	Is Signal	
		Volumes	Volumes	Warrant Met?	
Warrant 1					
Condition A: Minimum Vehicular Volume					
Major Street		7,270	8,850		
Minor Street*		1,080	2,650	No	
Condition B: Interruption of Continuous Traffic					
Major Street		7,270	13,300		
Minor Street*		1,080	1,350	No	
Combination Warrant					
Major Street		7,270	10,640		
Minor Street*		1,080	2,120	No	

[^1]
Traffic Signal Warrant Analysis

[^2]
Traffic Signal Warrant Analysis

Project: 15089-Sunrise Terrace					
Date:	6/26/2015				
Scenario:	Background plus Site Conditions				
Major Street:	NE Lockwood	Road	Minor Street:	Access	
Number of Lanes:	1		Number of Lanes:	1	
PM Peak Hour Volumes:	394		PM Peak Hour Volumes:	13	
Warrant Used:					
X	100 percent of standard warrants used				
70 percent of standard warrants used due to 85 th percentile speed in excess					
Number of Lanes for Moving Traffic on Each Approach:		ADT on Major St. (total of both approaches)		ADT on Minor St. (higher-volume approach)	
WARRANT 1, CO	DITION A	100\%	70\%	100\%	70\%
Major St.	Minor St.	Warrants	Warrants	Warrants	Warrants
1	1	8,850	6,200	2,650	1,850
2 or more	1	10,600	7,400	2,650	1,850
2 or more	2 or more	10,600	7,400	3,550	2,500
1	2 or more	8,850	6,200	3,550	2,500
WARRANT 1, CONDITION B					
1	1	13,300	9,300	1,350	950
2 or more	1	15,900	11,100	1,350	950
2 or more	2 or more	15,900	11,100	1,750	1,250
1	2 or more	13,300	9,300	1,750	1,250
		Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume			
		Approach	Minimum	Is Signal	
		Volumes	Volumes	Warrant Met?	
Warrant 1					
Condition A: Minimum Vehicular Volume					
Major Street		3,940	8,850		
Minor Street*		130	2,650	No	
Condition B: Interruption of Continuous Traffic					
Major Street		3,940	13,300		
Minor Street*		130	1,350	No	
Combination Warrant					
Major Street		3,940	10,640		
Minor Street*		130	2,120	No	

[^3]
Traffic Signal Warrant Analysis

Project:	15089 - Sunrise Terrace				
Date:	6/26/2015				
Scenario:	Background plus Site Conditions				
Major Street:	NE 339th Street		Minor Street:	Access	
Number of Lanes:	1		Number of Lanes:	1	
PM Peak Hour Volumes:	245		PM Peak Hour Volumes:	13	
Warrant Used:					
X	100 percent of standard warrants used				
70 percent of standard warrants used due to 85 th percentile speed in excessof 40 mph or isolated community with population less than 10,000 .					
Number of Lanes for Moving Traffic on Each Approach:		ADT on Major St. (total of both approaches)		ADT on Minor St. (higher-volume approach)	
WARRANT 1, CO	DITION A	100\%	70\%	100\%	70\%
Major St.	Minor St.	Warrants	Warrants	Warrants	Warrants
1	1	8,850	6,200	2,650	1,850
2 or more	1	10,600	7,400	2,650	1,850
2 or more	2 or more	10,600	7,400	3,550	2,500
1	2 or more	8,850	6,200	3,550	2,500
WARRANT 1, CONDITION B					
1	1	13,300	9,300	1,350	950
2 or more	1	15,900	11,100	1,350	950
2 or more	2 or more	15,900	11,100	1,750	1,250
1	2 or more	13,300	9,300	1,750	1,250
		Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume			
		Approach	Minimum	Is Signal	
		Volumes	Volumes	Warrant Met?	
Warrant 1					
Condition A: Minimum Vehicular Volume					
Major Street		2,450	8,850		
Minor Street*		130	2,650	No	
Condition B: Interruption of Continuous Traffic					
Major Street		2,450	13,300		
Minor Street*		130	1,350	No	
Combination Warrant					
Major Street		2,450	10,640		
Minor Street*		130	2,120	No	

[^4]OFFICER REPORTED CRASHES THAT OCCURRED ON ALL ROADS IN THE CITY OF LA CENTER

1/1/2010-12/31/2014

UNDER 23 UNITED STATES CODE - SECTION 409, THIS DATA CANNOT BE USED IN DISCOVERY OR AS EVIDENCE
AT TRIAL IN ANY ACTION FOR DAMAGES AGAINST THE WSDOT, OR ANY JURISDICTIONS INVOLVED IN THE DATA

JURISDICTION	PRIMARY TRAFFICWAY	BLOCK NUMBER	INTERSECTING TRAFFICWAY	$\begin{gathered} \text { DIST } \\ \text { FROM } \\ \text { REF } \\ \text { POINT } \end{gathered}$	MI or FT	$\begin{gathered} \text { COMP } \\ \text { DIR } \\ \text { FROM } \\ \text { REF } \\ \text { POINT } \end{gathered}$	REFERENCE POINT NAME	$\begin{aligned} & \text { MILE } \\ & \text { POST } \end{aligned}$	A	REPORT NUMBER
City Street	ASPEN AVE	900	W 10TH ST							2427340
City Street	ASPEN AVE	300	W 4TH ST							E379622
City Street	E 4TH ST	100		109	F	E	ASPEN AVE			2427349
City Street	E 4TH ST	1000		30	F	W	NE LOCKWOOD CREEK RD			2737465
City Street	E 4TH ST	900	NE HIGHLAND AVE							E354317
City Street	NE HIGHLAND AVE	400	E 4TH ST							2427331
City Street	NE HIGHLAND AVE	400	E 4TH ST							E237901
City Street	NE LOCKWOOD CREEK RD	2300		81	F	NW	NE 24TH AVE			2427339
City Street	NE LOCKWOOD CREEK RD	2300		300	F	NW	NE 24TH AVE			E331937
City Street	NW PACIFIC HWY	400	W 4TH ST							E367326
City Street	NW PACIFIC HWY	400	W 4TH ST							E358151
City Street	NW PACIFIC HWY	400	W 4TH ST							2427345
City Street	W 4TH ST	200	ASPEN AVE							E390572
City Street	W 4TH ST	200	NW PACIFIC HWY							2427295
City Street	W 4TH ST	200	NW PACIFIC HWY							E230384

DATE	TIME	MOST SEVERE INJURY TYPE	\#	\# $\begin{aligned} & \text { \# } \\ & \text { F } \\ & \text { A } \\ & \text { T } \\ & \\ & \end{aligned}$	$\begin{array}{\|l} \# \\ V \\ V \\ E \\ H \end{array}$		\| $\begin{aligned} & \text { \# } \\ & \text { P } \\ & \text { E } \\ & \text { D } \\ & \text { A } \\ & \text { L }\end{aligned}$	VEHICLE 1 TYPE	VEHICLE 2 TYPE
9/11/2010	12:40	No Injury	0	0		2	0	Passenger Car	Passenger Car
11/29/2014	22:50	Serious Injury	1	10		2	0	Pickup,Panel Truck or Vanette under 10,000 lb	
8/18/2011	18:19	No Injury	0	0		2	0	Pickup,Panel Truck or Vanette under 10,000 lb	Passenger Car
2/3/2012	10:48	No Injury	0	0		2	0	Pickup,Panel Truck or Vanette under 10,000 lb	Passenger Car
9/2/2014	8:05	No Injury	0	0		2	0	Passenger Car	Passenger Car
3/24/2010	14:50	No Injury	0	0		2	0	Pickup,Panel Truck or Vanette under 10,000 lb	Passenger Car
4/14/2013	11:30	No Injury	0	0		1	0	Passenger Car	
9/4/2010	21:26	No Injury	0	0		1	0	Passenger Car	
6/1/2014	8:48	Possible Injury	1	0		2	0	Pickup,Panel Truck or Vanette under 10,000 lb	Passenger Car
10/18/2014	20:00	Possible Injury	1	10		2	0	Passenger Car	Passenger Car
9/12/2014	7:45	No Injury	0	0		2	0	Passenger Car	Pickup,Panel Truck or Vanette under 10,000 lb
12/14/2010	17:09	Serious Injury	1	1	1	1	10	Pickup,Panel Truck or Vanette under 10,000 lb	
12/20/2014	11:30	No Injury	0	0	2	2	0	Pickup,Panel Truck or Vanette under 10,000 lb	Passenger Car
7/18/2012	7:25	No Injury	0	0		2	0	Passenger Car	Pickup,Panel Truck or Vanette under 10,000 lb
3/1/2013	8:02	Possible Injury	2	2.0) 2	2	0	Passenger Car	Passenger Car

JUNCTION RELATIONSHIP	ROADWAY SURFACE CONDITIONS	LIGHTING CONDITIONS
At Intersection and Related	Dry	Daylight
At Intersection and Not Related	Dry	Dark-Street Lights On
Not at Intersection and Not Related	Dry	Daylight
At Driveway	Dry	Daylight
At Intersection and Related	Dry	Daylight
At Intersection and Related	Dry	Daylight
At Intersection and Related	Dry	Daylight
Not at Intersection and Not Related	Dry	Dark-No Street Lights
Not at Intersection and Not Related	Dry	Daylight
At Intersection and Related	Dry	Dark-Street Lights On
At Intersection and Related	Dry	Daylight
At Intersection and Related	Wet	Dark-Street Lights On
At Intersection and Not Related	Wet	Daylight
At Intersection and Related	Dry	Daylight
At Intersection and Related	Wet	Daylight

FIRST COLLISION TYPE / OBJECT STRUCK		
Entering at angle	VEH 1 ACTION	
Building	Vaking Left Turn 2 ACTION	
From same direction - both going straight - one stopped - rear-end	Going Straight Ahead	Going Straight Ahead
Entering at angle	Going Straight Ahead	Stopped for Traffic
Entering at angle	Going Straight Ahead	Making Left Turn
From same direction - both going straight - one stopped - rear-end	Making Left Turn	Making Left Turn
Street Light Pole or Base	Stopped at Signal or Stop Sign	Going Straight Ahead
Over Embankment - No Guardrail Present	Going Straight Ahead	
From same direction - both going straight - both moving - rear-end	Going Straight Ahead	
Entering at angle	Going Straight Ahead	Going Straight Ahead
Entering at angle	Stopped at Signal or Stop Sign	Making Right Turn
Vehicle going straight hits pedestrian	Making Left Turn	Going Straight Ahead
From same direction - both going straight - one stopped - rear-end	Going Straight Ahead	
From same direction - both going straight - one stopped - rear-end	Stopped for Traffic	Going Straight Ahead
Entering at angle	Stopped at Signal or Stop Sign	Going Straight Ahead

MV DRIVER CONT CIRC 1 (UNIT 1)			
None	MV DRIVER CONT CIRC 1 (UNIT 2)	VEH 1 COMP DIR FROM	VEH 1 COMP DIR TO
Under Influence of Alcohol		East	South
Follow Too Closely	None	Forth	South
None	Did Not Grant RW to Vehicle	East	West
Driver Not Distracted	Did Not Grant RW to Vehicle	West	East
None	Follow Too Closely	West	Northeast
Exceeding Stated Speed Limit		North	Vehicle Stopped
Over Center Line		East	South
None	Apparently Asleep	West	
None	Under Influence of Alcohol	Vehicle Stopped	East
Did Not Grant RW to Vehicle	Driver Not Distracted	Vehicle Stopped	
Fail to Yield Row to Pedestrian		South	South
None	Inattention	Vehicle Stopped	North
None	Inattention	Vehicle Stopped	
Did Not Grant RW to Vehicle	None	East	Vehicle Stopped

VEH 2 COMP DIR FROM	VEH 2 COMP DIR TO	IMPACT LOCATION (Effective for City, County \& Misc 1/1/2010; SR's indefinite)
North	South	Lane of Primary Trafficway
		Past the Outside Shoulder of Primary Trafficway
East	Vehicle Stopped	Lane of Primary Trafficway
South	West	Lane of Primary Trafficway
North	Southeast	Lane of Primary Trafficway
North	South	Lane of Primary Trafficway
		Past the Outside Shoulder of Primary Trafficway
	Past the Outside Shoulder of Primary Trafficway	
West	East	Lane of Primary Trafficway
South	North	Lane of Primary Trafficway
South		Lane of Primary Trafficway
	West	Lane of Primary Trafficway
East	West	Lane of Primary Trafficway
East	North	Lane of Primary Trafficway
South		

AASHTO Intersection Sight Distance
Design Speed ISD for Cars 15170 $20 \quad 225$ $25 \quad 280$ $30 \quad 335$ $35 \quad 390$ $40 \quad 445$ $45 \quad 500$ $50 \quad 555$ $55 \quad 610$ $60 \quad 665$ $65 \quad 720$ $70 \quad 775$ $75 \quad 830$ $80 \quad 885$

```
ISD = 1.47*Vmajor*tg
Vmajor = Design Speed on major road
tg= time gap for minor road
Speed? 25
Time Gap? 7.5
ISD 280
```


AASHTO Stopping Sight Distance

Design Speed SSD for Cars
$15 \quad 80$
$20 \quad 115$
$25 \quad 155$
$30 \quad 200$
$35 \quad 250$
$40 \quad 305$
$45 \quad 360$
$50 \quad 425$
$55 \quad 495$
$60 \quad 570$
$65 \quad 645$
$70 \quad 730$
$75 \quad 820$
$80 \quad 910$
$S S D=1.47^{*} V^{*} t+V^{2} /(30(a / 32.2) \pm G)$
V = Design Speed
$\mathrm{t}=\quad 2.5 \mathrm{~s}$ (brake reaction time)
$a=\quad$ deceleration rate $\left(11.2 \mathrm{ft} / \mathrm{s}^{2}\right)$

Washington County Intersection Sight Distance
Design Speed ISD for Cars
15150
$20 \quad 200$
$25 \quad 250$
$30 \quad 300$
$35 \quad 350$
$40 \quad 400$
$45 \quad 450$
$50 \quad 500$
$55 \quad 550$
$60 \quad 600$
$65 \quad 650$
$70 \quad 700$
$75 \quad 750$
$80 \quad 800$
$I S D=10 *$ Vmajor
Vmajor $=$ Design Speed on major road

G = Grade of approach (+ up, - down)
Vmajor $=$ Design Speed on major road \quad Vmajor $=$ Design Speed on major road
$\operatorname{tg}=\quad$ time gap for minor road

Speed?	25	$G=-6.3$
Time Gap?	2.5	
A?	11.2	
SSD	165	

[^0]: * Right-turning traffic volumes reduced by 50\%

[^1]: * Right-turning traffic volumes reduced by 50\%

[^2]: * Right-turning traffic volumes reduced by 50\%

[^3]: * Right-turning traffic volumes reduced by 50\%

[^4]: * Right-turning traffic volumes reduced by 50\%

