HOLLEY PARK SUBDIVISION

FINAL TECHNICAL INFORMATION REPORT

DATE:	May 2019
SUBMITTED TO:	City of La Center 305 NW Pacific Highway La Center, WA 98629
Applicant:	Compass Group, LLC Contact: Kevin Tapani 1904 SE 6 th Place Battle Ground, WA 98604 PH: 360-687-1148
Contact:	Seth Halling, P.E. PH: (360) 882-0419 SethH@aks-eng.com
PREPARED BY:	AKS Engineering & Forestry, LLC
AKS JOB NO.:	6962

CERTIFICATE OF THE ENGINEER Holley Park Subdivision City of La Center, Washington Final Technical Information Report

This Technical Information Report and the data contained herein were prepared by the undersigned, whose seal, as a Professional Engineer licensed to practice as such, is affixed below. All information required by the City of La Center Municipal Code (LCMC) Chapter 18.320 Stormwater and Erosion Control is included in the Stormwater Plan. This project complies with Best Management Practices as identified by the State Department of Ecology 1992 Stormwater Management Manual for the Puget Sound Basin.

TABLE OF CONTENTS

SECTION A. – PROJECT OVERVIEW	1
SECTION B. – APPROVAL CONDITIONS SUMMARY	1
SECTION C. – DOWNSTREAM ANALYSIS	
SECTION D. – QUANTITY CONTROL ANALYSIS AND DESIGN	
SECTION E. – CONVEYANCE SYSTEMS ANALYSIS AND DESIGN	
SECTION F. – WATER QUALITY DESIGN	
SECTION G. – SOILS EVALUATION	
SECTION H. – SPECIAL REPORTS AND STUDIES	
SECTION I. – OTHER PERMITS	
SECTION J. – GROUNDWATER MONITORING PROGRAM	
SECTION K. – MAINTENANCE AND OPERATIONS MANUAL	7
SECTION L. – TECHNICAL APPENDIX	7
APPENDIX A - VICINITY MAP	7
APPENDIX B - PRELIMINARY PLANS AND DEVELOPMENT (BASIN) PLANS	
APPENDIX C - USDA SOILS REPORT	
APPENDIX D - GEOTECHNICAL REPORT	
APPENDIX E - DETENTION POND HYDROCAD ANALYSIS	
APPENDIX F - CONVEYANCE HYDROCAD ANALYSIS	
APPENDIX G - BMP DETAILS	
APPENDIX H - CURVE NUMBERS	
APPENDIX I - NEW DEVELOPMENT FLOW CHART	
APPENDIX J - VOLUME CORRECTION FACTOR	
APPENDIX K - ISOPLOUVIAL MAPS	
APPENDIX L - WET POND CALCULATIONS	
APPENDIX M - INLET CAPACITY CALCULATIONS	
APPENDIX N - MAINTENANCE AND OPERATIONS MANUAL	7

TABLES

Table 1.1: Existing Hard Surface and Landscaping	1
Table 1.2: Proposed Hard Surface and Landscaping	2
Table 1.3: Pre-Development Curve Numbers	2
Table 1.4: Post-Development Curve Numbers	
Table 1.5: Existing Runoff Volumes/Discharge	3
Table 1.6: Post-Developed Runoff Volumes/Discharge	3
Table 1.7: Proposed Detention Facility Performance	
Table 1.8: Conveyance System Summary	

References

1992 Stormwater Management Manual for the Puget Sound Basin – "SMMPSB"

SECTION A. - PROJECT OVERVIEW

The 14.54-acre site is zoned R1-7.5 (single family residential) and P/OS (parks/open space), and is located on parcels 62965242, 209055-000, and 209059-000 in Clark County, WA. The project site is located within the Northwest 1/4 of Section 2, Township 4 North, Range 1 East, Willamette Meridian, Clark County, Washington. More specifically it is bound by NE Ivy Avenue to the west and E 2nd street to the east. See the Vicinity Map for the project location (Appendix A).

The site is characterized by site topography sloping from the northeast to the southwest. The project site is grass field with vegetation around the existing residence and associated buildings. There are 3 streams and steep slopes present on site.

The project proposes to construct sidewalks, public streets, stormwater facilities, and 39 residential lots. Proposed land disturbances will consist of grading and excavation of unsuitable soils for the construction of sidewalks, utilities, streets, stormwater facilities, and landscape features. Due to the amount of proposed impervious surfaces (greater than 5,000 square feet) and the amount of disturbed area (greater than 1 acre), the project is required to meet Minimum Requirements 1-11 per the 1992 Stormwater Management Manual for the Puget Sound Basin (SMMPSB) (See Appendix I). The proposed stormwater wet pond is proposed to be privately owned and maintained.

There are no surface waters, adjacent critical areas (within ¼ mile), or adjacent developments that will be negatively affected by the project. Stormwater runoff from neighboring properties appears to have no impact the site.

SECTION B. - APPROVAL CONDITIONS SUMMARY

An approval conditions summary will be provided once a land use decision has been issued.

SECTION C. - DOWNSTREAM ANALYSIS

Per the LCMC 18.320.220(2)(c) a downstream analysis is not required since the post-developed runoff rates are less than the pre-developed runoff rates.

SECTION D. - QUANTITY CONTROL ANALYSIS AND DESIGN

The project proposes to utilize a stormwater wet pond (BMP RD.05 Wet Pond without Marsh) for meeting flow control requirements. Stormwater runoff from the proposed trail in Basin 1S will sheet flow to the north stream with no flow control. The stormwater wet pond on site will over-detain to offset direct discharge of Basin 1S. See Table 1.2 for proposed hard surface and landscaping areas. See the Preliminary Plans and Development (Basin) Plans for stormwater configuration (Appendix B).

Table 1.1: Existing Hard Surface and Landscaping								
Basi	in	Landscape	Road	Roof	Sidewalk	Total Impervious Area	Total Area	
1X		9.46	0.22	0.20	0	0.42	9.88	

Note: Areas are in acres.

	Table 1.2: Proposed Hard Surface and Landscaping								
Basin	Landscape	Road	Roof/Driveway	Sidewalk	Total Impervious Area	Total Area			
15	0	0	0	0.17*	0.17	0.17			
25	0.64	0.18	0.61***	0.06	0.85	1.49			
35	0.67	0.20	0.62	0.07	0.89	1.55			
4S	0.01	0.06	0	0.02	0.08	0.09			
55	0.51	0.36	0.53	0.10	0.99	1.50			
6S	0.63	0	0.43	0	0.43	1.06			
75	0.26	0	0.18	0	0.18	0.45			
85	0.07	0.11	0.08	0.04	0.23	0.30			
95	0.16	0.02	0.12	0	0.14	0.31			
105	0.37	0.02	0.24	0	0.26	0.63			
115	0.41	0.29	0.37	0.07	0.73	1.14			
12SA	0.06	0	0.07	0	0.07	0.13			
12SB	0.09	0.05	0.11	0.01	0.17	0.26			
135	0.24	0	0	0	0.40**	0.64			

*Basin 1S is the rustic trail

**Basin 13S impervious area is the stormwater facility

***Assumes lots 8,000 S.F. and under are 50% impervious and lots over 8,000 S.F. have 4,000 S.F. of impervious area.

Note: Areas are in acres.

Tables 1.3 and 1.4 shows the pre-development and post-developed curve numbers that were utilized in the HydroCAD analysis (Appendix E). These curve numbers are for Hydrologic soil group C and D per the USDA Soils Report (Appendix C). See Appendix H for SMMPSB curve number table.

	Table 1.3: Pre-Development Curve Numbers							
Area	Area Curve Number (CN)		Description					
0.23	92	Grass (Landscaping)	Fair condition (50-75% grass cover) Soil Group D					
1.15	90	Grass (Landscaping)	Fair condition (50-75% grass cover) Soil Group C					
2.04	89	Pasture	Fair condition (50-75% grass cover) Soil Group D					
6.04	85	Pasture	Fair condition (50-75% grass cover) Soil Group C					
0.22	98	Road/Driveway	Impervious Surface					
0.20	98	Roof	Impervious Surface					

Note: Areas are in acres.

	Table 1.4: Post-Development Curve Numbers							
Area Curve Number (CN)		Land Use	Description					
1.07	90	Grass (Landscaping)	Good condition (≥75% grass cover) Soil Group D					
3.30	86	Grass (Landscaping)	Good condition (≥75% grass cover) Soil Group C					
1.21	98	Paved Road	Impervious Surface					
3.36	98	Roof/Driveway	Impervious Surface					
0.37	98	Sidewalk	Impervious Surface					
0.17	98	Trail to the north in Basin 1S	Impervious Surface					
0.40	100	Stormwater Facility	Impervious Surface					

Note: Areas are in acres.

Tables 1.5 and 1.6 show the existing and post-developed runoff volume and discharge that were utilized in the HydroCAD analysis (Appendix E).

			Table 1.5: E	Table 1.5: Existing Runoff Volumes/Discharge						
Basin	2-year Peak Runoff (cfs)	2-year Peak Volume (af)	10-year Peak Runoff (cfs)	10-year Peak Volume (af)	25-year Peak Runoff (cfs)	25-year Peak Volume (af)	100- year Peak Runoff (cfs)	100- year Peak Volume (af)		
1X	2.04	1.028	3.71	1.736	4.58	2.106	5.83	2.635		

	Table 1.6: Post Developed Runoff Volumes/Discharge								
Basin	2-year Peak Runoff (cfs)	2-year Peak Volume (af)	10-year Peak Runoff (cfs)	10-year Peak Volume (af)	25-year Peak Runoff (cfs)	25-year Peak Volume (af)	100- year Peak Runoff (cfs)	100- year Peak Volume (af)	
1S	0.21	0.074	0.36	0.120	0.43	0.143	0.54	0.177	
25	0.66	0.222	1.02	0.340	1.21	0.399	1.46	0.483	
35	0.69	0.232	1.07	0.354	1.26	0.416	1.52	0.504	
4S	0.05	0.015	0.07	0.022	0.08	0.026	0.09	0.031	
5S	0.70	0.233	1.06	0.353	1.24	0.413	1.50	0.498	
6S	0.44	0.149	0.70	0.231	0.83	0.273	1.01	0.333	
7S	0.20	0.065	0.30	0.100	0.36	0.118	0.44	0.144	
8S	0.15	0.050	0.22	0.074	0.26	0.086	0.31	0.103	
9S	0.12	0.041	0.19	0.065	0.23	0.076	0.28	0.093	
10S	0.25	0.086	0.41	0.136	0.49	0.162	0.60	0.199	
11S	0.53	0.176	0.80	0.267	0.94	0.313	1.14	0.378	
12SA	0.05	0.018	0.09	0.028	0.10	0.034	0.12	0.041	
12SB	0.12	0.039	0.18	0.060	0.21	0.070	0.25	0.085	
13S	0.29	0.098	0.45	0.148	0.52	0.174	0.63	0.210	

The detention facility proposed for the development is a surface pond that will be above the wet pool volume. The values in Table 1.7 represent final design values after the volume correction factor has

been applied. The volume correction factor is 35% which is based on the sites developed impervious cover. See appendix I for volume correction factor chart. The pond is designed to match developed discharged durations with pre-developed durations for the range of pre-developed discharge rates, 50 percent of the 2-year to the full 100-year peak flow. The pond will also be equipped with a primary overflow designed to bypass the 100-year developed flow and an emergency overflow spillway sized to pass the 100-year flow for protection against breaching of the pond embankment due to high inflows or blockage of the primary overflow. The overflow will be located at or near the outflow control facility and will discharge overflow to the natural, pre-developed flow path of the basin.

Storm Event	Allowable Release Rate (cfs)	Peak Outflow (cfs)	Peak Storage (af)	Peak Elevation (ft)
2yr	1.02	1.01	0.366	1.74
10yr	3.71	2.96	0.502	2.31
25yr	4.58	4.04	0.563	2.55
100yr	5.83	5.02	0.667	2.96

All stormwater quantity facilities for the site have been designed in conformance with the 1992 SMMPSB.

SECTION E. - CONVEYANCE SYSTEMS ANALYSIS AND DESIGN

This system is sized for a 100-year storm event and detailed in the Development Plans with Appendix B. Table 1-8 summarizes the results from Hydrocad v10.0 analysis. Appendix F contains the full Hydrocad report and figures showing adequate pipe capacity for the conveyance system.

Table 1-8: Conveyance System Summary								
Pipe	Pipe Size (inches)	Length (feet)	Slope (feet/feet)	Full Capacity (cfs)	Peak Flow (cfs)	Peak Velocity (feet per second)		
1R	12	32.0	0.0038	2.18	1.46	2.98		
2R	12	75.5	0.0233	5.44	1.72	6.14		
3R	8	40.9	0.0455	2.58	0.31	4.99		
4R	12	90.8	0.0074	3.06	2.15	4.22		
5R	12	137.5	0.0025	1.77	1.14	2.39		
6R	18	152.6	0.0017	4.34	4.17	2.79		
7R	12	100.0	0.0025	1.78	0.60	2.05		
8R	12	30.0	0.0027	1.84	0.60	2.10		
9R	12	32.0	0.0041	2.27	1.38	3.03		
10R	12	57.9	0.0620	8.87	1.62	8.59		
11R	12	207.3	0.0025	1.78	1.43	2.53		
12R	15	147.4	0.0037	3.95	3.11	3.56		
13R	18	194.6	0.0040	6.65	4.56	4.05		
14R	18	17.6	0.0062	8.30	8.26	5.36		
15R	12	7.8	0.0026	1.80	1.01	2.36		
16R	12	47.6	0.0025	1.79	1.01	2.35		

17R	12	100.0	0.0025	1.78	1.01	2.34
18R	12	117.4	0.0873	10.53	0.63	7.38
19R	12	71.4	0.0025	1.79	0.60	2.05
20R	12	100.00	0.0025	1.78	1.01	2.34
21R	12	49.2	0.0024	1.76	1.01	2.32
22R	12	194.4	0.0200	5.04	0.21	3.15

SECTION F. - WATER QUALITY DESIGN

Stormwater treatment for new pervious and impervious pollution generating surfaces in Basin 2S-13S will be provided by a stormwater wet pond per BMP RD.05 Wet Pond without Marsh. To determine the water quality volume requirements of the stormwater wet pond, the basin was modeled in HydroCAD v10.0 using the 6-month, 24-hour storm event of 1.60 inches. Stormwater wet pond usage is approved as a treatment facility by the Washington State Department of Ecology. Water quality design will meet all requirements per LCMC 18.320.210. The bottom of the proposed wet pool is below the ground water. See Appendix K for isopluvial maps and Appendix L for wet pond calculations. A low permeability liner is required on the wet pond per the geotechnical report due to the wet pond being at the top of the steep slope.

Stormwater runoff from the proposed trail in Basin 1S is non-polluting generating; therefore, treatment is not needed.

SECTION G. - SOILS EVALUATION

According to the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) web soil survey (USDA NRCS, 2014 website), on-site soils consist of Gee silt loam and Odne silt loam. The Gee silt loam is hydrologic group C, and the Odne loam is hydrologic group D. Hydrologic group C soils are characterized by slow infiltration rates and moderate runoff potential. Hydrologic group D soils have very slow infiltration rates (Appendix C). The Geotechnical Report contains additional information about site conditions (Appendix D).

SECTION H. - SPECIAL REPORTS AND STUDIES

A critical areas assessment by AKS Engineering and Forestry, LLC assesses the oak mitigation. A geotechnical investigation was conducted by GeoDesign, Inc. GeoDesign, Inc.'s geotechnical report characterizes the soils encountered as Gee silt loam and Odne silt loam. The report mentioned that perched groundwater was encountered in all test pits at depths ranging from 10 - 14 feet (Appendix D). Groundwater levels are often subject to seasonal variance and may rise during extended periods of increased precipitation. Perched groundwater may also be present in localized areas. Seeps and springs may become evident during site grading, primarily along slopes or in areas cut below existing grade. Structures, roads, and drainage design should be planned accordingly.

SECTION I. - OTHER PERMITS

No permits outside of this application are applicable.

SECTION J. - GROUNDWATER MONITORING PROGRAM

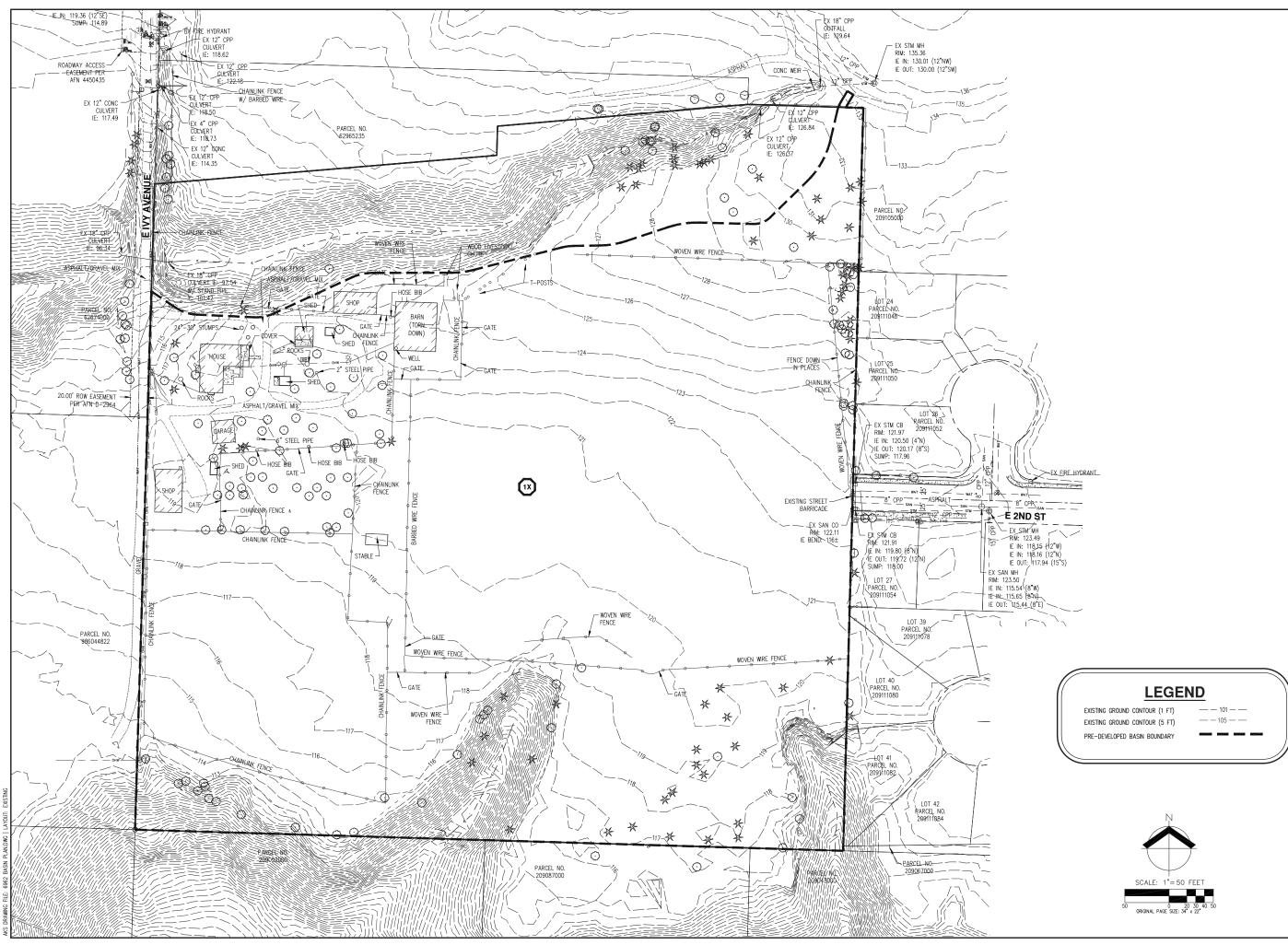
Per LCMC 18.320.210 requirements groundwater monitoring is not required for this development.

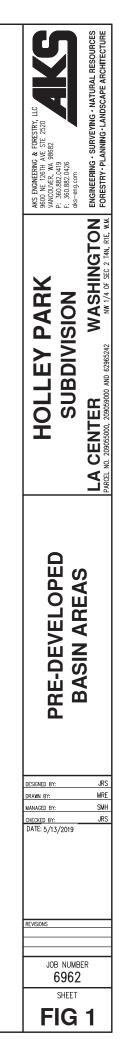
SECTION K. - MAINTENANCE AND OPERATIONS MANUAL

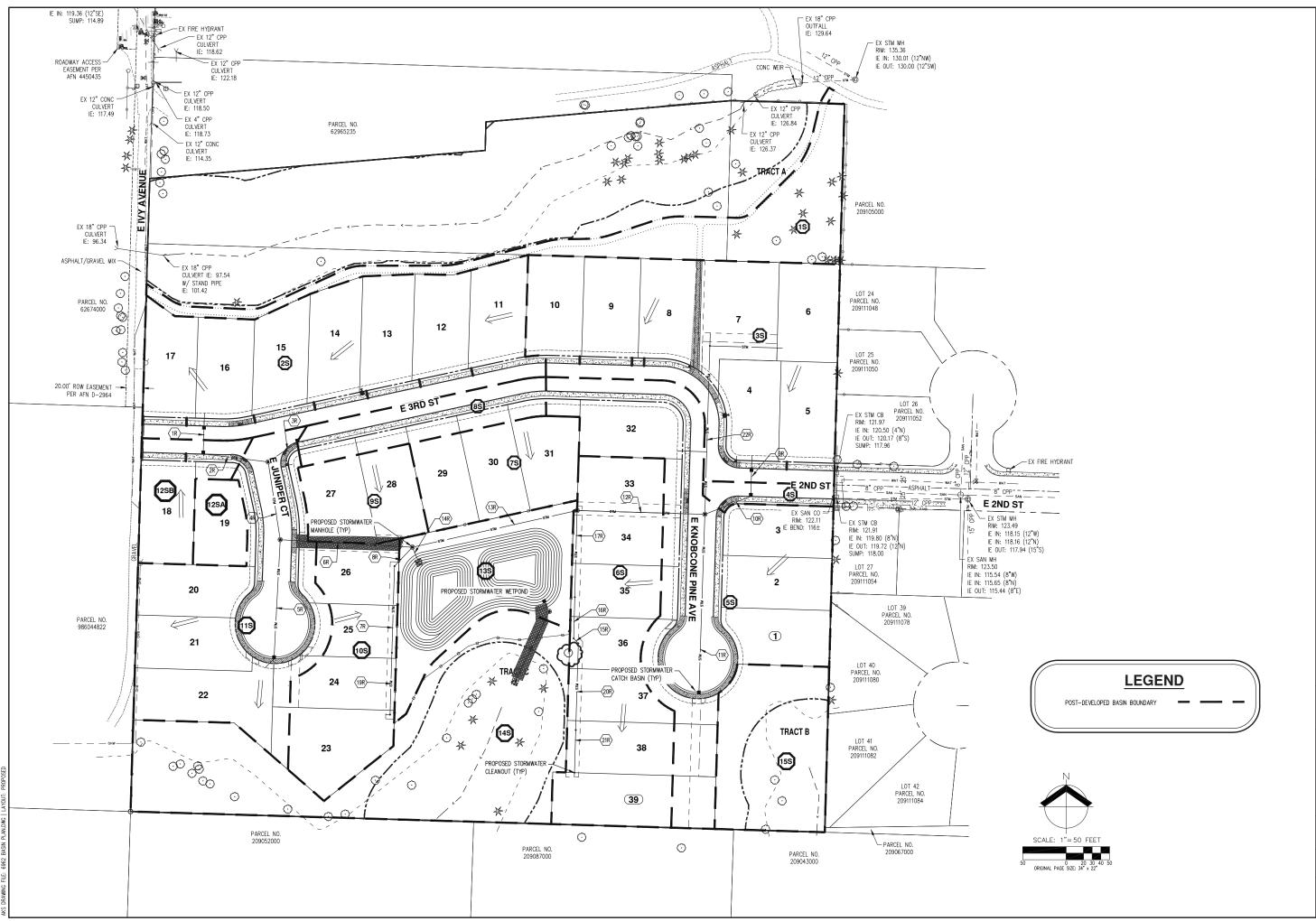
A maintenance and operations manual is included with this submittal.

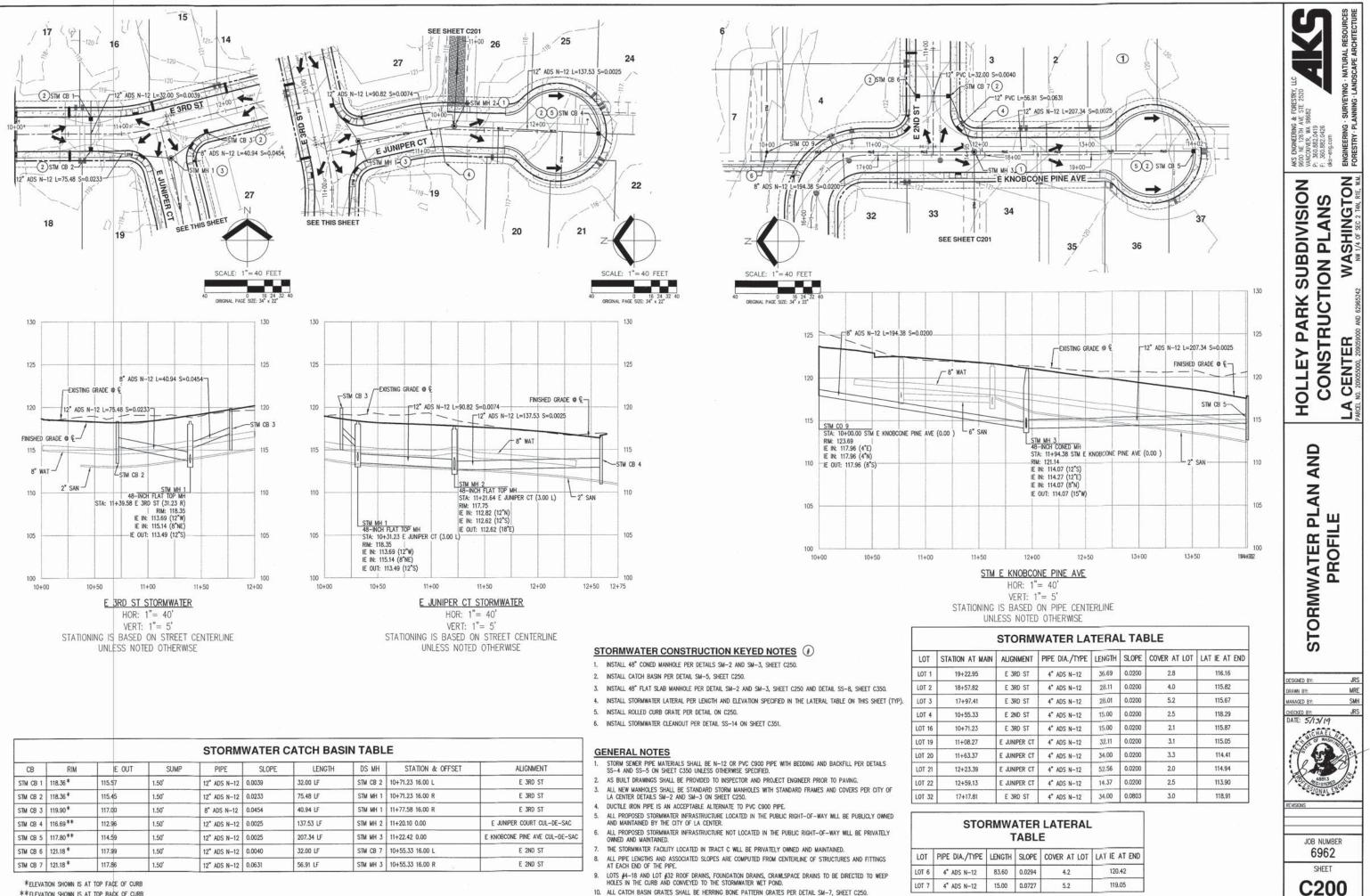
SECTION L. – TECHNICAL APPENDIX

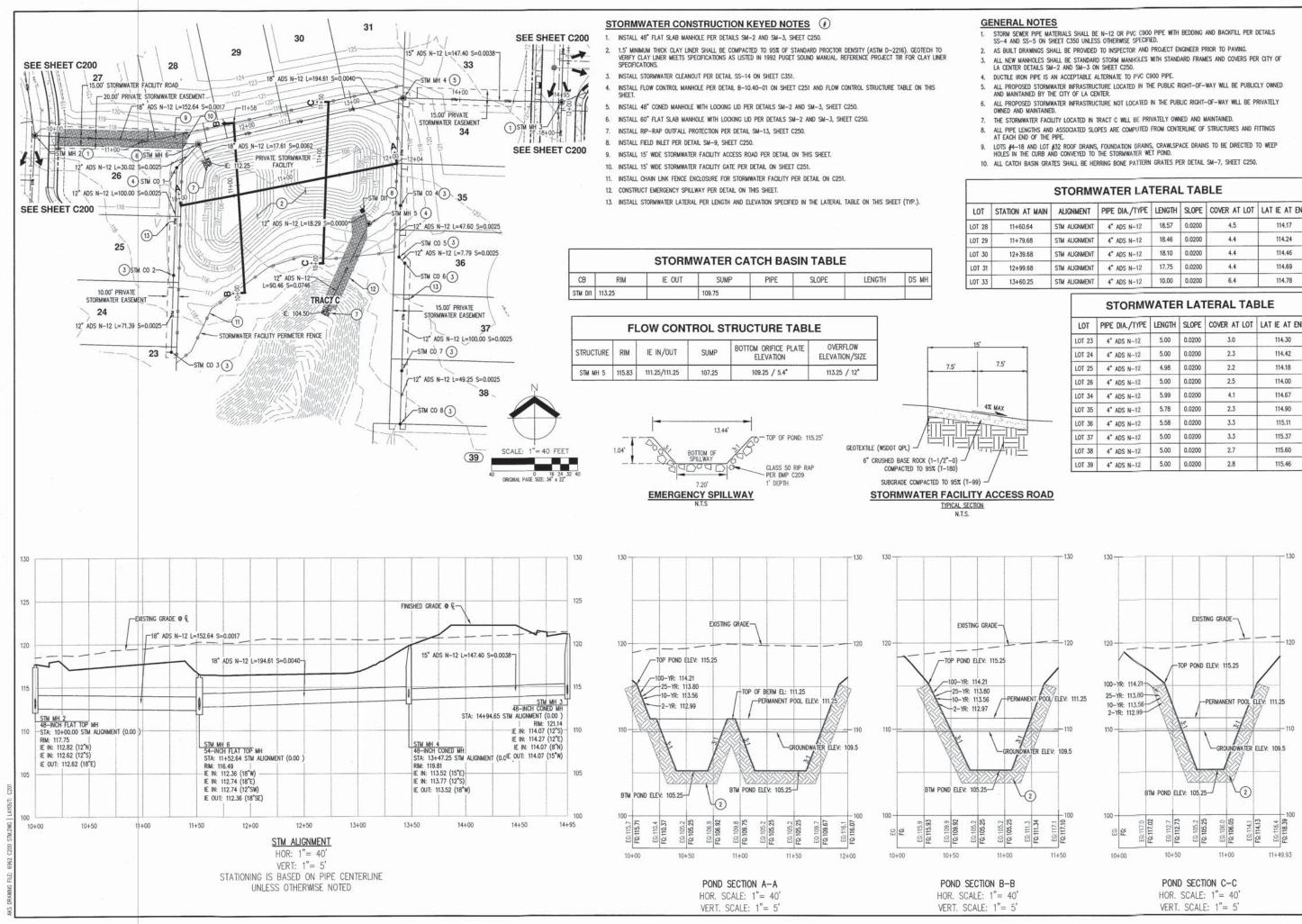
- Appendix A Vicinity Map
- Appendix B Preliminary Plans and Development (Basin) Plans
- Appendix C USDA Soils Report
- **Appendix D Geotechnical Report**
- Appendix E Detention Pond HydroCAD Analysis
- Appendix F Conveyance HydroCAD Analysis
- Appendix G BMP Details
- **Appendix H Curve Numbers**
- Appendix I New Development Flow Chart
- Appendix J Volume Correction Factor
- **Appendix K Isoplouvial Maps**
- Appendix L Wet Pond Calculations
- Appendix M Inlet Capacity Calculations
- **Appendix N Maintenance and Operations Manual**


APPENDIX A: MAP SUBMITTALS


VICINITY MAP




APPENDIX B: Preliminary Plans and Development (Basin) Plans



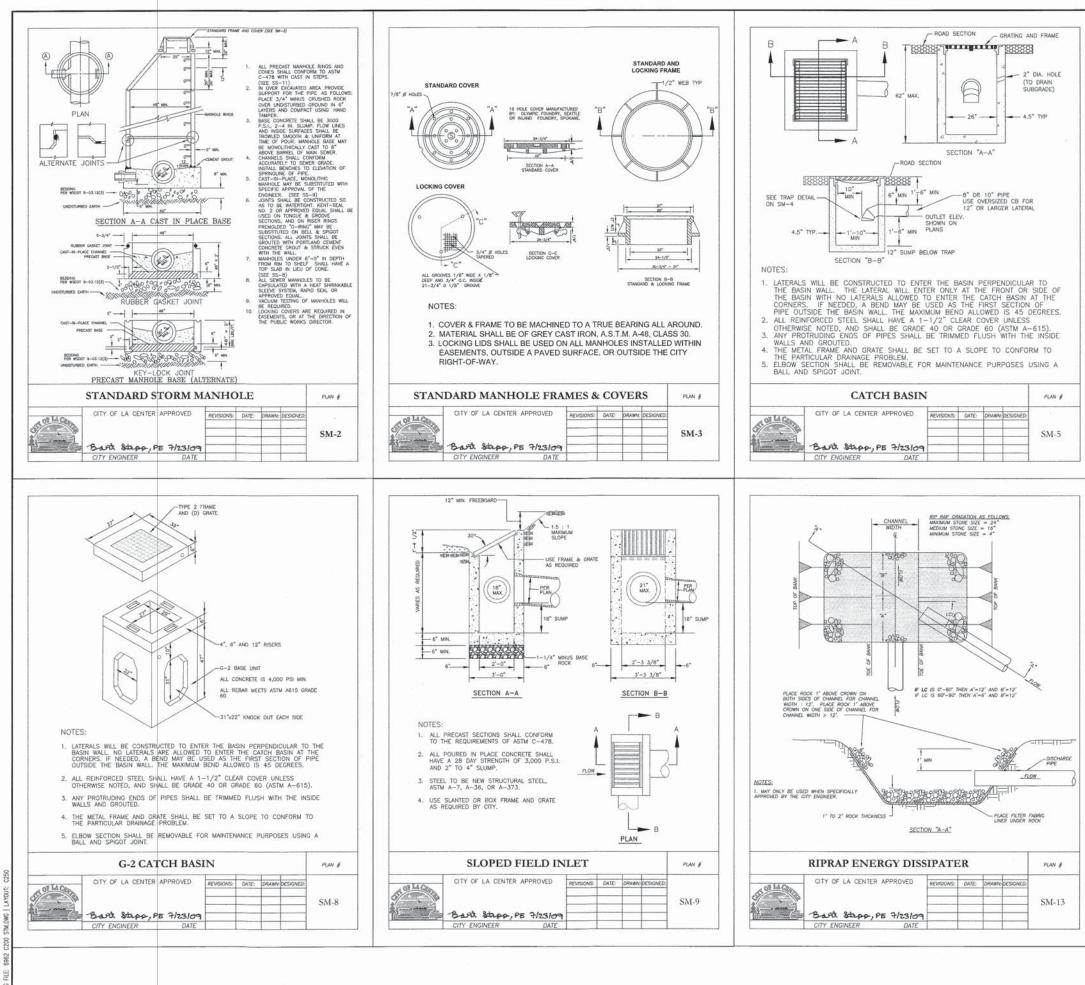
AKS ENGINEERING & FORESTRY LLC 9600 NE 126TH AVE STE 2520 VANCOUVER, WA 98682 P: 360.882.045 F: 360.882.045	dks-eng.com ENGINEERING • SURVEYING • NATURAL RESOURCES FORESTRY • PLANNING • LANDSCAPE ARCHITECTURE
HOLLEY PARK	PARCE NO. 209055000, 209055000 AND 62965242 NW 1/4 OF SEC 2 T4N, RE, W.L. FORESTRY PLANNING-LANDSCAPE ARCHITECTURE
LOPED	JS
POST-DEVELOI	BASIN AREAS
EVE	BASIN AR

**ELEVATION SHOWN IS AT TOP BACK OF CURB

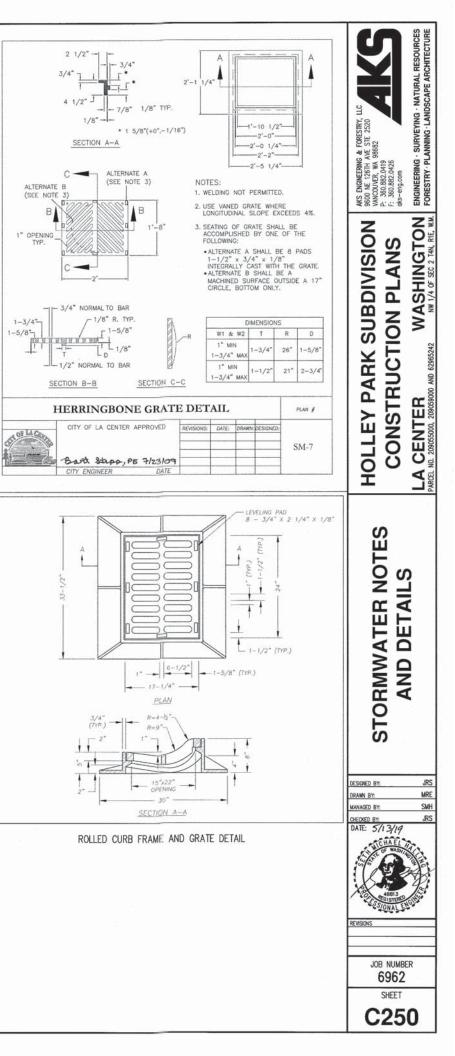
C200

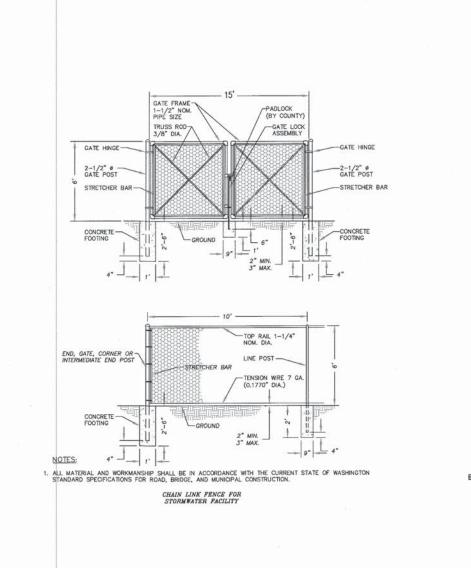
AT MAIN	ALIGNMENT	PIPE DIA./TYPE	LENGTH	SLOPE	COVER AT LOT	LAT IE AT END
60.64	STM ALIGNMENT	4" ADS N-12	18.57	0.0200	4.5	114.17
-79.68	STM ALIGNMENT	4" ADS N-12	18.46	0.0200	4.4	114.24
+39.68	STM ALIGNMENT	4" ADS N-12	18.10	0.0200	4.4	114.46
+99.68	STM ALIGNMENT	4" ADS N-12	17.75	0.0200	4.4	114.69
+60.25	STM ALIGNMENT	4" ADS N-12	10.00	0.0200	6.4	114.78

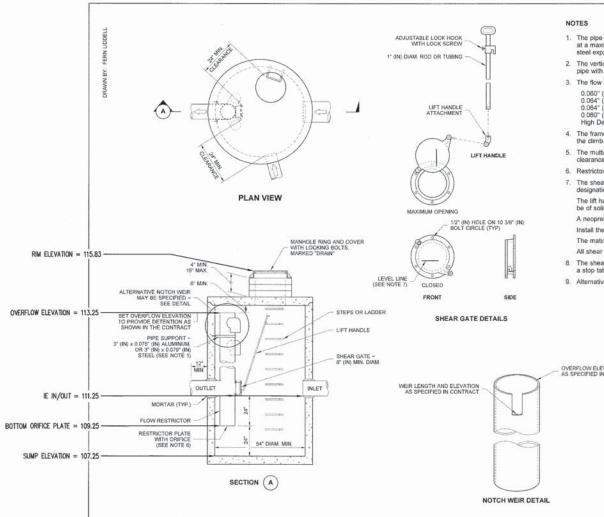
LOT	PIPE DIA./TYPE	LENGTH	SLOPE	COVER AT LOT	LAT IE AT END
LOT 23	4" ADS N-12	5.00	0.0200	3.0	114.30
LOT 24	4" ADS N-12	5.00	0.0200	2.3	114.42
LOT 25	4" ADS N-12	4.98	0.0200	2.2	114.18
LOT 26	4" ADS N-12	5.00	0.0200	2.5	114.00
LOT 34	4" ADS N-12	5.99	0.0200	4.1	114.67
LOT 35	4" ADS N-12	5.78	0.0200	2.3	114.90
LOT 36	4" ADS N-12	5.58	0.0200	3.3	115.11
LOT 37	4" ADS N-12	5.00	0.0200	3.3	115.37
LOT 38	4" ADS N-12	5.00	0.0200	2.7	115.60
LOT 39	4" ADS N-12	5.00	0.0200	2.8	115.46



C201

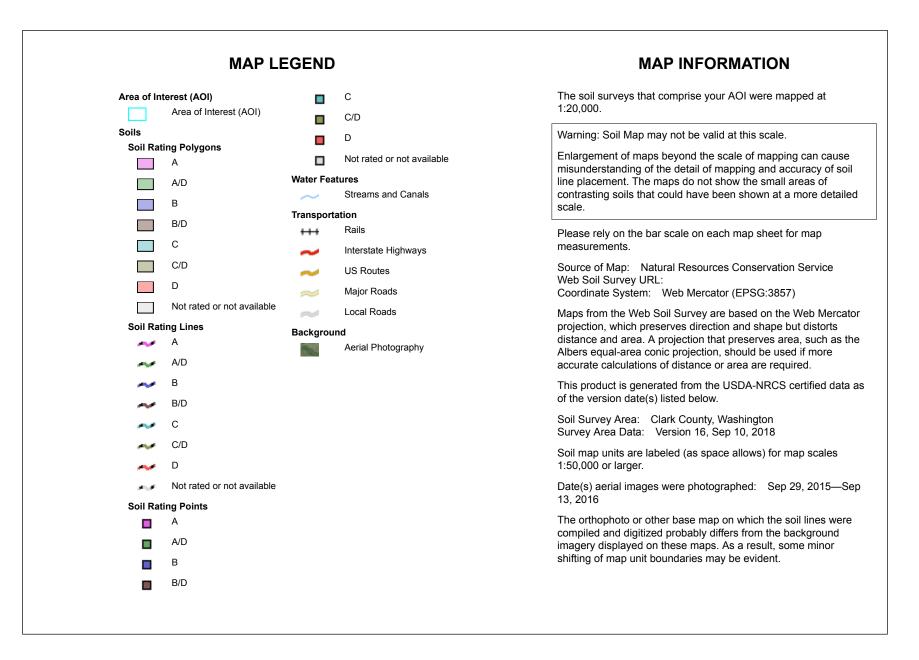

STRY,


S H S


ENGINEERING & F 0 NE 126TH AVE 3 0 NE 126TH AVE 3 560.882.0419 560.882.0426

DAWAN DIC. COCA




	AKS ENGINEERING & FORESTRY, LLC 9600 NE. 126TH ARE STE. 2520 9500 NE. 126TH ARE STE. 2520 P. 350.382.0419 F. 350.382.0415 dis-eng.com dis-eng.com eng.nom dis-eng.com ENGINEERING - NATURAL RESOURCES ENGINEERING - NATURAL RESOURCES FORESTRY - PLANNING - LANDSCAPE ARCHITECTURE
	HOLLEY PARK SUBDIVISION CONSTRUCTION PLANS LA CENTER WASHINGTON
e supports and the flow restrictor shall be constructed of the same material and be anchored ximum spacing of 36° (in). Attach the pipe supports to the manhole with 5/8° (in) stainless pansion bofts or embed the supports into the manhole wall 2° (in). tical riser stem of the flow restrictor shall be the same diameter as the horizontal outlet h a minimum diameter of 8° (in). v restrictor shall be fabricated from one of the following materials: (in) Corrugated Aluminum Alloy Drain Pipe (in) Corrugated Gavanized Steel Drain Pipe with Treatment 1 (in) Corrugated Gavanized Steel Drain Pipe (in) Aluminum alloy flat sheet, in accordance with ASTM B 209, 5052 H32 or EPS Density Polyethylene Stom Sever Pipe me and ladder or steps are to be offset so that: the shear gate is visible from the top; b-down space is clear of the riser and gate; the frame is clear of the curb. tit-orifice elbows may be located as shown, or all placed on one side of the riser to assure ladder ze. The size of the elbows and their placement shall be specified in the Contract. or plate with onfice as specified in the Contract. The opening is to be cut round and smooth. are gate shall be made of a similar metal to the gate (to prevent galvanic corrosion), it may lid rod or hollow tubing, with adjustable hock as required. ene rubber gasket is required between the riser mounting flange and the gate flange. he gate so that the level-line mark is level when the gate is closed. ting surfaces of the lid and the body shall be machined for proper fit. Ir gate bolts shall be stainless steel. are gate maximum opening shall be controlled by limited hinge movement, ab, or some other device.	STORIMWATER NOTES AND DETAILS
EVATION IN CONTRACT REMOVABLE WATERTICHT ORIFICE PLATE WITH ORIFICE ELBOW DETAIL	DESIGNED BY: JRS DRAWN BY: MRE MANAGED BY: SWH CHECKED BY: JRS DATE: S/12/19 CHECKED BY: CHARLE CHECKED BY: JRS JRS DATE: S/12/19 CHARLE CHECKED BY: JRS JRS MANAGED BY: JRS MANAGED

APPENDIX C: USDA SOILS REPORT

Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
GeB	Gee silt loam, 0 to 8 percent slopes	С	8.4	49.0%
GeF	Gee silt loam, 30 to 60 percent slopes	С	4.3	24.7%
OdB	Odne silt loam, 0 to 5 percent slopes	D	4.5	26.3%
Totals for Area of Interest			17.2	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

APPENDIX D: GEOTECHNICAL REPORT

GEODESIGNY_

REPORT OF GEOTECHNICAL ENGINEERING SERVICES

Holley Park Subdivision 33105 NE Ivy Avenue La Center, Washington

For Compass Group, LLC January 14, 2019

GeoDesign Project: CompassGrp-1-01

January 14, 2019

Compass Group, LLC PO Box 1900 Battle Ground, WA 98604

Attention: Kevin Tapani

Report of Geotechnical Engineering Services Holley Park Subdivision 33105 NE Ivy Avenue La Center, Washington GeoDesign Project: CompassGrp-1-01

GeoDesign, Inc. is pleased to submit this report for the proposed Holley Park subdivision located at 33105 NE Ivy Avenue in La Center, Washington. Our services for this project were conducted in accordance with our proposal dated November 6, 2018.

We appreciate the opportunity to be of service to you. Please contact us if you have questions regarding this report.

Sincerely,

GeoDesign, Inc.

Nick Paveglio, P.E. Senior Associate Engineer

Brett A. Shipton, P.E. Principal Engineer

cc: Seth Halling, AKS Engineering and Forestry (via email only)

NNP:BAS:kt Attachments One copy submitted (via email only) Document ID: CompassGrp-1-01-011419-geor.docx © 2019 GeoDesign, Inc. All rights reserved.

EXECUTIVE SUMMARY

The primary geotechnical considerations for the project are summarized as follows:

- The proposed buildings can be supported by conventional spread footings bearing on the native soil at the site. Spread footings should not be established on agricultural tilled zones.
- Minimum setback buffers of 25 and 50 feet should be established from the crests of the slopes in the north and south portions of the site, respectively. Buffer zones should remain undisturbed during construction, with the exception of trenches to dispose stormwater, unless additional geotechnical analysis is completed.
- Based on the results of our explorations, the soil at the site is not susceptible to liquefaction or lateral spreading.
- Site explorations encountered a tilled zone in the upper 12 to 30 inches of soil over a majority of the site from past agricultural activities. In general, the tilled zone is unconsolidated and will provide poor support for foundations, fills, floor slabs, and pavements. In roadways and beneath buildings where the tilled zone will not be removed by site cuts, we recommend that the tilled zone be improved by scarifying and re-compacting or cement treating as described in the "Construction" section.
- The near-surface soil is sensitive to disturbance when at a moisture content that is above optimum. This can result in subgrade damage during construction and significant repair costs. We recommend that the project budget include subgrade protection. A discussion of subgrade protection is included in the "Construction" section.
- Perched groundwater was observed within approximately 10 feet of the ground surface. Based on our experience, groundwater could be within 5 feet of the ground surface during the wet season. The presence of shallow groundwater will affect construction of the proposed development. Earthwork contractors should be prepared to dewater excavations at all times of the year.
- Based on the soil and groundwater conditions at the site, on-site infiltration systems are not recommended.

ACRONYMS AND ABBREVIATIONS

1.0	INTRODUCTION		
2.0	PROJECT UNDERSTANDING		
3.0	PURF	POSE AND SCOPE	1
4.0	SITE	CONDITIONS	2
	4.1	Surface Conditions	2
	4.2	Subsurface Conditions	2
	4.3	Geologic Hazards	3
5.0	DESI	GN	6
	5.1	Foundation Support	6
	5.2	Seismic Design Criteria	7
	5.3	Floor Slabs	7
	5.4	Retaining Structures	7
	5.5	Drainage	8
	5.6	Permanent Slopes	9
	5.7	Pavements	9
6.0	CON	STRUCTION	10
	6.1	Site Preparation	10
	6.2	Construction Considerations	10
	6.3	Temporary Slopes	11
	6.4	Erosion Control	11
	6.5	Excavation	12
	6.6	Materials	13
7.0	OBSERVATION OF CONSTRUCTION		17
8.0	LIMI	TATIONS	18
REFEF	RENCES		19
FIGUF	RES		
	Vicin	ity Map	Figure 1
	Site l	Plan	Figure 2
	Site l	Plan - Slope Percentage	Figure 3
APPE	NDICES		
	Appe	endix A	
	F	Field Explorations	A-1
	L	aboratory Testing	A-1
	E	Exploration Key	Table A-1
	S	Soil Classification System	Table A-2
	E	Boring Logs	Figures A-1 – A-3
	٦	Fest Pit Logs	Figures A-4 – A-13
	A	Atterberg Limits Test Results	Figure A-14
	S	Summary of Laboratory Testing	Figure A-15

TABLE OF CONTENTS

APPENDICES (continued) Appendix B Slope Stability Analysis Slope Stability Analysis Results PAGE NO.

B-1

ACRONYMS AND ABBREVIATIONS

AASHTO AC	American Association of State Highway and Transportation Officials asphalt concrete
ASTM	American Society for Testing and Materials
BGS	below ground surface
g	gravitational acceleration (32.2 feet/second ²)
HMA	hot mix asphalt
H:V	horizontal to vertical
IBC	International Building Code
MCE	maximum considered earthquake
OSHA	Occupational Safety and Health Administration
pcf	pounds per cubic foot
PG	performance grade
psf	pounds per square foot
psi	pounds per square inch
SPT	standard penetration test
USDA	U.S. Department of Agriculture
USGS	U.S. Geological Survey
WSS	Washington Standard Specifications for Road, Bridge, and Municipal
	Construction (2018)

1.0 INTRODUCTION

This report presents the results of our geotechnical engineering evaluation for the proposed Holley Park subdivision at 33105 NE Ivy Street in La Center, Washington. The site is shown relative to surrounding features on Figure 1. Figure 2 shows the locations of our explorations for this study. Acronyms and abbreviations used herein are defined above, immediately following the Table of Contents.

2.0 PROJECT UNDERSTANDING

The project includes construction of a residential subdivision with detached single-family houses. Based on correspondence with AKS Engineering and Forestry (AKS), site cuts and fills are expected to be 5 feet or less. Stormwater generated from the development will be treated and disposed of off site.

3.0 PURPOSE AND SCOPE

The purpose of our services was to provide geotechnical engineering recommendations for design and construction of the proposed development. The specific scope of our services is summarized as follows:

- Reviewed readily available published geologic data and our in-house files for existing information on subsurface conditions in the site vicinity.
- Coordinated and managed the field explorations, including locating utilities and scheduling subcontractors and GeoDesign field staff.
- Drilled three borings to depths between 34.7 and 46.4 feet BGS.
- Excavated 10 test pits to depths between 16.0 and 18.0 feet BGS.
- Collected soil samples for laboratory testing at select depths from the explorations.
- Classified the materials encountered in the explorations.
- Maintained a detailed log of each exploration. Observed groundwater conditions in the explorations.
- Completed a laboratory testing program that included the following:
 - Seventeen moisture content determinations in general accordance with ASTM D2216
 - Fourteen particle-size analyses in general accordance with ASTM C117 or ASTM D1140
 - Three Atterberg limits tests in general accordance with ASTM D4318
- Prepared this geotechnical report summarizing our explorations, laboratory testing, analyses, geotechnical design criteria, and construction recommendations, including information relating to the following:
 - Soil and groundwater conditions
 - Geologic hazards and slope setbacks
 - Earthwork guidelines
 - Seismic design parameters
 - Foundation
 - Pavements

GeoDesign^y

4.0 SITE CONDITIONS

4.1 SURFACE CONDITIONS

The approximately 14.37-acre site is located southeast of downtown La Center, Washington. The site is bound by a small drainage and park to north; a residential subdivision to the east; undeveloped, sloping land to the south; and a large residential property to the west.

The northwest corner of the site is occupied by a residence with multiple barns and outbuildings and the remainder of the site is undeveloped and likely used for agricultural purposes. The majority of the site slopes gently to the south between elevations of approximately 130 and 115 feet, with the exception of slopes along the north and south boundaries. The site slopes are discussed in greater detail in the "Geologic Hazards" section. The site is generally covered with grass and trees are present along the north and south slopes and around the residence.

4.2 SUBSURFACE CONDITIONS

4.2.1 General

Subsurface conditions at the site were evaluated by drilling three borings (B-1 through B-3) to depths between 34.7 and 46.4 feet BGS and excavating 10 test pits (TP-1 through TP-10) to depths between 16.0 and 18.0 feet BGS. The approximate locations of the explorations are shown on Figure 2. Descriptions of the field explorations and laboratory testing programs, logs of the explorations, and results of the laboratory testing are presented in Appendix A.

4.2.2 Root and Agricultural Tilled Zones

An approximately 12- to 30-inch thick tilled zone from agricultural activities is present at the site. The zone consists of very soft to soft, brown silt with variable fractions of sand. A root zone averaging approximately 5 to 6 inches with areas up to 12 inches is present within the tilled zone.

4.2.3 Silt and Sand (Flood Deposits)

Native soil that underlies the tilled zone consists of Quaternary Age flood deposits comprised of soft to medium stiff silt and medium dense, silty sand. The sand content and stiffness of the flood deposits generally increases with depth. The flood deposits extends to depths between 25 and 30 feet BGS at the site. Laboratory testing indicates the silt has low plasticity silt and flood deposits had moisture contents between approximately 32 and 40 percent at the time of explorations.

4.2.4 Clay and Gravel (Conglomerate)

Underlying the flood deposits is Pleistocene Age conglomerate. The conglomerate consists of an approximately 5- to- 10- foot-thick layer of very stiff clay underlain by dense gravel with clay and sand. Based on laboratory testing the moisture content of the conglomerate ranged from 30 to 32 percent at the time of our explorations. The conglomerate extends to the maximum depth explored of 46.4 feet BGS. Geologic mapping indicates the conglomerate is approximately 60 to 120 feet in thickness.

4.2.5 Groundwater

Groundwater was generally encountered in the explorations between depths of 10 and 14 feet BGS. A review of water well logs and groundwater mapping suggests the regional static groundwater table is 50 feet BGS or more and the groundwater encountered during the explorations is perched. Based our experience, the perched groundwater could rise to within 5 feet of the ground surface during the wet season.

4.3 GEOLOGIC HAZARDS

4.3.1 General

Site classes as defined in the IBC range from A to F, with E having the highest relative ground amplification. Site Class F requires a site-specific seismic study. Based on the results of our explorations, a Site Class D is appropriate for the site.

4.3.2 Liquefaction and Lateral Spread (Seismic Hazard Areas)

Liquefaction is caused by a rapid increase in pore water pressure that reduces the effective stress between soil particles to near zero. Granular soil, which relies on interparticle friction for strength, is susceptible to liquefaction until the excess pore pressures can dissipate. In general, loose, saturated sand soil with low silt and clay content is the most susceptible to liquefaction. Silty soil with low plasticity is moderately susceptible to liquefaction under relatively higher levels of ground shaking.

According to the Alternative Liquefaction Susceptibility Map of Clark County by Palmer et al. (2004), the site is described as having very low liquefaction susceptibility. Based on the results of our explorations, liquefaction is expected to be negligible at the site and is not a design consideration.

Lateral spreading is a liquefaction-related seismic hazard and occurs on gently sloping or flat sites underlain by liquefiable sediment adjacent to an open face, such as a riverbank. Liquefied soil adjacent to an open face can flow toward the open face, resulting in lateral ground displacement. There are no major open faces, and the liquefaction potential at the site is low. Accordingly, the potential for lateral spreading at the site is not a design consideration for the project.

4.3.3 Fault Rupture

Based on USGS mapping, the nearest mapped fault to the site is the Lacamas Lake fault, which is located approximately 14 miles to the southeast. As such, fault rupture is not considered a hazard at the site.

4.3.4 Landslides

4.3.4.1 Stability Analysis

According to Chapter 18.300 (Critical Areas) of the La Center Municipal Code, slopes greater than 25 percent are considered "landslide hazard areas." Based on this criteria, the slopes in the north and south portions of the site are considered landslide hazard areas. Figure 3 shows the slope percentages at the site.

Due to the presence of landslide hazard areas, stability analysis was completed to determine appropriate setbacks in accordance with the La Center Municipal Code. Analysis was completed using Slope/W by Geo-Slope International, Ltd. Slope/W performs two-dimensional limiting equilibrium analysis to compute slope stability. The factor of safety against slope failure is simplistically defined as the ratio of the forces resisting slope movement (e.g., soil strength, soil mass, etc.) to the forces driving slope movement (e.g., soil weight, water pressure). The program predicts the location and geometry of "critical failures planes." Critical failure planes are the zones with the lowest factors of safety. A factor of safety less than 1.0 infers that the model is not in equilibrium and slope movement is likely to occur. Standard of care generally dictates that a minimum factor of safety for static and seismic conditions be 1.5 and 1.1, respectively.

Our analysis included one section (A-A') in the north portion of site and two sections (B-B' and C-C') in the south portion of the site. The locations of the analysis are shown on Figures 2 and 3 and were chosen to represent "worst case" scenarios. The subsurface conditions were based on the results of our explorations, laboratory testing, and experience with similar soil.

A conservative surcharge load of 2,000 psf was used for the entire footprint of residences and a maximum of 5 feet of fill was assumed per AKS. This is conservative where roadways are above slopes because the surcharge loading associated with the roadways would be 250 psf. A seismic coefficient of 0.135 g (one-half the site peak ground acceleration of 0.27 g) was used for the seismic condition. The configurations, soil parameters, and results of the analysis are presented in Appendix B.

4.3.4.2 Buffer Recommendation

Minimum setback buffers of 25 and 50 feet should be established from the crests of the slopes in the north and south portions of the site, respectively. Buffer zones should remain undisturbed during construction, with the exception of trenches to dispose stormwater, unless additional geotechnical analysis is completed. The locations of the buffers should be clearly shown on the project plans.

Provided design and construction of the development near the slopes are completed conformance with the recommendations of this report, it is our opinion that the proposed development will not adversely affect the short- or long-term stability of the slopes nor pose a significant risk to public safety.

4.3.4.3 Stormwater System Recommendations on Steep Slopes

Surface water should not be allowed to sheet flow onto steep slope faces. Stormwater should be collected and transferred to the base of all steep slopes in solid pipes, and angular rock should be installed at the base of the outfall pipes to dissipate energy generated from the gradient.

Granular backfill for pipes on steep slopes will create preferential flow paths for water that can generate moderate velocities within the trenches and a potential for piping. Where stormwater pipes are installed in slopes that exceed 15 percent, we recommend the trench backfill consist of fine-grained soil. If trenches are installed in the wet season and compaction of fine-grained soil

is not possible, granular backfill can be used provided cutoff trenches, consisting of low-strength concrete or high-plasticity clay, are installed every 25 feet to reduce subsurface water velocities with the pipe backfill.

Stormwater infiltration systems are not recommended for the project. We recommend that stormwater detention ponds located within 200 feet of the crest of any slope be lined with an impermeable membrane or bentonite to prevent water from infiltrating into the subsurface soil.

4.3.5 Erosion Hazard

The USDA Web Soil Survey indicates that the surficial soil at the site consists of Gee, Hillsboro, and Odne silt loam. The survey describes these soils as having very low to low permeability and slight to very severe erosion hazard when the soil is left bare, depending on slope gradient. Based on our experience with similar soils, the erosion hazard is moderate to very severe when the soil is left bare and where slope gradients are steeper than 15 percent. Where slope gradients are less than 15 percent, erosion hazard is low to moderate

Currently, the ground surface at the site is covered with grass, brush, and trees. We consider the site (in its current state) to have a low to moderate erosion hazard. The proposed development of the site will remove much of the existing vegetation in the development area. This will temporarily increase the erosion hazard to moderate to severe. It is our understand that disturbance to slopes steeper than 25 percent will not occur during construction; therefore, very severe erosion hazards should not be present. During construction of the proposed development, erosion control measures as discussed in this report and as recommended by the project civil engineer shall be employed.

With a properly implemented erosion control plan, the impact of erosion on the site during construction should be minimal and easily mitigated as part of finished grading. If suitable erosion control measures are implemented and maintained throughout construction until a new vegetative cover is established, there should be little or no adverse impact to the overall stability of the site or to neighboring sites.

Upon completion of the proposed development, the majority of the development area will either be covered with pavement, sidewalks, or homes or will be landscaped with conventional residential ornamental shrubs and ground cover. We anticipate the open space areas will remain covered with native vegetation. Surface run-off will be greatly decreased due to the collection of surface water from the streets and roof tops. The collected run-off will then be directed to the stormwater detention pond in the southwest corner of the site. In our opinion, these final "builtout" conditions will result in a low future erosion hazard.

5.0 DESIGN

5.1 FOUNDATION SUPPORT

5.1.1 Bearing Capacity

The proposed buildings can be supported on conventional spread footings bearing on undisturbed native soil or structural fill overlying undisturbed native soil. Foundation elements should not be supported on agricultural till. If present, the agricultural till should be removed and replaced with structural fill.

5.1.2 Bearing Capacity

Continuous wall and isolated spread footings should be at least 18 and 24 inches wide, respectively. The bottom of exterior footings should be at least 18 inches below the lowest adjacent exterior grade. The bottom of interior footings should be established at least 12 inches below the base of the slab. Footings should be embedded so that a minimum of 10 feet of horizontal clearance exists between the toe of the footing and any adjacent slopes.

Footings bearing on native silt or new structural fill on native soil should be designed assuming an allowable bearing pressure of 2,000 psf. This is a net bearing pressure; the weight of the footing and overlying backfill can be ignored in calculating footing sizes. Also, the allowable bearing pressures apply to the total of dead plus long-term live loads and can be increased by one-half for short-term loads, such as those resulting from wind or seismic forces.

Total post-construction foundation settlement should be less than 1 inch, with differential settlement between similarly loaded foundations of less than ½ inch.

5.1.3 Resistance to Sliding

Lateral loads on footings can be resisted by passive earth pressure on the sides of the structure and by friction on the base of the footings. An unfactored passive earth pressure of 350 pcf can be used for footings confined by firm native soil. Adjacent floor slabs, pavement, or the upper 12-inch depth of adjacent unpaved areas should not be considered when calculating passive resistance. In order to rely on passive resistance, a minimum of 10 feet of horizontal clearance must exist between the face of the footings and adjacent downslopes.

For footings in contact with the native soil, a coefficient of friction equal to 0.35 may be used when calculating resistance to sliding.

5.1.4 Subgrade Observation

All footing and floor subgrades should be evaluated by qualified personnel to evaluate the bearing conditions. Observations should also confirm that all loose or soft material, organics, unsuitable fill, prior topsoil zones, and softened subgrades (if present) have been removed. Localized deepening of footing excavations may be required to penetrate any deleterious material.

5.1.5 Construction Considerations

If footing excavations are conducted during wet weather conditions, we recommend that a minimum of 3 inches of granular material be placed and compacted until well keyed at the base

of the footing excavations. The granular material reduces water softening of silt-rich subgrade soil, reduces subgrade disturbance during placement of forms and reinforcement, and provides clean conditions for the reinforcing steel.

5.2 SEISMIC DESIGN CRITERIA

Table 1 provides seismic design parameters in accordance with IBC 2015. We selected a Site Class D based the results of explorations and testing.

Parameter	Short Period (T _s = 0.2 second)	1 Second Period (T ₁ = 1.0 second)			
MCE Spectral Acceleration, S	$S_s = 0.890 \text{ g}$	$S_1 = 0.397 \text{ g}$			
Site Class	D				
Site Coefficient, F	$F_{a} = 1.144$	$F_v = 1.606$			
Adjusted Spectral Acceleration, S _M	$S_{MS} = 1.018 \text{ g}$	S _{M1} = 0.638 g			
Design Spectral Response Acceleration Parameters, S _D	$S_{DS} = 0.679 \text{ g}$	S _{D1} = 0.425 g			

Table 1. IBC 2015 Seismic Design Parameters

5.3 FLOOR SLABS

Satisfactory subgrade support for building floor slabs supporting up to 100 psf area loading can be obtained provided the building pad is prepared as described in the "Construction" section. The floor slab be supported on at least 6 inches of imported granular material to aid as a capillary break and to provide uniform support. The imported granular material should be placed and compacted as described in the "Structural Fill" section.

Exterior slabs, such as those for patios, walkways, driveways, and garages, should be structurally independent from the building foundations. Expansion joints should be provided between floor slabs and foundations. This will allow minor movement of the slabs to occur as a result of vehicular loading, tree root growth, seasonal soil shifting, and other factors, while reducing the potential for slab cracking around the perimeter. Interior slabs may be tied to the building's foundation system. Slabs should be reinforced according to their proposed use and per the structural engineer's recommendations.

5.4 RETAINING STRUCTURES

5.4.1 Assumptions

Our retaining wall design recommendations are based on the following assumptions: (1) the walls consist of conventional, cantilevered retaining walls, (2) the walls are less than 8 feet in height, (3) the backfill is drained and consists of imported granular material, and (4) the backfill has a slope flatter than 4H:1V. Re-evaluation of our recommendations will be required if the retaining wall design criteria for the project varies from these assumptions.

5.4.2 Wall Design Parameters

Permanent retaining structures free to rotate slightly around the base should be designed for active earth pressures using an equivalent fluid unit pressure of 35 pcf. If retaining walls are restrained against rotation during backfilling, they should be designed for an at-rest earth pressure of 55 pcf.

Seismic lateral forces can be calculated using a dynamic force equal to 7H² pounds per linear foot of wall, where H is the wall height. The seismic force should be applied as a distributed load with the centroid located at 0.6H from the wall base. Footings for retaining walls should be designed as recommended for shallow foundations.

If surcharges (i.e., slopes steeper than 2H:1V, foundations, vehicles, etc.) are located within a horizontal distance of twice the height of the wall from the back of the wall, additional pressures will need to be accounted for in the wall design. Our office should be contacted for appropriate wall surcharges based on the actual magnitude and configuration of the applied loads.

5.4.3 Wall Drainage and Backfill

The above design parameters have been provided assuming drains will be installed behind walls to prevent buildup of hydrostatic pressures behind all walls. If a drainage system is not installed, our office should be contacted for revised design forces.

Backfill material placed behind the walls and extending a horizontal distance of ½H, where H is the height of the retaining wall, should consist of retaining wall select backfill placed and compacted in conformance with the "Structural Fill" section.

A minimum 6-inch-diameter, perforated collector pipe should be placed at the base of the walls. The pipe should be embedded in a minimum 2-foot-wide zone of angular drain rock that is wrapped in a drainage geotextile fabric and extends up the back of the wall to within 1 foot of the finished grade. The drain rock and drainage geotextile fabric should meet specifications provided in the "Materials" section. The perforated collector pipes should discharge at an appropriate location away from the base of the wall. The discharge pipe(s) should not be tied directly into stormwater drain systems, unless measures are taken to prevent backflow into the drainage system of the wall.

Settlement of up to 1 percent of the wall height commonly occurs immediately adjacent to the wall as the wall rotates and develops active lateral earth pressures. Consequently, we recommend that construction of flatwork adjacent to retaining walls be postponed at least four weeks after backfilling of the wall, unless survey data indicates that settlement is complete prior to that time.

5.5 DRAINAGE

5.5.1 Temporary

During work at the site, the contractor should be made responsible for temporary drainage of surface water as necessary to prevent standing water and/or erosion at the working surface. During rough and finished grading of the site, the contractor should keep all pads and subgrade free of ponding water.

5.5.2 Surface

The ground surface at finished pads should be sloped away from their edges at a minimum 2 percent gradient for a distance of at least 5 feet. Roof drainage from the buildings should be directed into solid, smooth-walled drainage pipes that carry the collected water to the storm drain system. Trapped planter areas should not be created adjacent to roadways and structures without providing means for positive drainage (e.g., swales or catch basins).

5.5.3 Subsurface

Based on the soil and groundwater conditions, it is prudent to install perimeter drains around the buildings. Drains should consist of a filter fabric-wrapped, drain rock-filled trench that extends at least 12 inches below the lowest adjacent grade (i.e., slab subgrade elevation). A perforated pipe should be placed at the base to collect water that gathers in the drain rock. The drain rock and filter fabric should meet specifications outlined in the "Materials" section. Discharge for the footing drain should not be tied directly into the stormwater drainage system, unless mechanisms are installed to prevent backflow.

5.5.4 Stormwater Infiltration

Based on the subsurface and groundwater conditions at the site, on-site infiltration systems are not recommended for the development.

5.6 PERMANENT SLOPES

All cut and fill slopes should be located outside the slope buffer zone and should not exceed 2H:1V. Upslope roads and pavements should be located at least 5 feet from the top of cut and fill slopes. The setback should be increased to 10 feet for buildings. The slopes should be planted with appropriate vegetation to provide protection against erosion as soon as possible after grading. Surface water runoff should be collected and directed away from slopes to prevent water from running down the face of the slope.

5.7 PAVEMENTS

Pavements for new roadways will be installed as part of the development. Pavements should be installed on improved agricultural till, firm native soil, structural fill, or cement-treated subgrade prepared in conformance with the "Site Preparation" and "Materials" sections.

The pavement section will be in conformation with City of La Center standard detail ST-14. Based on explorations and testing, the AASHTO soil classification at the site is A-5, resulting in a section of 0.35 foot of AC over 0.90 foot of aggregate base. If the roadway is constructed during the wet season and the subgrade is cement treated, a reduction in aggregate base may be suitable. GeoDesign should be contacted to provide recommendations if cement treated. AC and aggregate base should meet the requirements in the "Materials" section.

The material thicknesses are intended to be minimum acceptable values for the final condition. The aggregate base thickness does not account for construction traffic, and haul roads and staging areas should be used as described in the "Construction" section.

6.0 CONSTRUCTION

6.1 SITE PREPARATION

The existing topsoil zone should be stripped and removed from all fill areas. Based on our explorations, the average depth of stripping will be approximately 5 to 6 inches, although greater stripping depths will be required to remove localized zones of loose or organic soil. Greater stripping depths (approaching 12 inches) are anticipated in areas with thicker vegetation and shrubs, in all forested areas, and along the base of draws. The actual stripping depth should be based on field observations at the time of construction. Stripped material should be transported off site for disposal or used in landscaped areas.

Trees and shrubs should be removed from fill areas. In addition, root balls should be grubbed out to the depth of the roots, which could exceed 3 feet BGS. Depending on the methods used to remove the root balls, considerable disturbance and loosening of the subgrade could occur during site grubbing. We recommend that soil disturbed during grubbing operations be removed to expose firm, undisturbed subgrade. The resulting excavations should be backfilled with structural fill.

6.1.1 Tilled Zone

An approximately 12- to 36-inch-thick agricultural tilled zone was observed directly beneath the ground surface in our explorations over a majority of the site. We recommend that the tilled zone be improved during site preparation in areas where cuts do not remove the tilled zone. Prior to fill placement and construction, the tilled zone should be improved by removing and replacing with structural fill or scarifying and compacting as structural fill.

The native soil can be sensitive to small changes in moisture content and will be difficult, if not impossible, to compact adequately during wet weather. While scarification and compaction of the subgrade is the best option for subgrade improvement, it will likely only be possible during extended dry periods and following moisture conditioning of the soil. As discussed further on in this report, cement amendment is an option for conditioning the soil for use as structural fill during periods of wet weather or when drying the soil is not an option.

6.1.2 Subgrade Evaluation

Upon completion of stripping and prior to the placement of any structural fill or pavement, the exposed subgrade should be evaluated by proof rolling to identify soft, loose, or unsuitable areas. Proof rolling should be conducted with a fully loaded dump truck or similar heavy, rubber tire construction equipment. Qualified personnel should observe proof rolling to evaluate yielding of the ground surface. The subgrade should be evaluated by probing with a foundation probe when the subgrade is too wet. If soft or yielding subgrade is identified, the subgrade should be excavated and replaced with structural fill.

6.2 CONSTRUCTION CONSIDERATIONS

The fine-grained soil present on this site is easily disturbed. If not carefully executed, site preparation, utility trench work, and roadway excavation can create extensive soft areas and significant repair costs can result. Earthwork planning, regardless of the time of year, should include considerations for minimizing subgrade disturbance.

If construction occurs during or extends into the wet season, or if the moisture content of the surficial soil is more than a couple percentage points above optimum, site stripping and cutting may need to be accomplished using track-mounted equipment. Likewise, the use of granular haul roads and staging areas will be necessary for support of construction traffic during the rainy season or when the moisture content of the surficial soil is more than a few percentage points above optimum. The amount of staging and haul road areas, as well as the required thickness of granular material, will vary with the contractor's sequencing of a project and type/frequency of construction equipment. Based on our experience, between 12 and 18 inches of imported granular material is generally required in staging areas and between 18 and 24 inches in haul roads areas. Stabilization material may be used as a substitute provided the top 4 inches of material consists of imported granular material. The actual thickness will depend on the contractor's means and methods and should be the contractor's responsibility. In addition, a geotextile fabric should be considered to assist in developing a barrier between the subgrade and imported granular material in areas of repeated construction traffic. The imported granular material, stabilization material, and geotextile fabric should meet the specifications in the "Materials" section.

As an alternative to thickened crushed rock sections, haul roads and utility work zones may be constructed using cement-amended subgrades overlain by a crushed rock wearing surface. If this approach is used, the thickness of granular material in staging areas and along haul roads can typically be reduced to between 6 and 9 inches. This recommendation is based on an assumed minimum unconfined compressive strength of 100 psi for subgrade amended to a depth of 12 to 16 inches. The actual thickness of the amended material and imported granular material will depend on the contractor's means and methods and should be the contractor's responsibility. Cement amendment is discussed in the "Materials" section.

6.3 TEMPORARY SLOPES

Temporary slopes less than 10 feet high should be no steeper than 1½H:1V, provided groundwater seepage does not occur. If slopes greater than 10 feet high are required, GeoDesign should be contacted to make additional recommendations. We recommend a minimum horizontal distance of 5 feet from the edge of the existing improvements to the top of the temporary slope. All cut slopes should be protected from erosion by covering them during wet weather. If sloughing or instability is observed, the slope should be flattened or supported by shoring. Excavations should not undermine adjacent utilities, foundations, walkways, streets, or other hardscapes unless special shoring or underpinned support is provided.

6.4 EROSION CONTROL

The on-site soil is susceptible to erosion. Consequently, we recommend that slopes be covered with an appropriate erosion control product if construction occurs during periods of wet weather. We recommend that all slope surfaces be planted as soon as practical to minimize erosion. Surface water runoff should be collected and directed away from slopes to prevent water from running down the slope face. Erosion control measures, such as straw bales, sediment fences, and temporary detention and settling basins, should be used in accordance with local and state ordinances.

6.5 EXCAVATION

6.5.1 General

Perched groundwater was generally observed between depths of 10 and 14 feet BGS in the explorations. Based on our experience in the area, perched groundwater could be present within approximately few feet of the ground surface during the wet season. Cuts in the near-surface soil should be readily completed with conventional excavation equipment. Temporary excavation sidewalls should stand vertical to a depth of approximately 4 feet, provided groundwater seepage is not observed in the sidewalls. Open excavation techniques may be used to excavate trenches with depths between 4 and 8 feet, provided the walls of the excavation are cut at a slope of 1H:1V and groundwater seepage is not present. Excavations should be flattened to 1½H:1V or 2H:1V if excessive sloughing or raveling occurs. If groundwater is present, caving and raveling could occur. In lieu of large and open cuts, approved temporary shoring may be used for excavation support. A wide variety of shoring and dewatering systems are available. Consequently, we recommend that the contractor be responsible for selecting the appropriate shoring and dewatering systems.

If box shoring is used, it should be understood that box shoring is a safety feature used to protect workers and does not prevent caving. If the excavations are left open for extended periods of time, caving of the sidewalls may occur. The presence of caved material will limit the ability to properly backfill and compact the trenches. The contractor should be prepared to fill voids between the box shoring and the sidewalls of the trenches with sand or gravel before caving occurs.

If shoring is used, we recommend that the type and design of the shoring system be the responsibility of the contractor, who is in the best position to choose a system that fits the overall plan of operation. All excavations should be made in accordance with applicable OSHA and state regulations.

6.5.2 Dewatering

Dewatering may be required for excavations at the site, particularly during the wet season. If encountered, pumping from a sump located within the trench may be effective in dewatering localized sections of trench. However, this method is unlikely to prove effective in dewatering long sections of trench or large excavations. In addition, the sidewalls of trench excavations will need to be flattened or shored if seepage is encountered.

Where groundwater seepage into shored excavations occurs, we recommend placing at least 1 foot to 2 feet of stabilization material at the base of the excavations. Trench stabilization material should meet the requirements provided in the "Structural Fill" section.

We note that these recommendations are for guidance only. Dewatering of excavations is the sole responsibility of the contractor, as the contractor is in the best position to select these systems based on their means and methods.

6.6 MATERIALS

6.6.1 Structural Fill

Fills should only be placed over subgrade that has been prepared in conformance with the "Site Preparation" section. A variety of material may be used as structural fill at the site. However, all material used as structural fill should be free of organic matter or other unsuitable material and should meet the specifications provided in WSS 9-03 – Aggregates, depending on the application. A brief characterization of some of the acceptable materials and our recommendations for their use as structural fill are provided below.

6.6.2 On-Site Soil

The on-site soil is suitable for structural fill provided it is free of organic matter and unsuitable materials. Based on laboratory testing results, the moisture content of the on-site soil is above the optimum required for compaction at the time of our explorations and moisture conditioning, including drying and mixing, will be required to use the on-site soil for structural fill. Accordingly, extended dry weather and sufficient area to dry the soil will be required to adequately condition the soil for use as structural fill. The on-site fine-grained soil should not be used as structural fill during the wet season.

When used as structural fill, the on-site fine-grained soil should be placed in lifts with a maximum uncompacted thickness of 8 inches and compacted to not less than 92 percent of the maximum dry density, as determined by ASTM D1557.

6.6.3 Imported Granular Material

Imported granular material used during periods of wet weather, for building pad subgrades, and for staging areas should be pit- or quarry-run rock, crushed rock, or crushed gravel and sand and should meet the specifications provided in WSS 9-03.9(1) – Ballast, WSS 9-03.14(1) – Gravel Borrow, or WSS 9-03.14(2) – Select Borrow. The imported granular material should be fairly well graded between coarse and fine material, have less than 5 percent by dry weight passing the U.S. Standard No. 200 sieve, and have a minimum of two mechanically fractured faces.

Imported granular material should be placed in lifts with a maximum uncompacted thickness of 8 to 12 inches and compacted to not less than 95 percent of the maximum dry density, as determined by ASTM D1557. During the wet season or when wet subgrade conditions exist, the initial lift should be approximately 18 inches in uncompacted thickness and should be compacted with a smooth-drum roller without using vibratory action.

Where imported granular material is placed over wet or soft soil subgrades, we recommend a geotextile be placed as a barrier between the subgrade and imported granular material. Depending on site conditions, the geotextile should meet the specifications provided in WSS 9-33.2(1) – Geotextile Properties (Table 3) for soil separation or stabilization. The geotextile should be installed in conformance with WSS 2-12 – Construction Geosynthetic.

6.6.4 Stabilization Material

Stabilization material used to create haul roads for construction traffic or at the base of unstable trenches should consist of pit- or quarry-run rock or crushed rock. The material should have a maximum particle size of 6 inches and less than 5 percent by dry weight passing the

GeoDesign[¥]

U.S. Standard No. 4 sieve, have at least two mechanically fractured faces, and be free of organic matter and other deleterious material. Material meeting the specifications provided in WSS 9-27.3(6) – Stone is generally acceptable for use. Stabilization material should be placed in lifts between 12 and 18 inches thick and compacted to a firm condition with a smooth-drum roller without using vibratory action.

Where the stabilization material is used to stabilize soft subgrade beneath pavements or construction haul roads, a geotextile should be placed as a barrier between the soil subgrade and the imported granular material. Geotextile is not required where stabilization material is used at the base of utility trenches.

6.6.5 Trench Backfill

Trench backfill placed beneath, adjacent to, and for at least 2 feet above utility lines (i.e., the pipe zone) should consist of well-graded, granular material with a maximum particle size of 1½ inches and less than 7 percent by dry weight passing the U.S. Standard No. 200 sieve and should meet the specifications provided in WSS 9-03.12(3) – Gravel Backfill for Pipe Zone Bedding. The pipe zone backfill should be compacted to at least 90 percent of the maximum dry density, as determined by ASTM D1557, or as required by the pipe manufacturer or local building department.

Within roadway alignments or beneath proposed or future building pads, the remainder of the trench backfill should consist of well-graded, granular material with a maximum particle size of 2½ inches and less than 7 percent by dry weight passing the U.S. Standard No. 200 sieve and should meet the specifications provided in WSS 9-03.19 – Bank Run Gravel for Trench Backfill. This material should be compacted to at least 92 percent of the maximum dry density, as determined by ASTM D1557, or as required by the pipe manufacturer or local building department. The upper 2 feet of the trench backfill should be compacted to at least 95 percent of the maximum dry density, as determined by ASTM D1557. Outside of structural improvement areas (e.g., roadway alignments or building pads), trench backfill placed above the pipe zone may consist of general fill material that is free of organics and material over 6 inches in size and meets the specifications provided in WSS 9-03.14(3) – Common Borrow and WSS 9-03.15 – Native Material for Trench Backfill. This general trench backfill should be compacted to at least 90 percent of the maximum dry density, as determined by ASTM D1557, or as required by the pipe manufacturer or local building department.

Refer to the "Geologic Hazards" section for a discussion of trench backfill on slopes.

6.6.6 Aggregate Base Rock

Imported granular material placed beneath pavements and floor slabs should be clean crushed rock or crushed gravel and sand that are fairly well graded between coarse and fine. The granular material should not contain deleterious material, should have a maximum particle size of 1½ inches, should meet the specifications provided in WSS 9-03.9(3) – Crushed Surfacing and WSS 9-03.10 – Aggregate for Gravel Base, should have less than 5 percent by dry weight passing the U.S. Standard No. 200 sieve, and should have a minimum of two mechanically fractured faces. The imported granular material should be placed in one lift and compacted to not less than 95 percent of the maximum dry density, as determined by ASTM D1557.

6.6.7 Retaining Wall Select Backfill

Backfill material placed behind retaining walls and extending a horizontal distance of ½H, where H is the height of the retaining wall, should consist of select granular material that meets the requirements provided in WSS 9-03.12(2) – Gravel Backfill for Walls. We recommend the select granular wall backfill be separated from general fill, native soil, and/or topsoil using a geotextile fabric that meets the specifications provided below for drainage geotextiles.

The wall backfill should be compacted to a minimum of 95 percent of the maximum dry density, as determined by ASTM D1557. However, backfill located within a horizontal distance of 3 feet from a retaining wall should only be compacted to approximately 90 percent of the maximum dry density, as determined by ASTM D1557. Backfill placed within 3 feet of the walls should be compacted in lifts less than 6 inches thick using hand-operated tamping equipment (such as a jumping jack or vibratory plate compactor). If flatwork (sidewalks or pavements) will be placed atop the wall backfill, we recommend that the upper 2 feet of material be compacted to 95 percent of the maximum dry density, as determined by ASTM D1557.

6.6.8 Geotextile Separation Fabric

A geotextile separation fabric will be required at the interface of the existing soil and imported granular material beneath the proposed walls. In addition, geotextile fabric may be required where soft subgrade is encountered. The separation fabric should meet the specifications provided in WSS 9-33.2(1) – Geotextile Properties (Table 3) for soil separation. The geotextile should be installed in conformance the specifications provided in WSS 2-12 – Construction Geosynthetic.

6.6.9 AC

6.6.9.1 General

The AC pavement should conform to WSS 5-04 - Hot Mix Asphalt. AC should consist of ½-inch HMA. The asphalt cement binder should be PG 64-22 Performance Grade Asphalt Cement conforming to WSS 9-02.1(4) – Performance Graded Asphalt Binder. The layer thickness should be 2.0 to 3.5 inches. The job mix formula should meet the requirements for non-statistical ½- inch HMA (WSS 5-04 – Hot Mix Asphalt and WSS 9-03.8 – Aggregates for Hot Mix Asphalt) and be compacted to 91 percent of the maximum specific gravity or as required by the local jurisdiction in public right-of-way areas.

6.6.9.2 Cold Weather Paving Considerations

In general, AC paving is not recommended during cold weather (temperatures less than 40 degrees Fahrenheit). Compacting under these conditions can result in low compaction and premature pavement distress. Each AC mix design has a recommended compaction temperature range that is specific for the particular AC binder used. In colder temperatures, it is more difficult to maintain the temperature of the AC mix as it can lose heat while stored in the delivery truck, as it is placed, and in the time between placement and compaction. The AC surface temperature during paving should be at least 40 degrees Fahrenheit for lift thickness greater than 2.5 inches and at least 50 degrees Fahrenheit for lift thickness between 2.0 and 2.5 inches.

If paving activities must take place during cold-weather construction as defined above, the project team should be consulted and a site meeting should be held to discuss ways to lessen low compaction risks.

6.4.9 Soil Amendment with Cement

6.4.9.1 General

As an alternative to the use of imported granular material or as an alternative to scarification and compaction during wet periods, an experienced contractor may be able to amend the on-site fine-grained soil with portland cement to obtain suitable support properties. It is generally less costly to amend on-site soil than to remove and replace soft soil with granular material. Based on the moisture contents, soil types, and processing speed, cement amendment would be more suitable at this site than lime amendment. The amount of cement used during treatment should be based on an assumed soil dry unit weight of 100 pcf.

6.4.9.2 Subbase Stabilization

Specific recommendations based on exposed site conditions for soil amending can be provided if necessary. However, for preliminary design purposes, we recommend a target strength for cement-amended subgrade for building and pavement subbase (below aggregate base) soil of 100 psi. The amount of cement used to achieve this target generally varies with moisture content and soil type. It is difficult to predict field performance of soil to cement amendment due to variability in soil response, and we recommend laboratory testing to confirm expectations. Generally, 6 percent cement by weight of dry soil can be used when the soil moisture content does not exceed approximately 20 percent. If the soil moisture content is in the range of 25 to 35 percent, 7 to 9 percent by weight of dry soil is recommended. The amount of cement added to the soil may need to be adjusted based on field observations and performance. Moreover, depending on the time of year and moisture content levels during amendment, water may need to be applied during tilling to appropriately condition the soil moisture content.

For pavement subbase, we recommend assuming a minimum cement ratio of 6 percent (by dry weight). If the soil moistures are in excess of 30 percent, a cement ratio of 7 to 8 percent will likely be needed. Due to the higher organic content and moisture, we recommend using a cement ratio of 8 percent when stabilizing topsoil (tilled) zone material for building and pavement subbase and anticipate that the cement will need to be applied in two 4 percent applications followed by multiple tilling passes with each application.

We recommend cement-spreading equipment be equipped with balloon tires to reduce rutting and disturbance of the fine-grained soil. A static sheepsfoot or segmented pad roller with a minimum static weight of 40,000 pounds should be used for initial compaction of the finegrained soil. A smooth-drum roller with a minimum applied linear force of 700 pounds per inch should be used for final compaction. The amended soil should be compacted to at least 92 percent of the achievable dry density at the moisture content of the material, as defined in ASTM D1557. A minimum curing time of four days is required between treatment and construction traffic access. Construction traffic should not be allowed on unprotected, cement-amended subgrade. To protect the cement-treated surfaces from abrasion or damage, the finished surface should be covered with 4 to 6 inches of imported granular material.

Treatment depths for building/pavement, haul roads, and staging areas are typically on the order of 12, 16, and 12 inches, respectively. The crushed rock typically becomes contaminated with soil during construction. Contaminated base rock should be removed and replaced with clean rock in pavement areas. The actual thickness of the amended material and imported granular material for haul roads and staging areas will depend on the anticipated traffic, as well as the contractor's means and methods and should be the contractor's responsibility.

Cement amending should not be attempted when air temperature is below 40 degrees Fahrenheit or during moderate to heavy precipitation. Cement should not be placed when the ground surface is saturated or standing water exists.

6.4.9.3 Cement-Amended Structural Fill

On-site soil that would not otherwise be suitable for structural fill may be amended and placed as fill over a subgrade prepared in conformance with the "Site Preparation" section. The cement ratio for general cement-amended fill can generally be reduced by 1 percent (by dry weight). Typically, a minimum curing of four days is required between treatment and construction traffic access. Consecutive lifts of fill may be treated immediately after the previous lift has been amended and compacted (e.g., the four-day wait period does not apply). However, where the final lift of fill is a building or roadway subgrade, the four-day wait period is in effect for the final lift of cement-amended soil.

6.4.9.4 Other Considerations

Portland cement-amended soil is hard and has low permeability. This soil does not drain well and it is not suitable for planting. Future planted areas should not be cement amended, if practical, or accommodations should be made for drainage and planting. Moreover, cement amending soil within building areas must be done carefully to avoid trapping water under floor slabs. We should be contacted if this approach is considered. Cement amendment should not be used if runoff during construction cannot be directed away from adjacent wetlands (if any).

7.0 OBSERVATION OF CONSTRUCTION

Satisfactory earthwork and foundation performance depends to a large degree on the quality of construction. Subsurface conditions observed during construction should be compared with those encountered during the subsurface explorations. Recognition of changed conditions often requires experience; therefore, qualified personnel should visit the site with sufficient frequency to detect whether subsurface conditions change significantly from those anticipated. In addition, sufficient observation of the contractor's activities is a key part of determining that the work is completed in accordance with the construction drawings and specifications.

8.0 LIMITATIONS

We have prepared this report for use by Compass Group, LLC and members of the design and construction teams for the proposed development. The data and report can be used for estimating purposes, but our report, conclusions, and interpretations should not be construed as a warranty of the subsurface conditions and are not applicable to other sites.

Soil explorations indicate soil conditions only at specific locations and only to the depths penetrated. They do not necessarily reflect soil strata or water level variations that may exist between exploration locations. If subsurface conditions differing from those described are noted during the course of excavation and construction, re-evaluation will be necessary.

The site development plans and design details were not finalized at the time this report was prepared. When the design has been finalized and if there are changes in the site grades or location, configuration, design loads, or type of construction, the conclusions and recommendations presented may not be applicable. If design changes are made, we should be retained to review our conclusions and recommendations and to provide a written evaluation or modification.

The scope of our services does not include services related to construction safety precautions, and our recommendations are not intended to direct the contractor's methods, techniques, sequences, or procedures, except as specifically described in our report for consideration in design.

Within the limitations of scope, schedule, and budget, our services have been executed in accordance with the generally accepted practices in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

* * *

We appreciate the opportunity to be of service to you. Please call if you have questions concerning this report or if we can provide additional services.

Sincerely,

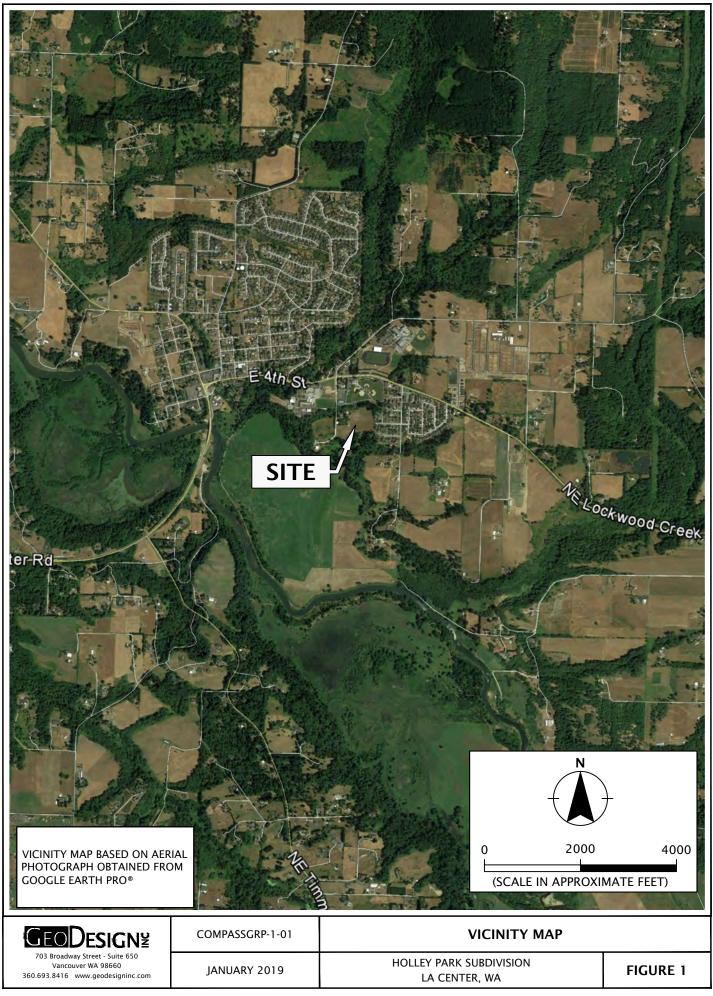
GeoDesign, Inc.

Nick Paveglio, P.E. Senior Associate Engineer

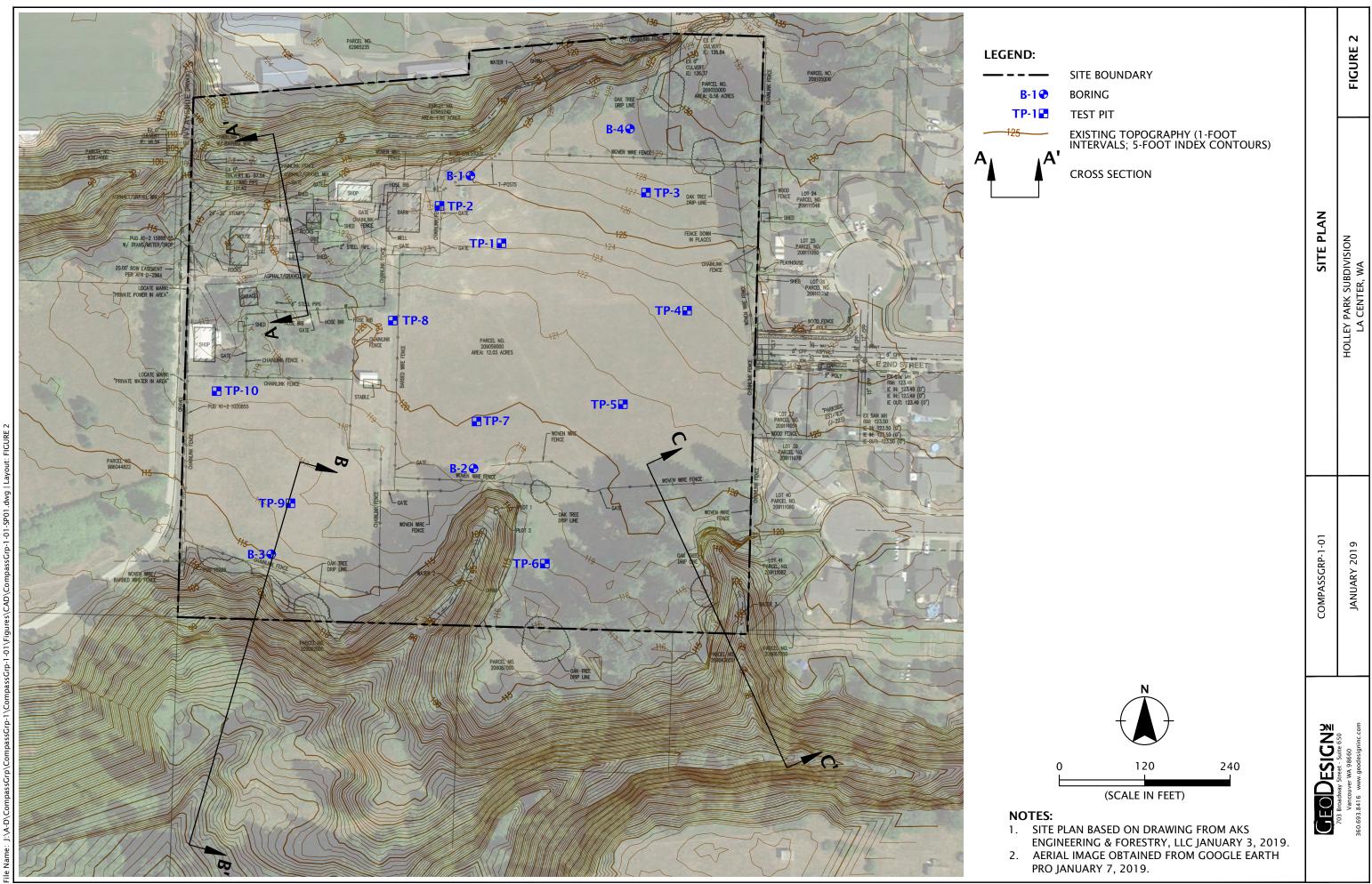
Brett A. Shipton, P.E. Principal Engineer

Signed 01/14/2019

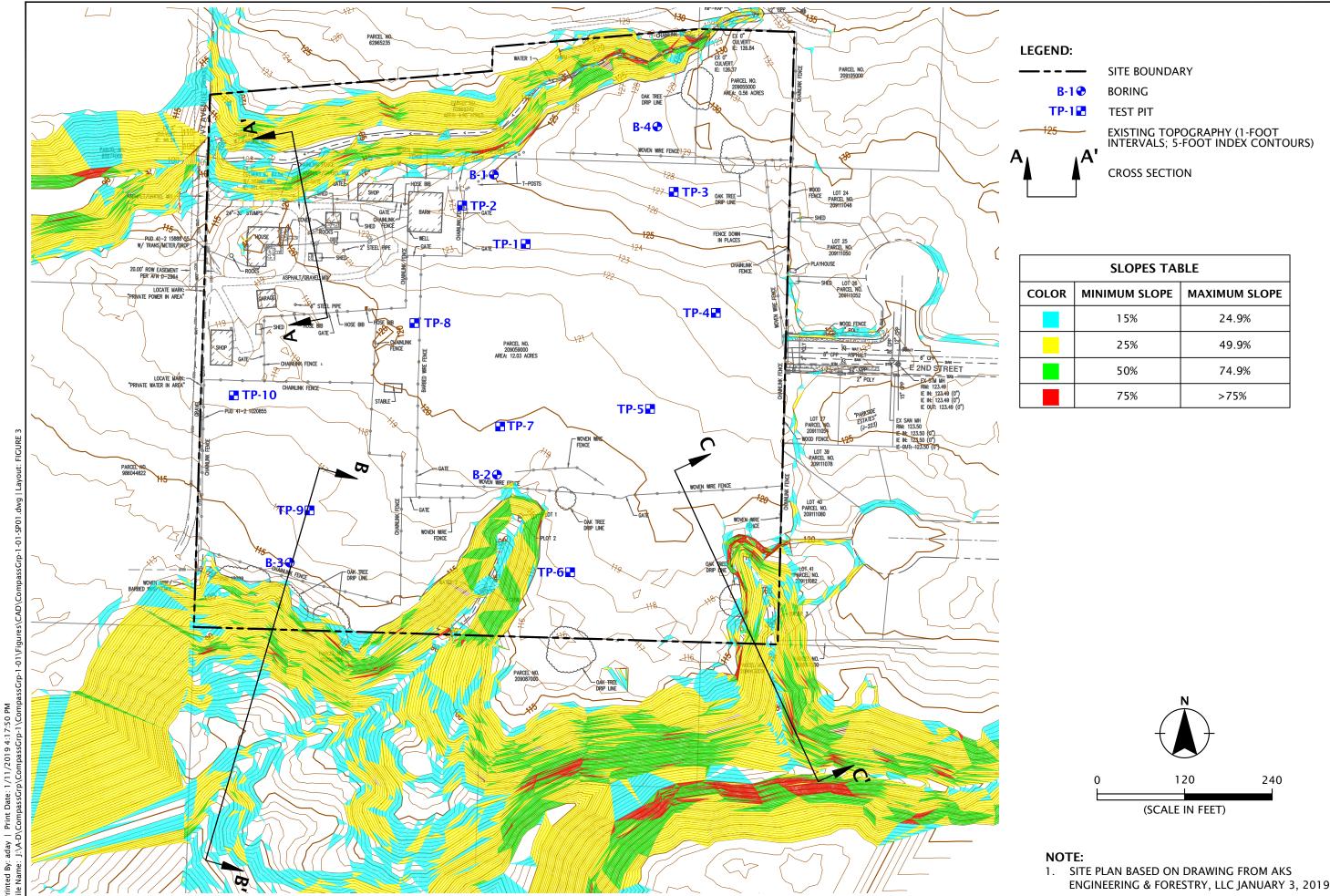
REFERENCES


Clark County GIS, 2018. Website: <u>http://gis.clark.wa.gov/imf/imf.jsp?site=digitalatlas.</u>

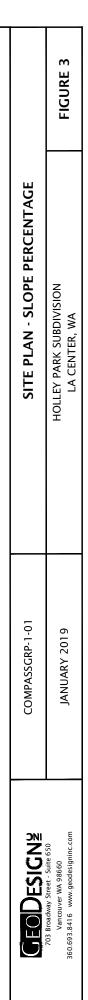
International Building Code, 2015.


Palmer et al., 2004. Liquefaction Susceptibility of Clark County. Washington Division of Geology and Earth Resources Open File Report, 2004-20. September 2004.

Washington State Department of Transportation, 2018. Standard Specifications for Road, Bridge, and Municipal Construction, M41-10.


FIGURES

Printed By: mmiller | Print Date: 1/9/2019 11:07:59 AM File Name: J:\A-D\CompassGrp-1CompassGrp-1\CompassGrp-1-01\Figures\CAD\CompassGrp-1-01-VM01.dwg | Layout: FIGURE



-SP01 .dwg | Layout: -01 Grp ē 1/11/2019 2:46:05 PM p\CompassGrp-1\Comp Date

BG.

	SLOPES TABLE									
OR	MINIMUM SLOPE	MAXIMUM SLOPE								
	15%	24.9%								
	25%	49.9%								
	50%	74.9%								
	75%	>75%								

ENGINEERING & FORESTRY, LLC JANUARY 3, 2019.

APPENDIX A

APPENDIX A

FIELD EXPLORATIONS

We explored subsurface conditions at the site by drilling three borings (B-1 through B-3) and excavating 10 test pits (TP-1 through TP-10). The borings were drilled to depths between 34.7 and 46.4 feet BGS, and the test pits were excavated to depths between 16.0 and 18.0 feet BGS. Drilling services were provided by Dan Fisher Excavating, Inc. of Forest Grove, Oregon. Excavation services were provided by Tapani Underground, Inc. of Battle Ground, Washington. The exploration logs are presented in this appendix.

The locations of the explorations are shown on Figure 2. Locations were determined in the field by pacing and taping from existing site features. This information should be considered accurate only to the degree implied by the methods used.

A member of our geotechnical staff observed the explorations. We collected representative samples of the various soils encountered in the explorations for geotechnical laboratory testing.

SOIL SAMPLING

Samples were collected from the borings using 1½-inch-diameter split-spoon SPT samplers in general accordance with ASTM D1586. The samplers were driven into the soil with a 140-pound automatic trip hammer free-falling 30 inches. The sampler was driven a total distance of 18 inches. The number of blows required to drive the sampler the final 12 inches is recorded on the exploration logs, unless otherwise noted. Disturbed samples of the soil observed in the test pits were collected from the walls or base of the test pits using the excavator bucket. Sampling methods and intervals are shown on the exploration logs.

SOIL CLASSIFICATION

The soil samples were classified in accordance with the "Exploration Key" (Table A-1) and "Soil Classification System" (Table A-2), which are presented in this appendix. The exploration logs indicate the depths at which the soils or their characteristics change, although the change actually could be gradual. If the change occurred between sample locations, the depth was interpreted. Classifications are shown on the exploration logs.

LABORATORY TESTING

CLASSIFICATION

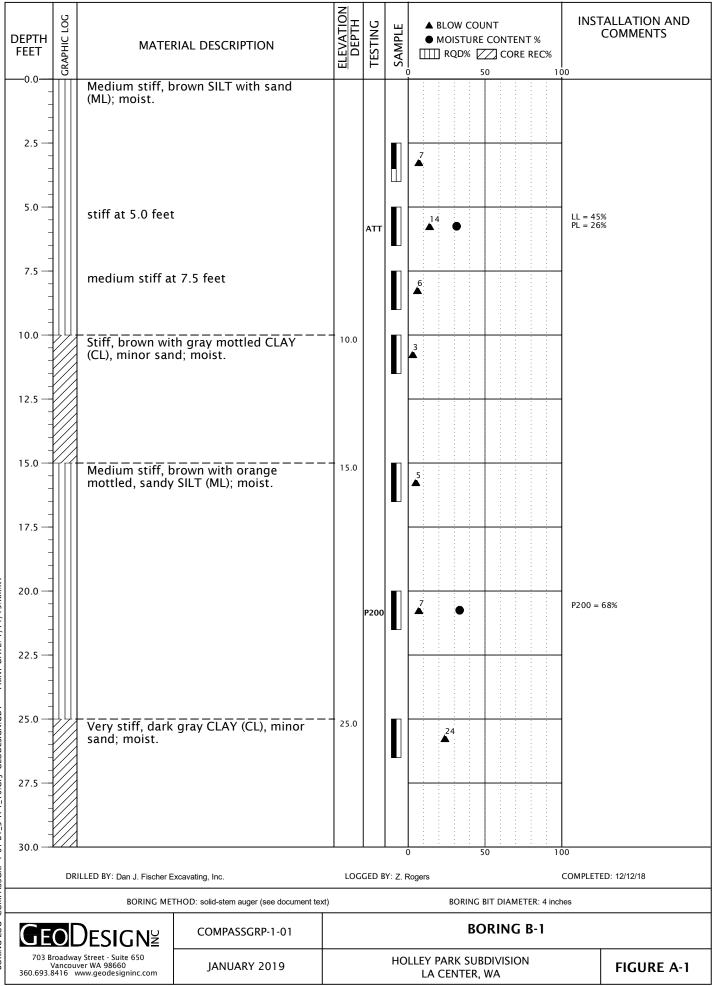
The soil samples were classified in the laboratory to confirm field classifications. The laboratory classifications are included on the exploration logs if those classifications differed from the field classifications.

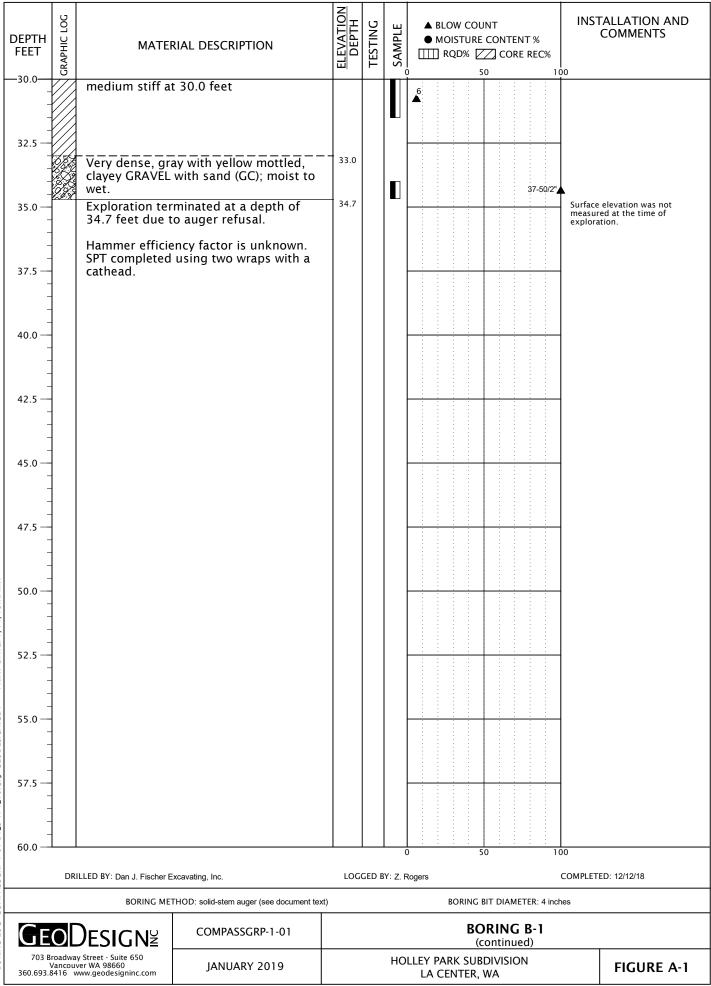
MOISTURE CONTENT

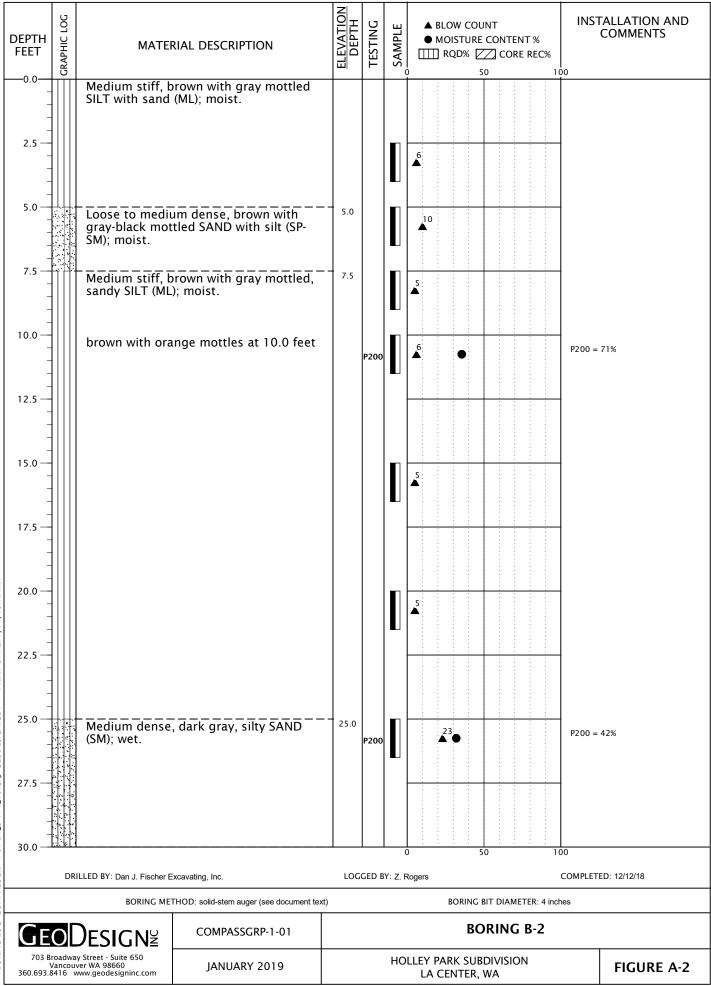
We tested the natural moisture content of select soil samples in general accordance with ASTM D2216. The test results are presented in this appendix.

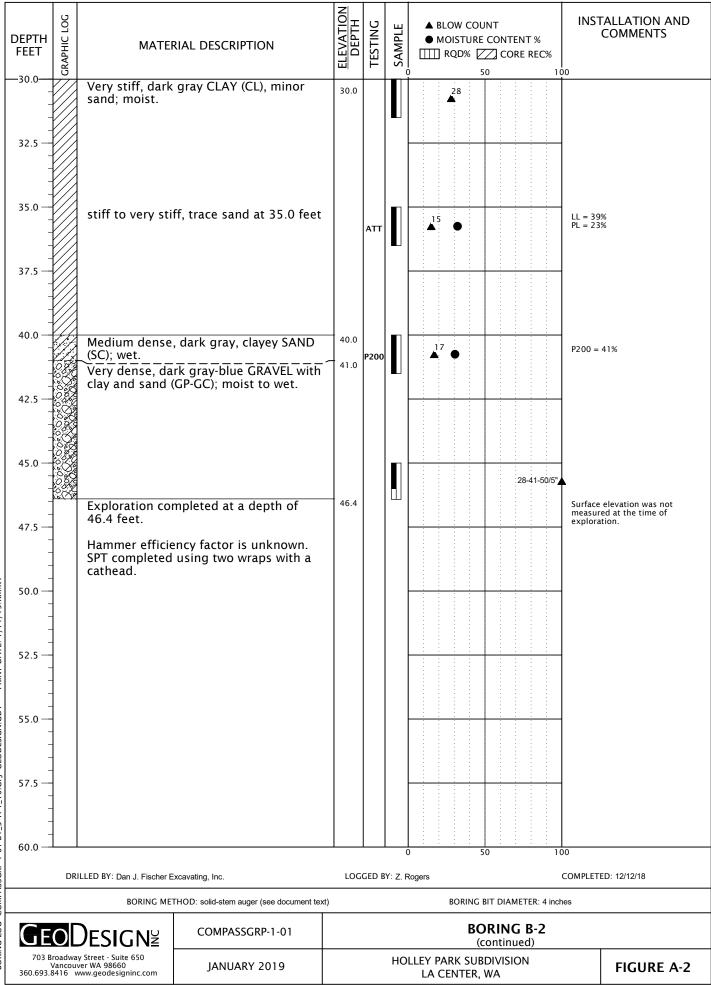
PARTICLE-SIZE ANALYSIS

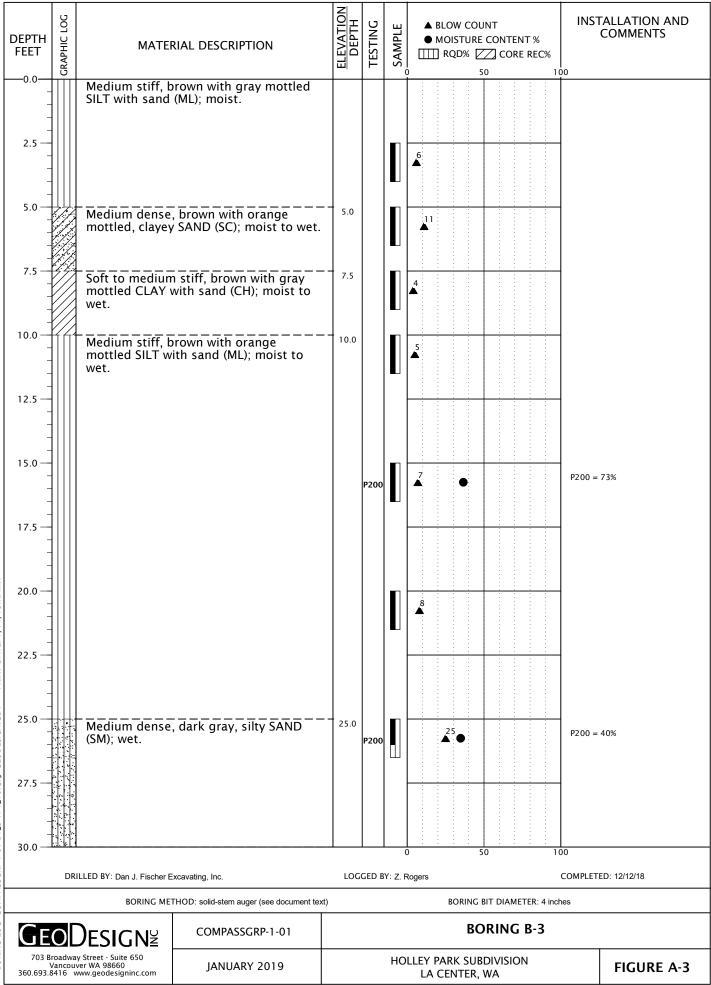
We completed particle-size analysis on select soil samples in order to determine the distribution of soil particle sizes. The testing consisted percent fines determination (percent passing the U.S. Standard No. 200 sieve) analyses completed in general accordance with ASTM C117 or ASTM D1140.

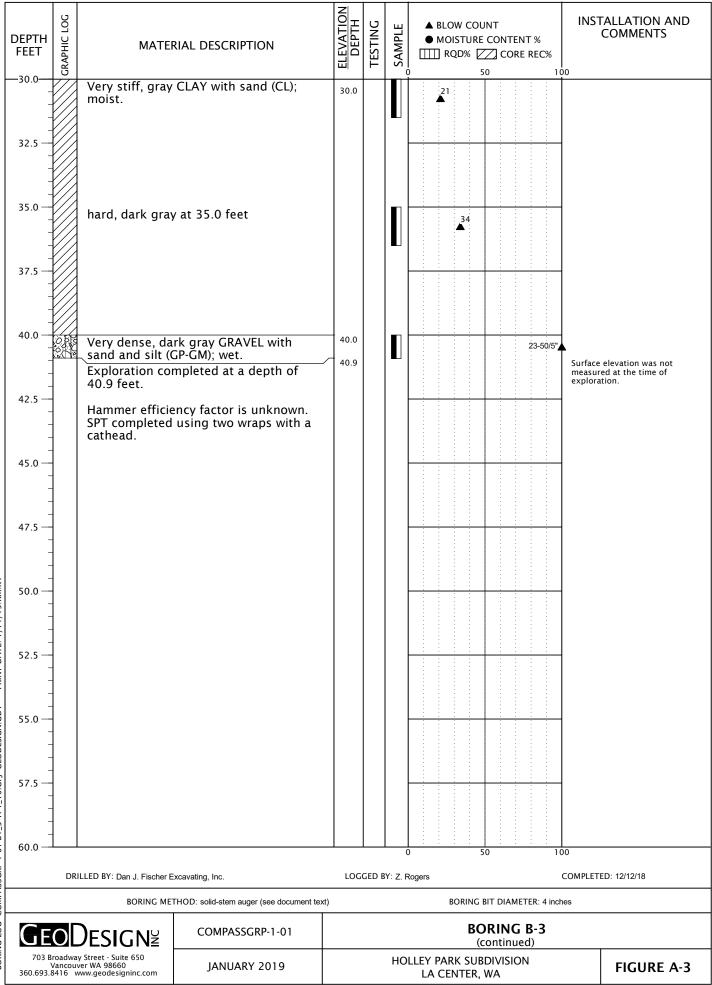

ATTERBERG LIMITS


The plastic limit and liquid limit (Atterberg limits) of select soil samples were determined in accordance with ASTM D4318. The Atterberg limits and the plasticity index were completed to aid in the classification of the soil. The test results are presented in this appendix.


SYMBOL	SAMPLING DESCRIPTION										
	Location of sample obtained in general accordance with ASTM D 1586 Standard Penetration Test with recovery										
	Location of sample obtained using thin-wall accordance with ASTM D 1587 with recover		or Geoprobe® sampler in general								
	Location of sample obtained using Dames & with recovery	Moore sam	pler and 300-pound hammer or pushed								
	Location of sample obtained using Dames & recovery	Location of sample obtained using Dames & Moore and 140-pound hammer or pushed with recovery									
X	Location of sample obtained using 3-inch-O.D. California split-spoon sampler and 140-pound hammer										
X	Location of grab sample	Graphic	Log of Soil and Rock Types								
	Rock coring interval	المربع في المربع ال المربع المربع المربع المربع المربع	Observed contact between soil or rock units (at depth indicated)								
$\overline{\nabla}$	Water level during drilling		Inferred contact between soil or rock units (at approximate								
Ţ	Water level taken on date shown		depths indicated)								
GEOTECHN	ICAL TESTING EXPLANATIONS										
ATT	Atterberg Limits	Р	Pushed Sample								
CBR	California Bearing Ratio	PP	Pocket Penetrometer								
CON	Consolidation	P200	Percent Passing U.S. Standard No. 200								
DD	Dry Density		Sieve								
DS	Direct Shear	RES	Resilient Modulus								
HYD	Hydrometer Gradation	SIEV	Sieve Gradation								
MC	Moisture Content	TOR	Torvane								
MD	Moisture-Density Relationship	UC	Unconfined Compressive Strength								
NP	Nonplastic	VS	Vane Shear								
OC	Organic Content	kPa	Kilopascal								
ENVIRONM	IENTAL TESTING EXPLANATIONS										
CA	Sample Submitted for Chemical Analysis	ND	Not Detected								
Р	Pushed Sample	NS	No Visible Sheen								
PID	Photoionization Detector Headspace	SS	Slight Sheen								
	Analysis	MS	Moderate Sheen								
	Parts per Million	HS	Heavy Sheen								
ppm											
)FSICNY										
GEOD 703 Broadway	DESIGNZ Street - Suite 650 er WA 98660 EXPLO	RATION KE	Y TABLE A-1								


Relati	ive Den	sity	Stai		l Pene istan	etration ce		s & Moore S)-pound har				oore Sampler 1d hammer)	
Ve	ry Loos	e		0 - 4				0 - 11		0 - 4			
	Loose			4 - 10				11 - 26			4	- 10	
Medi	ium Der	ıse			10 - 30							- 30	
	Dense				0 - 50			74 - 120				- 47	
Vei	ry Dens	e		More	e than	50		More than 1	20		More	than 47	
CONSIST	ENCY	- FINE-G	RAINE	D SC	DIL								
Consiste	ency	Pene	ndard tratior stance		Dames & Moore Sampler (140-pound hammer)				& Moore Sa ound ham			ned Compressiv rength (tsf)	
Very So	oft	Less	than 2	2		Less tha		L	ess than 2		Les	ss than 0.25	
Soft		2	- 4			3 - 6			2 - 5		C	.25 - 0.50	
Medium	Stiff	4	- 8			6 - 12	2		5 - 9		(0.50 - 1.0	
Stiff	:	8	- 15			12 - 2	5		9 - 19			1.0 - 2.0	
Very St	tiff	15	- 30			25 - 6	5		19 - 31			2.0 - 4.0	
Hard	ł	More	than 3	0		More than	n 65	M	ore than 31		Мо	ore than 4.0	
		PRIMAR	RY SOI	L DI	/ISIO	NS		GROUP	SYMBOL		GROU	P NAME	
			AVEL			CLEAN GR (< 5% fin			or GP			AVEL	
COARSE- GRAINED SOIL (more than 50% retained on				of $GRAVEL WITH FINES$ (\geq 5% and \leq 12% fines)			GW-GM	or GP-GM	GRAVEL with silt		_ with silt		
		OIL No. 4 sieve) 50% SAND					-	GW-GC	or GP-GC	GRAVEL with clay silty GRAVEL		with clay	
								(GM			GRAVEL	
				CPAVEL WITH EINES				(GC	clayey GRAVEL		GRAVEL	
					(> 12/0 IIIIes)			GC	C-GM	silty, clayey GRAVEL		ey GRAVEL	
						CLEAN SA (<5% fine		SW	or SP	SAND		AND	
No. 200 s	sieve)	sieve) (50% or mo coarse frac		SAND WITH I			FINES	SW-SM	SW-SM or SP-SM		SAND	with silt	
				coarse			(≥	5% and ≤ 12	2% fines)	SW-SC	or SP-SC		SAND
		ווכ							SM		silty	SAND	
		passing No. 4 sieve))	SAND WITH FINES (> 12% fines)				SC			ey SAND	
						(> 12% 11	nes)	SC	C-SM		-	yey SAND	
								1	ML			ILT	
FINE-GRA	INED								CL	CLAY		LAY	
SOIL	-				LIQ	uid limit les	s than 50	CI	-ML	silty CLAY			
(50% or r	moro	SILT A	ND CLA	٩Y				(OL	ORGANIC SILT or ORGANIC		or ORGANIC CLA	
passir								Ν	ИН	SILT		ILT	
No. 200 s					Liqu	id limit 50	or greate	. (СН		C	LAY	
								(OH		ORGANIC SILT or ORGANIC CLA		
		HIGH	LY ORC	SANIC	SOIL				РТ		PI	EAT	
MOISTUI CLASSIFI		N		ADI	DITIC	ONAL CON							
Term	F	ield Test					such	granular cor as organics,			etc.		
						Sil	t and Cla	/ In:			Sand and	Gravel In:	
dry very low moisture dry to touch		re,	Perc	ent	Fine-Graiı Soil		Coarse- ained Soil	Percent		Grained Soil	Coarse- Grained Soi		
moist		without		`	5	trace		trace	< 5	t	race	trace	
moist	visible	moisture		5 -	12	minor		with	5 - 15	n	ninor	minor	
wet		free wate		>	12	some	s	lty/clayey	15 - 30	V	vith	with	
wet	usually	/ saturate	d						> 30	sandy	/gravelly	Indicate %	
GEODESIGNZ 703 Broadway Street - Suite 650 Vancouver WA 98660						•	,		TABLE A-2				


360.693.8416 www.geodesigninc.com



DEPTH FEET	GRAPHIC LOG		RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	MOISTURE CONTENT % 50 1		IENTS
0.0		Soft, brown SIL organics; mois zone, 5-inch-th	T (ML), minor sand and t (24-inch-thick tilled iick root zone).		PP			PP = 0.25 tsf	
2.5 —		without organi	cs at 2.0 feet		P200		•	P200 = 91%	
-					PP			PP = 0.25 tsf	
5.0									
7.5		medium stiff, b gray mottles, s	prown with orange and andy at 8.0 feet		РР			PP = 0.75 tsf	
10.0									
12.5 — - - -		Medium dense mottled, silty S	, brown with orange AND (SM); moist.	13.0				Slow groundwater observed at 14.0	r seepage feet.
15.0									
17.5 —		Exploration co 17.0 feet.	mpleted at a depth of	17.0				No caving observe explored.	
-	-							Surface elevation measured at the t exploration.	
20.0	-								
22.5 —	-								
25.0 —	-								
	-								
27.5 —	-								
30.0 —									
50.0	EX	CAVATED BY: Tapani, Inc.		LOG	GED E	(BY: Z. F		00 COMPLET	ED: 12/13/18
-	EXCAVATION METHOD: excavator (see document text)								
	COMPASSGRP-1-01						TEST P	IT TP-1	
	Vancou	wer WA 98660 www.geodesigninc.com	JANUARY 2019			HO	LLEY PARK SUBDIV LA CENTER, WA	'ISION	FIGURE A-4

TEST PIT LOG - 1 PER PAGE COMPASSGRP-1-01-B1_3-TP1_10.GPJ GEODESIGN.GDT PRINT DATE: 1/11/19:KM:KT

DEPTH FEET	GRAPHIC LOG	MATE	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	CONT			MENTS
0.0 2.5		thick tilled zon zone).	T (ML), minor sand and t, sand is fine (12-inch- e, 6-inch-thick root n with gray mottles, cs at 2.5 feet		PP PP	\boxtimes			PP = 0.25 tsf PP = 3.0 tsf	
5.0		soft, sandy at 7	7.0 feet		PP				PP = 0.5 tsf	
		Medium dense mottled, silty S	, brown with orange AND (SM); moist.	14.0	P200	\boxtimes	•		Slow groundwate observed at 12.0 P200 = 40%	r seepage feet.
17.5		Exploration completed at a depth of 17.0 feet.		17.0					No groundwater s to the depth expl Surface elevation measured at the t exploration.	was not
22.5										
30.0	EXC	CAVATED BY: Tapani, Inc.		LOG	GED B	(Y: Z. F		0 10	COMPLET	ED: 12/13/18
		EXCAVATION METHO	DD: excavator (see document text)				_	_		
3	DESIGNE ay Street - Suite 650 ver WA 98660 www.geodesigninc.com			НО	LLEY PAR	K SUBDIV		FIGURE A-5		

TEST PIT LOG - 1 PER PAGE COMPASSGRP-1-01-B1_3-TP1_10.GPJ GEODESIGN.GDT PRINT DATE: 1/11/19:KM:KT

DEPTH FEET	GRAPHIC LOG	MATE	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	MOISTURE CONTENT % 50 11		IENTS
0.0		Soft, brown SIL organics; mois zone, 12-inch-t	T (ML), minor sand and t (30-inch-thick tilled hick root zone).		PP PP			PP = 0.25 tsf PP = 0.25 tsf	
2.5		very stiff, brow mottles, withou	n with gray-orange ut organics at 2.5 feet		PP			PP = 3.5 tsf	
5.0									
7.5									
10.0									
12.5		sandy at 12.0 f Medium dense SAND (SM); mo	, brown-orange, silty	13.5	P200		•	P200 = 68% Slow groundwater observed at 13.0	r seepage feet.
15.0		brown-dark gra						No caving observe	ad to the depth
	<u>ko (*18 s)</u>	Exploration con 17.0 feet.	mpleted at a depth of	17.0				Surface elevation measured at the t exploration.	was not
20.0									
 22.5 									
25.0									
 27.5 — 									
30.0							0 50 1	00	
	CAVATED BY: Tapani, Inc.	DD: excavator (see document text)	LOG	GED E	8Y: Z. F	Rogers	COMPLET	ED: 12/13/18	
GF	O	Designy	COMPASSGRP-1-01				TEST PI	Т ТР-3	
	Vancou	ay Street - Suite 650 Iver WA 98660 www.geodesigninc.com	JANUARY 2019			НО	LLEY PARK SUBDIV LA CENTER, WA	ISION	FIGURE A-6

TEST PIT LOG - 1 PER PAGE COMPASSGRP-1-01-81_3-TP1_10.GPJ GEODESIGN.GDT PRINT DATE: 1/11/19:KM:KT

DEPTH FEET	GRAPHIC LOG	MATE	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE		ENT %	COMN	IENTS
	Extraction of the second se	zone, 6-inch-th medium stiff to mottles, withou Medium dense mottled, silty S dark gray at 15	n SILT with sand and moist (12-inch-thick tilled ick root zone). Distiff, gray with orange at organics at 1.0 foot	12.0					PP = 0.25 tsf PP = 1.0 tsf Slow groundwater observed at 12.0 No caving observe explored. Surface elevation measured at the t exploration.	ed to the depth was not
22.5 25.0 27.5 30.0										
	EXC	CAVATED BY: Tapani, Inc.		LOG	ged e	(BY: Z. F		0 1	COMPLET	ED: 12/13/18
-	EXCAVATION METHOD: excavator (see document text)									
- 703 B	Street - Suite 650 rer WA 98660 www.geodesigninc.com	COMPASSGRP-1-01 JANUARY 2019			НО	LLEY PAR	CEST PI		FIGURE A-7	

TEST PIT LOG - 1 PER PAGE COMPASSGRP-1-01-B1_3-TP1_10.GPJ GEODESIGN.GDT PRINT DATE: 1/11/19:KM:KT

DEPTH FEET	GRAPHIC LOG	MATE	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	MOISTURE CONTENT %		IENTS
0.0		Soft, brown SIL (ML); moist (24 12-inch-thick r	T with sand and organics -inch-thick tilled zone, oot zone).		PP PP			PP = 0.25 tsf PP = 1.0 tsf	
2.5		soft to mediun mottles, witho very stiff at 3.0	n stiff, brown with gray ut organics at 2.0 feet) feet		ATT PP		•	PP = 2.75 tsf LL = 49% PL = 25%	
10.0		medium stiff; v	vet at 11.0 feet		P200		•	Groundwater see 11.0 feet. P200 = 54%	bage observed at
15.0		Medium dense (SM); moist.	, dark gray, silty SAND	15.0					
		Exploration co 17.0 feet.	mpleted at a depth of	17.0				No caving was ob depth explored. Surface elevation	
20.0								measured at the t	
25.0									
27.5									
30.0	EX	CAVATED BY: Tapani, Inc.		LOG	iged e	(BY: Z. F		00 COMPLET	ED: 12/13/18
		EXCAVATION METHO	DD: excavator (see document text)				TECT N		
	Vancou	DESIGNE ay Street - Suite 650 ver WA 98660	COMPASSGRP-1-01			но	TEST P		
360.693	.8416	www.geodesigninc.com	JANUARY 2019			10	LA CENTER, WA		FIGURE A-8

DEPTH FEET		GKAPHIC LOG	MATEF	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	MOISTURE CONTENT % 50 1	СОММ	ENTS
2.5 -	-		Soft, brown SIL (ML); moist, sar tilled zone, 6-ir brown with gra organics at 1.0	T with sand and organics nd is fine (12-inch-thick nch-thick root zone). y mottles, without foot		PP PP			PP = 0.25 tsf PP = 0.25 tsf	500D300
5.0 -			medium stiff at	t 5.0 feet					Slow groundwater observed at 4.0 fe Minor caving obse	seepage et. rved at 4.0 feet.
7.5 -						Р200		•	P200 = 94%	
12.5 -										
15.0 -	-									
17.5 - 20.0 -			Exploration cor 17.0 feet.	npleted at a depth of	17.0				Surface elevation w measured at the ti exploration.	vas not me of
	-									
25.0 -	-									
22.5 - 25.0 - 30.0 -										
30.0 -		EXC	CAVATED BY: Tapani, Inc.		LOG	L GED E	(8Y: Z. F		00 COMPLETE	D: 12/13/18
				DD: excavator (see document text)						
GEODESIGNE COMPASSGRP-1-01								TEST P	IT TP-6	
n /0	703 Broadway Street - Suite 650 Vancouver WA 98660 360.693.8416 www.geodesigninc.com JANUARY 2019						HO	LLEY PARK SUBDIN LA CENTER, WA	ISION	FIGURE A-9

TEST PIT LOG - 1 PER PAGE COMPASSGRP-1-01-B1_3-TP1_10.GPJ GEODESIGN.GDT PRINT DATE: 1/11/19:KM:KT

DEPTH FEET	GRAPHIC LOG	MATE	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	MOISTURE CONTENT %	COMM	IENTS
	CRAPH	Very soft, brow organics (ML); zone, 6-inch-th medium stiff to orange mottles foot Medium dense, (SM); moist. orange at 14.0	n SILT with sand and moist (12-inch-thick tilled ick root zone). Stiff, brown with gray- a, without organics at 1.0	13.0 18.0	PP PP I LES			PP = 1.0 tsf PP = 0.75 tsf Slow groundwater observed at 13.0 No caving observe explored. Surface elevation measured at the t exploration.	seepage feet. ed to the depth was not
22.5 22.5 22.5 22.5 27.5 30.0									
30.0	EXC	CAVATED BY: Tapani, Inc.		LOG	GED B	(Y: Z. F		L DO COMPLETI	ED: 12/13/18
		EXCAVATION METHO	DD: excavator (see document text)						
GE	Designĕ	COMPASSGRP-1-01				TEST PI	Т ТР-7		
								FIGURE A-10	

TEST PIT LOG - 1 PER PAGE COMPASSGRP-1-01-81_3-TP1_10.GPJ GEODESIGN.GDT PRINT DATE: 1/11/19:KM:KT

DEPTH FEET	GRAPHIC LOG	MATE	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE		ENT %		1ENTS
0.0		tilled zone, 12-	T with sand and organics nd is fine (24-inch-thick inch-thick root zone).		PP				PP = 0.25 tsf	
2.5		without organi	cs at 2.0 feet		P200 PP				P200 = 85% PP = 2.0 tsf	
5.0										
7.5										
- - 10.0									Slow groundwate	
- - 12.5 —									Slow groundwater observed at 11.0	feet.
15.0		Medium dense with silt (SP-SM	, light brown-gray SAND); moist.	14.0						
				18.0					No caving observe	ed to the depth
		Exploration col 18.0 feet.	npleted at a depth of	18.0					explored. Surface elevation measured at the t exploration.	
-										
22.5 25.0 27.5 30.0 30.0										
30.0	30.0					(SY: Z. F		0 1	00 COMPLET	ED: 12/13/18
			DD: excavator (see document text)				90.0			
GE	0	Designy	COMPASSGRP-1-01				-	TEST PI	Т ТР-8	
703 F 360.693.	Vancou	ay Street - Suite 650 Iver WA 98660 www.geodesigninc.com	JANUARY 2019			НО	lley pari La cen	K SUBDIV ITER, WA	ISION	FIGURE A-11

TEST PIT LOG - 1 PER PAGE COMPASSGRP-1-01-B1_3-TP1_10.GPJ GEODESIGN.GDT PRINT DATE: 1/11/19:KM:KT

DEPTH FEET	GRAPHIC LOG	MATE	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	MOISTURE CONTENT % 50 11	COMN	IENTS
-0.0		Very soft, brow organics (ML); inch-thick tilled	n SILT with sand and moist, sand is fine (24- d zone, 12-inch-thick root		PP			PP = 0.25 tsf	
2.5		zone).	n stiff, gray with orange ut organics at 2.0 feet		РР			PP = 6.5 tsf	
5.0									
		brown, sandy a	at 9.0 feet		P200		•	Slow groundwater observed at 10.0 P200 = 62%	seepage feet.
12.5 — - - -									
15.0 — - -		_ mottled, silty S	, brown with orange AND (SM); moist.	15.0				No caving observe	ad to the depth
- - 17.5 — - -		Exploration completed at a depth of 16.0 feet.						Surface elevation measured at the t exploration.	was not
20.0									
22.5									
25.0 — 									
27.5									
30.0								00	
EXCAVATED BY: Tapani, Inc. EXCAVATION METHOD: excavator (see document text)					GED E	3Y: Z. F	Rogers	COMPLET	ED: 12/13/18
GF	0	Designy	COMPASSGRP-1-01				TEST PI	Т ТР-9	
	Vancou	ay Street - Suite 650 Iver WA 98660 www.geodesigninc.com	JANUARY 2019			НО	LLEY PARK SUBDIV LA CENTER, WA	ISION	FIGURE A-12


TEST PIT LOG - 1 PER PAGE COMPASSGRP-1-01-81_3-TP1_10.GPJ GEODESIGN.GDT PRINT DATE: 1/11/19:KM:KT

DEPTH FEET	GRAPHIC LOG	MATE	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	MOISTURE CONTENT % 50 1	COMN	IENTS
		Very soft, brow organics (ML); inch-thick tilled zone). without organi medium stiff a			PP PP			PP = 0.25 tsf PP = 0.75 tsf	
7.5			ndy at 10.0 feet					Slow groundwater observed at 12.0	r seepage feet.
			, brown with orange AND (SM); moist. mpleted at a depth of	15.0	P200			P200 = 44% No caving observe explored. Surface elevation measured at the t exploration.	was not
25.0									
	EX	CAVATED BY: Tapani, Inc.		LOG	GED E	8Y: Z. F		00 COMPLET	ED: 12/13/18
GE			DD: excavator (see document text) COMPASSGRP-1-01				TEST PI	Т ТР-10	
	Vancou	ay Street - Suite 650 Iver WA 98660 www.geodesigninc.com	JANUARY 2019			НО	DLLEY PARK SUBDIV LA CENTER, WA	ISION	FIGURE A-13

TEST PIT LOG - 1 PER PAGE COMPASSGRP-1-01-81_3-TP1_10.GPJ GEODESIGN.GDT PRINT DATE: 1/11/19:KM:KT

"A" LINE 40 PLASTICITY INDEX 30 CL or OL 20 MH or OH 10 CL-ML ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 110 LIQUID LIMIT **EXPLORATION** SAMPLE DEPTH MOISTURE CONTENT PLASTICITY INDEX LIQUID LIMIT PLASTIC LIMIT KEY NUMBER (FEET) (PERCENT) ۲ B-1 5.0 32 45 26 19 \mathbf{X} B-2 35.0 32 39 23 16 TP-5 3.0 32 49 25 24

CH or OH

60

50

SAM	PLE INFORM	IATION	MOISTURE			SIEVE		ATTERBERG LIMITS		
XPLORATION NUMBER	SAMPLE DEPTH (FEET)	ELEVATION (FEET)	MOISTURE CONTENT (PERCENT)	DRY DENSITY (PCF)	GRAVEL (PERCENT)	SAND (PERCENT)	P200 (PERCENT)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICIT INDEX
B-1	5.0		32					45	26	19
B-1	20.0		33				68			
B-2	10.0		36				71			
B-2	25.0		32				42			
B-2	35.0		32					39	23	16
B-2	40.0		30				41			
B-3	15.0		37				73			
B-3	25.0		35				40			
TP-1	2.0		39				91			
TP-2	14.0		37				40			
TP-3	12.0		40				68			
TP-5	3.0		32					49	25	24
TP-5	11.0		39				54			
TP-6	10.0		40				94			
TP-8	2.0		36				85			
TP-9	10.0		34				62			
TP-10	15.0		34				44			

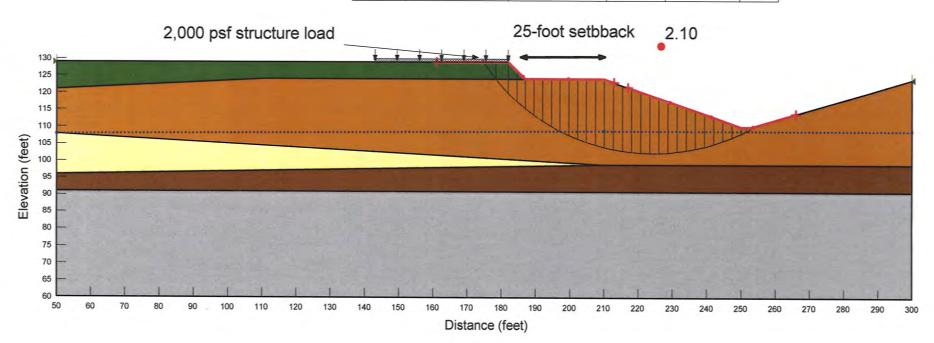
703 Broadway Street - Suite 650 Vancouver WA 98660 360.693.8416 www.geodesigninc.com SUMMARY OF LABORATORY DATA

JANUARY 2019

COMPASSGRP-1-01

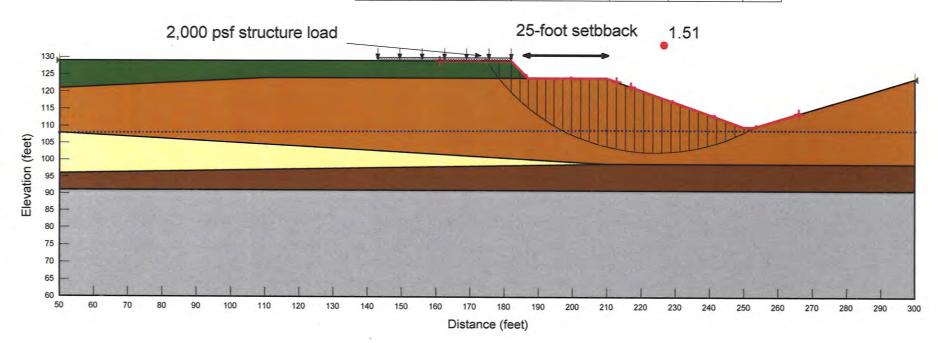
HOLLEY PARK SUBDIVISION LA CENTER, WA

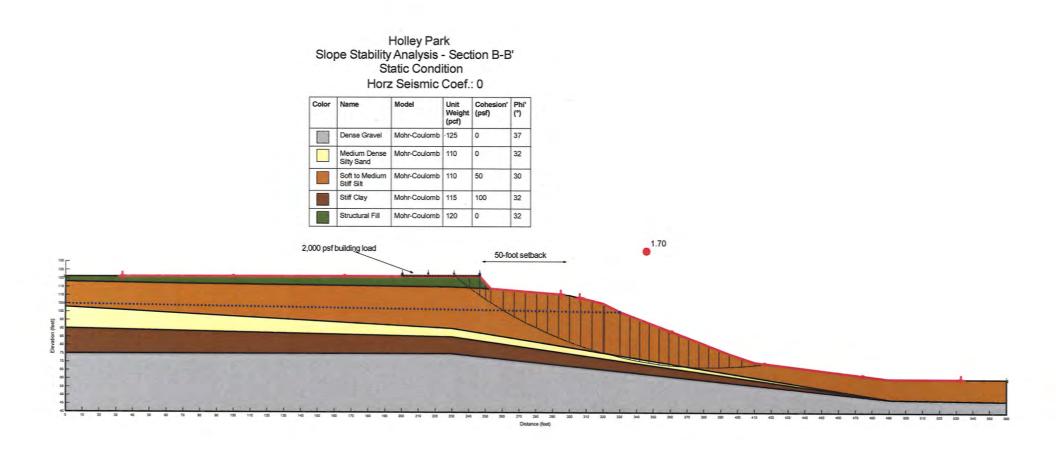
APPENDIX B

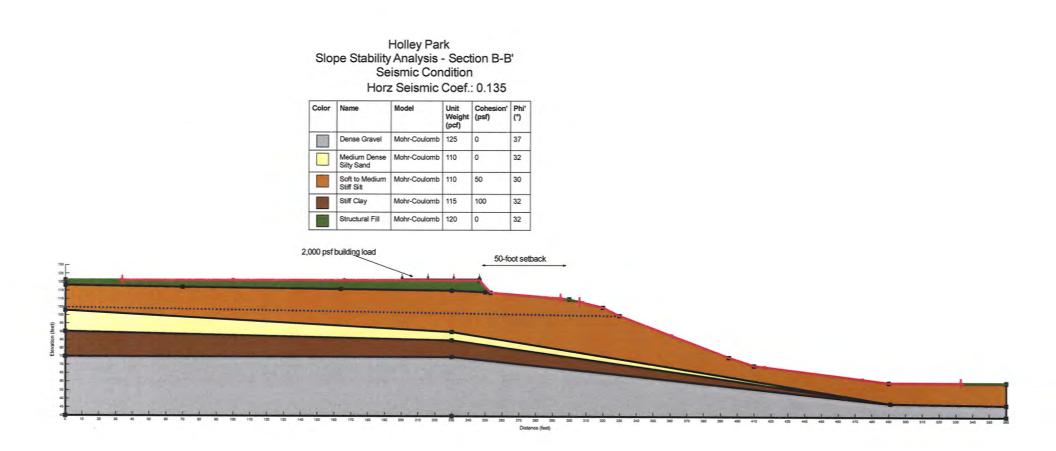

APPENDIX B

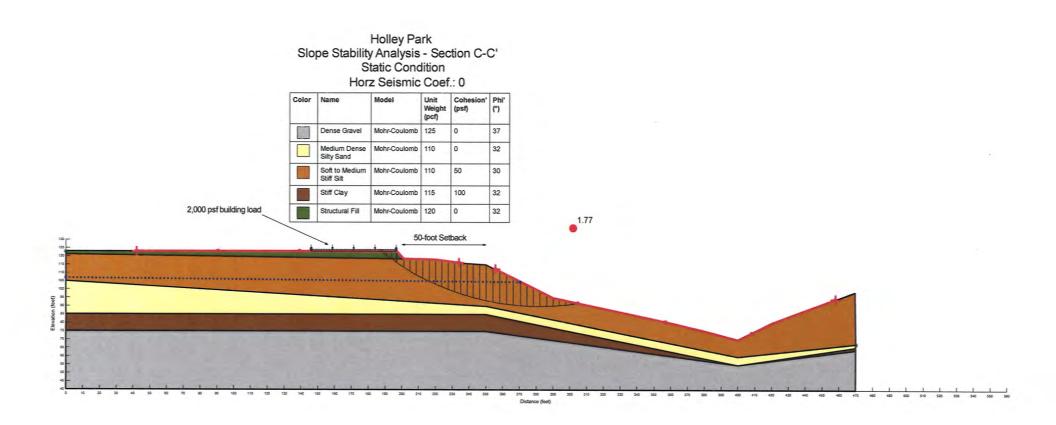
SLOPE STABILITY ANALYSIS

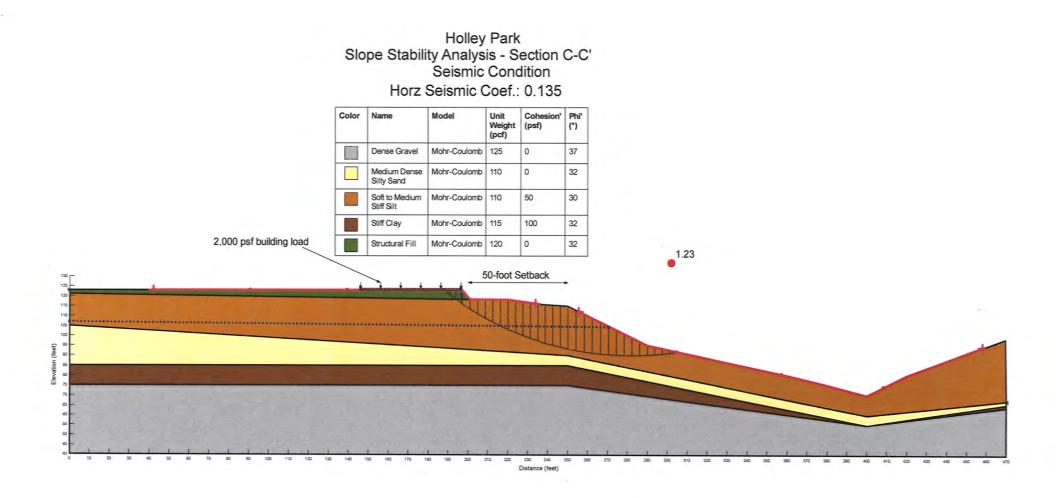
This appendix contains the outputs of the slope stability analysis from the software program Slope/W by GeoStudio. The locations of the analyzed sections are shown on Figures 2 and 3 and a discussion of the results is present in the main report.

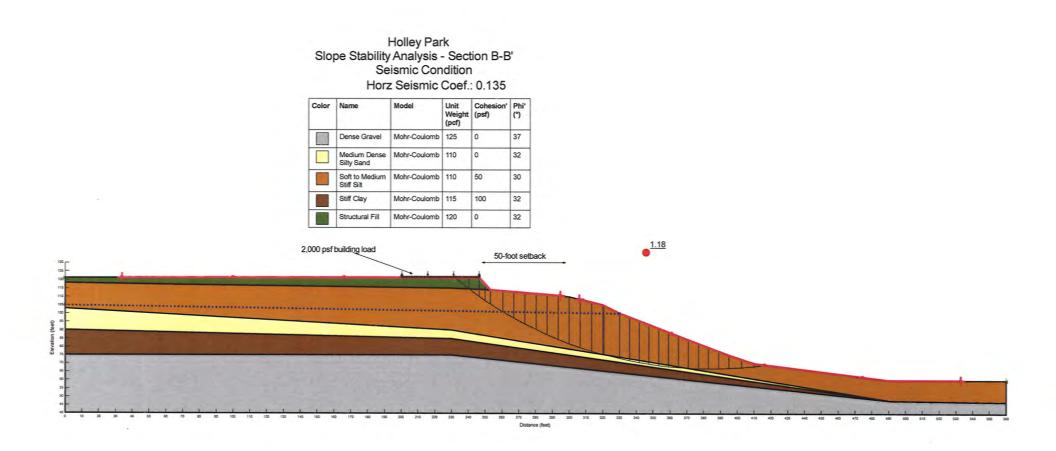

Holley Park North Slope Stability Analysis - Section A-A' Static Condition Horz Seismic Coef.: 0

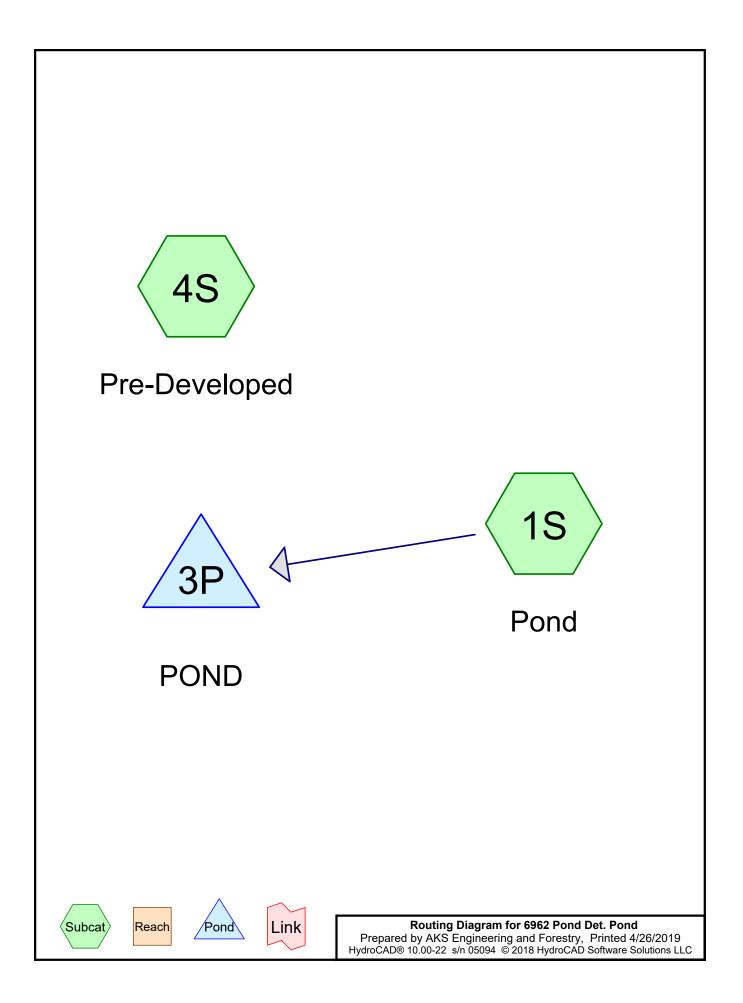

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	
	Dense Gravel	Mohr-Coulomb	125	0	37	
	Medium Dense Silty Sand	Mohr-Coulomb	110	0	32	
	Medium Stiff Silt	Mohr-Coulomb	110	50	30	
	Stiff Clay	Mohr-Coulomb	115	100	32	
	Structural Fill	Mohr-Coulomb	120	0	32	




Holley Park North Slope Stability Analysis - Section A-A' Seismic Condition Horz Seismic Coef.: 0.135


Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	
	Dense Gravel	Mohr-Coulomb	125	0	37	
	Medium Dense Silty Sand	Mohr-Coulomb	110	0	32	
	Medium Stiff Silt	Mohr-Coulomb	110	50	30	
	Stiff Clay	Mohr-Coulomb	115	100	32	
	Structural Fill	Mohr-Coulomb	120	0	32	





www.geodesigninc.com

APPENDIX E: DETENTION POND HYDROCAD ANALYSIS

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.150	90	Landscape C soils (4S)
0.230	92	Landscape D soils (4S)
6.040	85	Pasture C Soils (4S)
2.040	89	Pasture D Soils (4S)
3.300	86	grass C (1S)
1.070	90	grass D (1S)
0.400	100	pond (1S)
1.210	98	road (1S)
3.780	98	roof and driveway (1S, 4S)
0.370	98	sidewalk (1S)
0.170	98	trail (1S)
19.760	90	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
19.760	Other	1S, 4S
19.760		TOTAL AREA

6962 Pond Det. Pond

Prepared by AKS Engineering and Forestry	I
HydroCAD® 10.00-22 s/n 05094 © 2018 HydroCAD Software Solutions LLC	

Printed 4/26/2019 Page 4

	SG-A cres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0	0.000	0.000	0.000	0.000	1.150	1.150	Landscape C soils	4S
0	0.000	0.000	0.000	0.000	0.230	0.230	Landscape D soils	4S
C	0.000	0.000	0.000	0.000	6.040	6.040	Pasture C Soils	4S
C	0.000	0.000	0.000	0.000	2.040	2.040	Pasture D Soils	4S
0	0.000	0.000	0.000	0.000	3.300	3.300	grass C	1S
C	0.000	0.000	0.000	0.000	1.070	1.070	grass D	1S
0	0.000	0.000	0.000	0.000	0.400	0.400	pond	1S
C	0.000	0.000	0.000	0.000	1.210	1.210	road	1S
0	0.000	0.000	0.000	0.000	3.780	3.780	roof and driveway	1S, 4S
C	0.000	0.000	0.000	0.000	0.370	0.370	sidewalk	1S
C	0.000	0.000	0.000	0.000	0.170	0.170	trail	1S
C	0.000	0.000	0.000	0.000	19.760	19.760	TOTAL AREA	

Ground Covers (all nodes)

6962 Pond Det. Pond

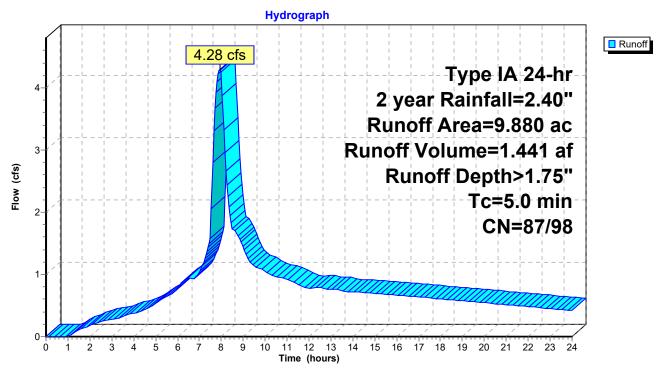
	Pipe Listing (all hodes)									
	Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
_		Number	(leet)	(leet)	(leet)	(1011)		(inches)	(inches)	(inches)
	1	3P	0.00	-19.50	130.0	0.1500	0.013	12.0	0.0	0.0

Pipe Listing (all nodes)

Runoff by						
Subcatchment1S: Pond	Runoff Area=9.880 ac 55.77% Impervious Runoff Depth>1.75" Tc=5.0 min CN=87/98 Runoff=4.28 cfs 1.441 af					
Subcatchment4S: Pre-Developed	Runoff Area=9.880 ac 4.25% Impervious Runoff Depth>1.25" Flow Length=650' Tc=29.9 min CN=87/98 Runoff=2.04 cfs 1.028 af					
Pond 3P: POND	Peak Elev=1.74' Storage=0.366 af Inflow=4.28 cfs 1.441 af					
	Outflow=1.01 cfs 1.311 af					
Total Runoff Area = 19.760 ac Runoff Volume = 2.469 af Average Runoff Depth = 1.50"						

69.99% Pervious = 13.830 ac 30.01% Impervious = 5.930 ac

Summary for Subcatchment 1S: Pond

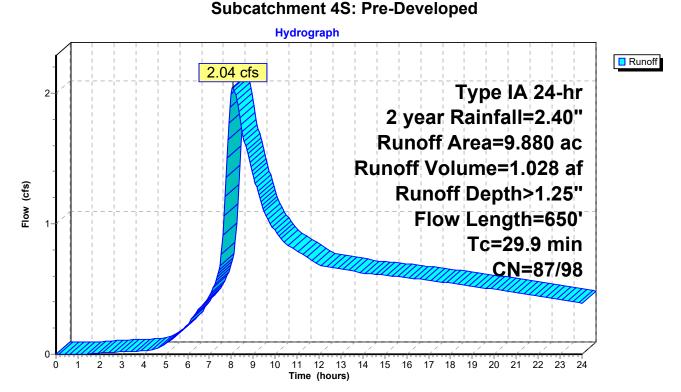

[49] Hint: Tc<2dt may require smaller dt

Runoff = 4.28 cfs @ 7.93 hrs, Volume= 1.441 af, Depth> 1.75"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 2 year Rainfall=2.40"

	Area (ac)	CN	Desc	cription		
*	1.2	210	98	road			
*	0.3	370	98	side	walk		
*	3.3	360	98	roof	and drivev	vay	
*	1.0)70	90	gras	s D	2	
*	3.3	300	86	gras	s C		
*	0.1	70	98	trail			
*	0.4	100	100	pond	1		
	9.8	380	93	Weig	ghted Aver	age	
	4.3	370	87		3% Pervio		
	5.5	510	98	55.7	7% Imper\	vious Area	
					•		
	Тс	Leng	jth	Slope	Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	5.0						Direct Entry,

Subcatchment 1S: Pond


Summary for Subcatchment 4S: Pre-Developed

Runoff = 2.04 cfs @ 8.07 hrs, Volume= 1.028 af, Depth> 1.25"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 2 year Rainfall=2.40"

	Area	(ac)	CN	Desc	cription		
*	0.	420	98	roof	and drivew	vay	
*	0.	230	92	Land	lscape D s	oils	
*	1.	150	90	Land	lscape C s	oils	
*	2.	040	89	Past	ure D Soils	S	
*	6.	040	85	Past	ure C Soils	S	
	9.	880	87	Weig	phted Aver	age	
	9.	460	87		, 5% Pervio		
	0.	420	98	4.25	% Impervi	ous Area	
					•		
	Tc	Lengt	h	Slope	Velocity	Capacity	Description
	(min)	(feet	:)	(ft/ft)	(ft/sec)	(cfs)	
	24.0	30	0 0	.0275	0.21		Sheet Flow,
							Grass: Short n= 0.150 P2= 2.40"
	5.9	35	0 0	.0200	0.99		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	29.9	65	0 T	otal			

.

Summary for Pond 3P: POND

[44] Hint: Outlet device #2 is below defined storage

Inflow Area =	9.880 ac, 55.77% Impervious, Inflow I	Depth > 1.75" for 2 year event
Inflow =	4.28 cfs @ 7.93 hrs, Volume=	1.441 af
Outflow =	1.01 cfs @ 10.14 hrs, Volume=	1.311 af, Atten= 76%, Lag= 132.6 min
Primary =	1.01 cfs @ 10.14 hrs, Volume=	1.311 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 1.74' @ 10.14 hrs Surf.Area= 0.232 ac Storage= 0.366 af

Plug-Flow detention time= 205.1 min calculated for 1.311 af (91% of inflow) Center-of-Mass det. time= 143.1 min (854.9 - 711.8)

Volume	h	nvert A	vail.Stora	age	Storage Descrip	tion		
#1		0.00'	0.956	6 af	Custom Stage Data (Irregular)Listed below (Recalc) x 0.74			
F laveti		C	Dawin					
Elevatio		Surf.Area			Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(acres)	(fee	et)	(acre-feet)	(acre-feet)	(acres)	
0.0	00	0.255	470	.4	0.000	0.000	0.255	
1.0	00	0.288	489	.2	0.271	0.271	0.290	
2.0	00	0.322	508	.1	0.305	0.576	0.326	
3.0	00	0.358	526	.9	0.340	0.916	0.364	
4.(00	0.395	545	.8	0.376	1.292	0.403	
Device	Routin	ıg	Invert	Out	let Devices			
#1	Prima	ry	0.00'	12.	0" Round Culve	ert		
		-		L=	130.0' CMP, pro	ecting, no head	wall, Ke= 0.900)
				Inle	t / Outlet Invert=	0.00' / -19.50' 8	S= 0.1500 '/' Co	c= 0.900
					0.013 Corrugate			
#2	Device	<u>-</u> 1	-2.00'		" Horiz. Orifice/C	,	,	
<i>"-</i>	Dovio		2.00	-	ited to weir flow a			
#3	Prima	rv	2.00'		0" Horiz. Orifice		0	
#5	1 mma	, y	2.00		ited to weir flow a		0	

Primary OutFlow Max=1.01 cfs @ 10.14 hrs HW=1.74' (Free Discharge) **1=Culvert** (Passes 1.01 cfs of 3.33 cfs potential flow)

2=Orifice/Grate (Orifice Controls 1.01 cfs @ 6.36 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

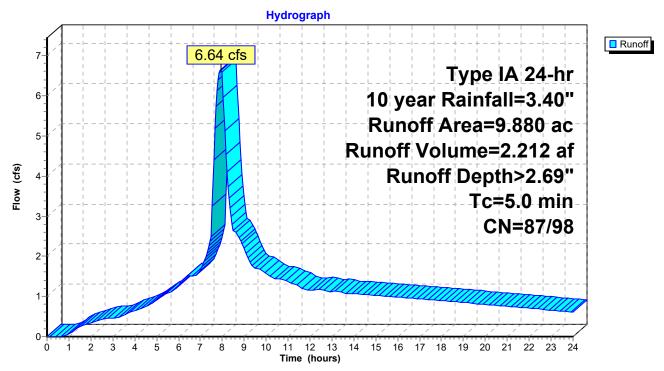
Hydrograph Inflow
Primary 4.28 cfs Inflow Area=9.880 ac Peak Elev=1.74' 4 Storage=0.366 af 3 Flow (cfs) 2-1.01 cfs 1 0-1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ò Time (hours)

Pond 3P: POND

6962 Pond Det. Pond	Type IA 24-hr	10 year Rainfall=3.40"
Prepared by AKS Engineering and F	orestry	Printed 4/26/2019
HydroCAD® 10.00-22 s/n 05094 © 2018 H	HydroCAD Software Solutions LLC	<u>Page 11</u>
Time span= Runoff by S Reach routing by Dyn-Stor	-Ind method	
Subcatchment1S: Pond	Runoff Area=9.880 ac 55.77% Impe Tc=5.0 min CN=87/98	rvious Runoff Depth>2.69" 3 Runoff=6.64 cfs 2.212 af
Subcatchment4S: Pre-Developed	Runoff Area=9.880 ac 4.25% Imper Flow Length=650' Tc=29.9 min CN=87/98	•
Pond 3P: POND	Peak Elev=2.31' Storage=0.502 a	af Inflow=6.64 cfs 2.212 af Outflow=2.96 cfs 1.928 af
Total Runoff Area = 19.7	'60 ac Runoff Volume = 3.948 af Ave	rage Runoff Depth = 2.40"

69.99% Pervious = 13.830 ac 30.01% Impervious = 5.930 ac

Summary for Subcatchment 1S: Pond


[49] Hint: Tc<2dt may require smaller dt

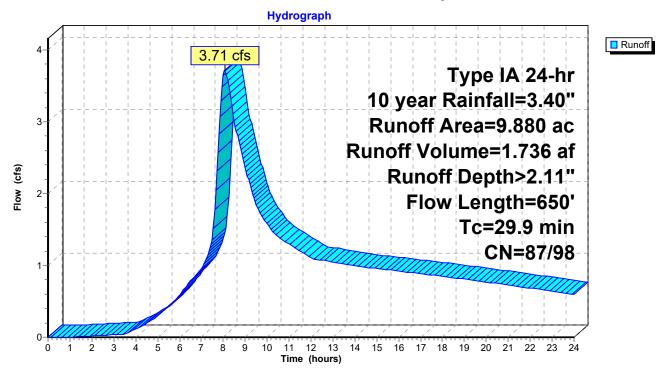
6.64 cfs @ 7.92 hrs, Volume= 2.212 af, Depth> 2.69" Runoff =

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 year Rainfall=3.40"

	Area	(ac)	CN	Desc	cription		
*	1.	210	98	road			
*	0.	370	98	side	walk		
*	3.	360	98	roof	and drivev	vay	
*	1.	070	90	gras	s D	-	
*	3.	300	86	gras	s C		
*	0.	170	98	trail			
*	0.	400	100	pond	1		
	9.	880	93	Weig	ghted Aver	age	
	4.	370	87	44.2	3% Pervio	us Area	
	5.	510	98	55.7	7% Imperv	vious Area	
	Тс	Leng	ath	Slope	Velocity	Capacity	Description
	(min)	(fe		(ft/ft)	(ft/sec)	(cfs)	
	5.0	•		. /			Direct Entry,

Subcatchment 1S: Pond

Summary for Subcatchment 4S: Pre-Developed


Runoff = 3.71 cfs @ 8.06 hrs, Volume= 1.736 af, Depth> 2.11"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 year Rainfall=3.40"

	Area	(ac) C	N Des	cription		
*	0.	420	98 roof	and drivev	vay	
*	0.	230	92 Lan	dscape D s	soils	
*	1.	150 9	90 Lan	dscape C s	soils	
*	2.	040	89 Pas	ture D Soil	S	
*	6.	040 8	35 Pas	ture C Soil	s	
	9.	880	37 Wei	ghted Aver	age	
	9.	460 8	87 95.7	5% Pervio	us Area	
	0.	420	98 4.25	5% Impervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	24.0	300	0.0275	0.21		Sheet Flow,
						Grass: Short n= 0.150 P2= 2.40"
	5.9	350	0.0200	0.99		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	20.0	6E0	Total			

29.9 650 Total

Subcatchment 4S: Pre-Developed

Summary for Pond 3P: POND

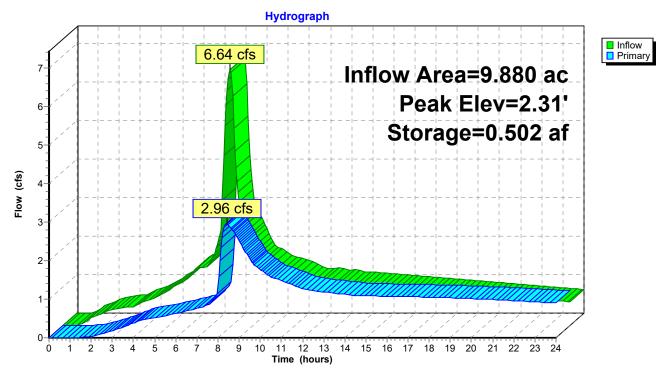
[44] Hint: Outlet device #2 is below defined storage

Inflow Area =	9.880 ac, 55.77% Impervious, Inflow	<i>w</i> Depth > 2.69" for 10 year event
Inflow =	6.64 cfs @ 7.92 hrs, Volume=	2.212 af
Outflow =	2.96 cfs @ 8.41 hrs, Volume=	1.928 af, Atten= 55%, Lag= 29.4 min
Primary =	2.96 cfs @ 8.41 hrs, Volume=	1.928 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 2.31' @ 8.41 hrs Surf.Area= 0.246 ac Storage= 0.502 af

Plug-Flow detention time= 202.9 min calculated for 1.924 af (87% of inflow) Center-of-Mass det. time= 115.9 min (814.3 - 698.4)

Volume	I	nvert A	Avail.Stora	ige	Storage Descrip	otion			
#1		0.00'	0.956	6 af	Custom Stage Data (Irregular)Listed below (Recalc) x 0.74				
		~ ~ .	. .						
Elevatio	on	Surf.Area	a Perir	n.	Inc.Store	Cum.Store	Wet.Area		
(fee	et)	(acres)) (fee	et)	(acre-feet)	(acre-feet)	(acres)		
0.0	00	0.255	5 470	.4	0.000	0.000	0.255		
1.0	00	0.288	3 489	.2	0.271	0.271	0.290		
2.0	00	0.322	2 508	.1	0.305	0.576	0.326		
3.0	00	0.358	3 526	.9	0.340	0.916	0.364		
4.(00	0.395	5 545	.8	0.376	1.292	0.403		
Device	Routir	ng	Invert	Out	let Devices				
#1	Prima	ry	0.00'	12.	0" Round Culve	ert			
		•		L=	130.0' CMP, pro	pjecting, no head	wall, Ke= 0.900		
					t / Outlet Invert=				
					0.013 Corrugate				
#2	Devic	e 1	-2.00'		" Horiz. Orifice/(,	'		
				-	ited to weir flow				
#3	Prima	rv	2.00'		0" Horiz. Orifice		0		
		.,			ited to weir flow		•		


Primary OutFlow Max=2.95 cfs @ 8.41 hrs HW=2.31' (Free Discharge)

-1=Culvert (Passes 1.16 cfs of 4.02 cfs potential flow)

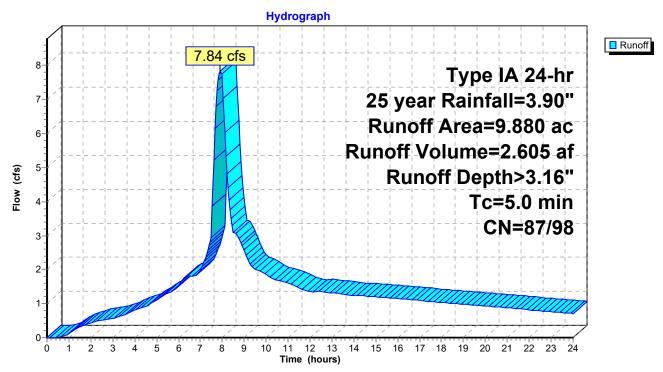
2=Orifice/Grate (Orifice Controls 1.16 cfs @ 7.32 fps)

-3=Orifice/Grate (Weir Controls 1.79 cfs @ 1.83 fps)

Pond 3P: POND

6962 Pond Det. Pond Prepared by AKS Engineering and For HydroCAD® 10.00-22 s/n 05094 © 2018 H	
Runoff by S	.00-24.00 hrs, dt=0.05 hrs, 481 points BUH method, Split Pervious/Imperv. Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment1S: Pond	Runoff Area=9.880 ac 55.77% Impervious Runoff Depth>3.16" Tc=5.0 min CN=87/98 Runoff=7.84 cfs 2.605 af
Subcatchment4S: Pre-Developed	Runoff Area=9.880 ac 4.25% Impervious Runoff Depth>2.56" Flow Length=650' Tc=29.9 min CN=87/98 Runoff=4.58 cfs 2.106 af
Pond 3P: POND	Peak Elev=2.55' Storage=0.563 af Inflow=7.84 cfs 2.605 af Outflow=4.04 cfs 2.263 af
Total Runoff Area = 19.76	60 ac Runoff Volume = 4.711 af Average Runoff Depth = 2.86" 69.99% Pervious = 13.830 ac 30.01% Impervious = 5.930 ac

Summary for Subcatchment 1S: Pond

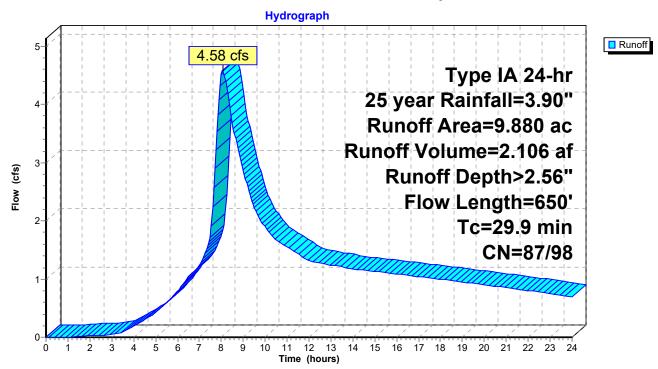

[49] Hint: Tc<2dt may require smaller dt

Runoff = 7.84 cfs @ 7.92 hrs, Volume= 2.605 af, Depth> 3.16"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25 year Rainfall=3.90"

	Area (a	ac)	CN	Desc	cription		
*	1.2	10	98	road			
*	0.3	70	98	side	walk		
*	3.3	60	98	roof	and drivev	vay	
*	1.0	70	90	gras	s D	2	
*	3.3	00	86	gras	s C		
*	0.1	70	98	trail			
*	0.4	00	100	pond	l		
	9.8	80	93	Weig	hted Aver	age	
	4.3	70	87		, 3% Pervio		
	5.5	10	98	55.7	7% Imper\	vious Area	
					•		
	Tc l	Leng	lth	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	5.0						Direct Entry,

Subcatchment 1S: Pond


Summary for Subcatchment 4S: Pre-Developed

Runoff = 4.58 cfs @ 8.06 hrs, Volume= 2.106 af, Depth> 2.56"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25 year Rainfall=3.90"

	Area	(ac)	CN	Desc	cription		
*	0.	420	98	roof	and drivew	/ay	
*	0.	230	92	Land	lscape D s	oils	
*	1.	150	90	Land	lscape C s	oils	
*	2.	040	89	Past	ure D Soils	3	
*	6.	040	85	Past	ure C Soils	6	
	9.	880	87	Weid	hted Aver	age	
	9.	460	87		, 5% Pervio	0	
	0.	420	98	4.25	% Impervi	ous Area	
	Тс	Lengt	h	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	·
	24.0	30	0 (0.0275	0.21		Sheet Flow,
							Grass: Short n= 0.150 P2= 2.40"
	5.9	35	0 (0.0200	0.99		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	29.9	65	0 -	Total			

Subcatchment 4S: Pre-Developed

Summary for Pond 3P: POND

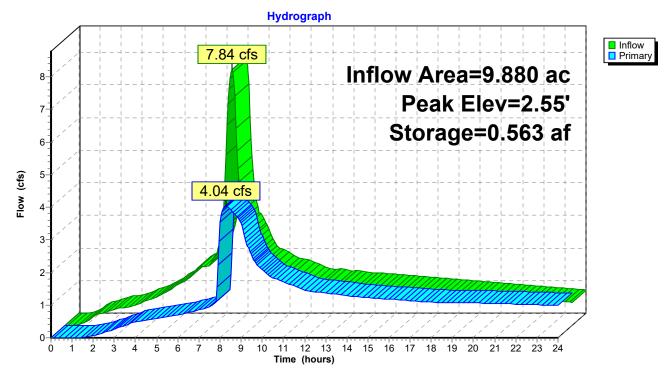
[44] Hint: Outlet device #2 is below defined storage

Inflow Area =	9.880 ac, 55.77% Impervious, Inflow	v Depth > 3.16" for 25 year event
Inflow =	7.84 cfs @ 7.92 hrs, Volume=	2.605 af
Outflow =	4.04 cfs @ 8.30 hrs, Volume=	2.263 af, Atten= 48%, Lag= 23.3 min
Primary =	4.04 cfs @ 8.30 hrs, Volume=	2.263 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 2.55' @ 8.30 hrs Surf.Area= 0.253 ac Storage= 0.563 af

Plug-Flow detention time= 185.4 min calculated for 2.263 af (87% of inflow) Center-of-Mass det. time= 95.7 min (789.2 - 693.5)

Volume	I	nvert A	vail.Stora	ige	Storage Description			
#1		0.00'	0.956	6 af	Custom Stage	Data (Irregular)	_isted below (Re	calc) x 0.74
F laveti		C f. A	Devin	_		Ourse Otherse		
Elevatio		Surf.Area			Inc.Store	Cum.Store	Wet.Area	
(feet) (acres)		(fee	et)	(acre-feet)	(acre-feet)	(acres)		
0.0	00	0.255	470	.4	0.000	0.000	0.255	
1.0	00	0.288	489	.2	0.271	0.271	0.290	
2.0	00	0.322	508	.1	0.305	0.576	0.326	
3.0	00	0.358	526	.9	0.340	0.916	0.364	
4.(00	0.395	545	.8	0.376	1.292	0.403	
Device	Routir	ng	Invert	Out	let Devices			
#1	Prima	ry	0.00'	12.0)" Round Culve	ert		
L= 130.0' CMP, projecting, no headwall, Ke= 0.900								
Inlet / Outlet Invert= 0.00' / -19.50' S= 0.1500 '/' Cc= 0.								
n= 0.013 Corrugated PE, smooth interior, Flow Areas								
#2 Device 1		-2.00'		5.4" Horiz. Orifice/Grate C= 0.600				
<i></i>	Domo	•	2.00	-	ited to weir flow a			
#3	Prima	rv	2.00'	12.0" Horiz. Orifice/Grate C= 0.600				
#0	1 mma	' y	2.00		ited to weir flow a		0	
						at low neaus		


Primary OutFlow Max=4.04 cfs @ 8.30 hrs HW=2.55' (Free Discharge)

1=Culvert (Passes 1.22 cfs of 4.28 cfs potential flow)

2=Orifice/Grate (Orifice Controls 1.22 cfs @ 7.70 fps)

-3=Orifice/Grate (Orifice Controls 2.82 cfs @ 3.58 fps)

Pond 3P: POND

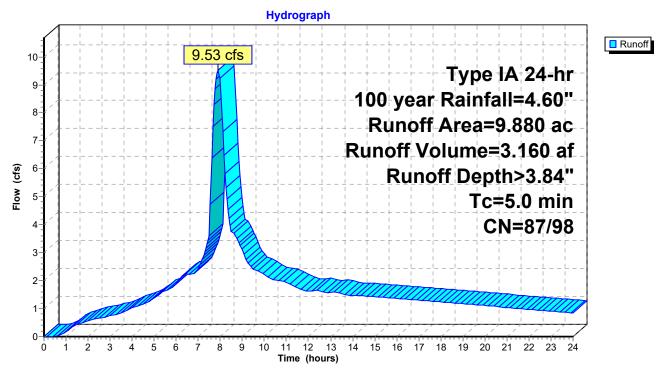
6962 Pond Det. Pond	Type IA 24-hr 100 year Rainfall=4.60" Printed 4/26/2019
Prepared by AKS Engineering and F	5
HydroCAD® 10.00-22 s/n 05094 © 2018 H	lydroCAD Software Solutions LLC Page 21
Runoff by S	0.00-24.00 hrs, dt=0.05 hrs, 481 points SBUH method, Split Pervious/Imperv. -Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment1S: Pond	Runoff Area=9.880 ac 55.77% Impervious Runoff Depth>3.84"
	Tc=5.0 min CN=87/98 Runoff=9.53 cfs 3.160 af
Subcatchment4S: Pre-Developed	Runoff Area=9.880 ac 4.25% Impervious Runoff Depth>3.20" Flow Length=650' Tc=29.9 min CN=87/98 Runoff=5.83 cfs 2.635 af
Pond 3P: POND	Peak Elev=2.96' Storage=0.667 af Inflow=9.53 cfs 3.160 af
	Outflow=5.02 cfs 2.763 af
Total Runoff Area = 19.7	60 ac Runoff Volume = 5.795 af Average Runoff Depth = 3.52"

69.99% Pervious = 13.830 ac 30.01% Impervious = 5.930 ac

Summary for Subcatchment 1S: Pond

[49] Hint: Tc<2dt may require smaller dt

5.0

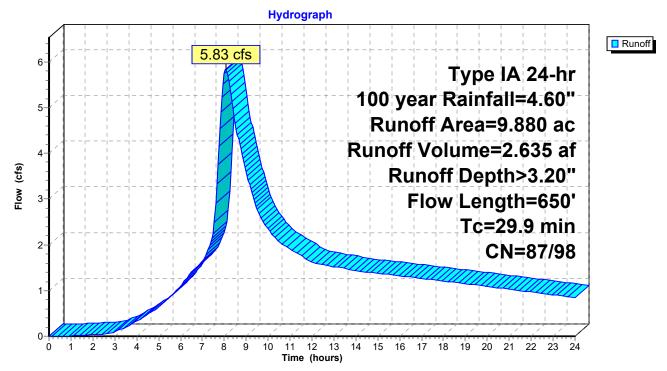

Runoff = 9.53 cfs @ 7.91 hrs, Volume= 3.160 af, Depth> 3.84"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 100 year Rainfall=4.60"

	Area (ac)	CN	Description
*	1.210	98	road
*	0.370	98	sidewalk
*	3.360	98	roof and driveway
*	1.070	90	grass D
*	3.300	86	grass C
*	0.170	98	trail
*	0.400	100	pond
	9.880	93	Weighted Average
	4.370	87	44.23% Pervious Area
	5.510	98	55.77% Impervious Area
	Tc Leng (min) (fe	-	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)

Direct Entry,

Subcatchment 1S: Pond


Summary for Subcatchment 4S: Pre-Developed

Runoff = 5.83 cfs @ 8.05 hrs, Volume= 2.635 af, Depth> 3.20"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 100 year Rainfall=4.60"

	Area	(ac)	CN	Desc	cription		
*	0.	420	98	roof	and drivew	/ay	
*	0.	230	92	Land	lscape D s	oils	
*	1.	150	90	Land	lscape C s	oils	
*	2.	040	89	Past	ure D Soils	3	
*	6.	040	85	Past	ure C Soils	3	
	9.	880	87	Weid	hted Aver	age	
	9.	460	87		5% Pervio	0	
	0.	420	98	4.25	% Impervi	ous Area	
					•		
	Tc	Length	า 3	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	24.0	300) ().	.0275	0.21		Sheet Flow,
							Grass: Short n= 0.150 P2= 2.40"
	5.9	350) ().	.0200	0.99		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	29.9	650) T	otal			

Subcatchment 4S: Pre-Developed

Summary for Pond 3P: POND

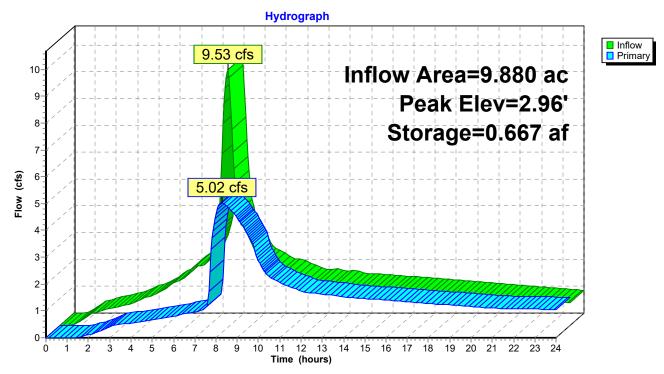
[44] Hint: Outlet device #2 is below defined storage

Inflow Area =	9.880 ac, 55.77% Impervious,	Inflow Depth > 3.84" for 100 year event
Inflow =	9.53 cfs @ 7.91 hrs, Volume=	3.160 af
Outflow =	5.02 cfs @ 8.29 hrs, Volume=	2.763 af, Atten= 47%, Lag= 22.5 min
Primary =	5.02 cfs @ 8.29 hrs, Volume=	2.763 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 2.96' @ 8.29 hrs Surf.Area= 0.264 ac Storage= 0.667 af

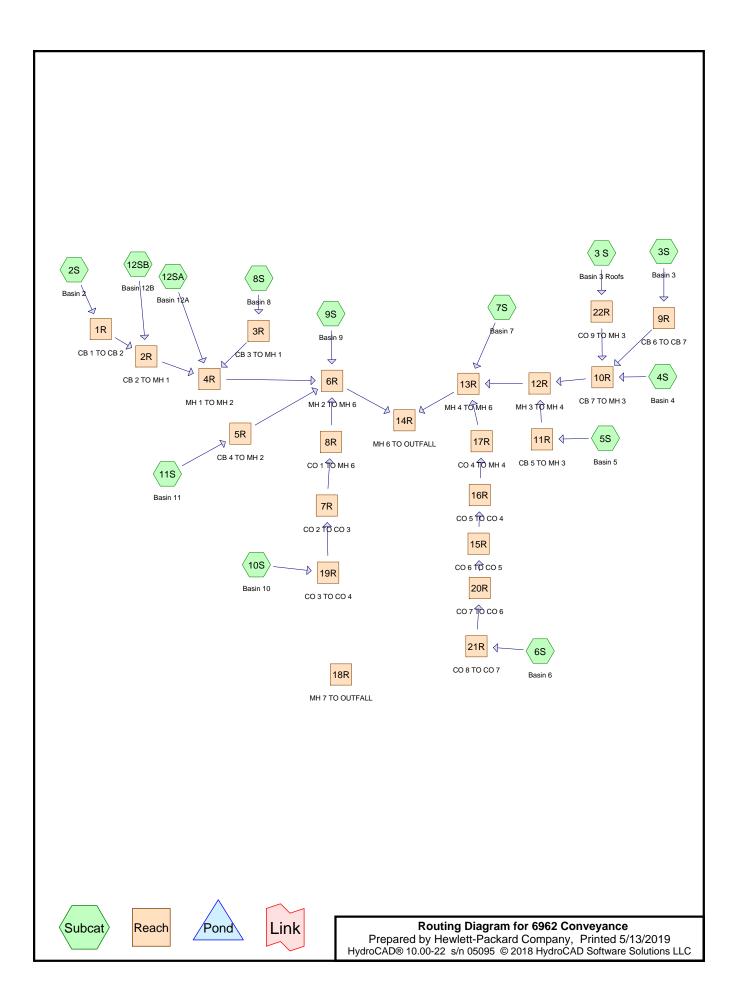
Plug-Flow detention time= 164.4 min calculated for 2.758 af (87% of inflow) Center-of-Mass det. time= 78.2 min (766.0 - 687.7)

Volume	Ir	nvert Av	/ail.Stora	ge Storage Description					
#1	(0.00'	0.956	i af	Custom Stage Data (Irregular)Listed below (Recalc) x 0.74				
Elevatio		Surf.Area	Perin	•	Inc.Store	Cum Store	Wat Araa		
						Cum.Store	Wet.Area		
(fee	et)	(acres)	(fee	t)	(acre-feet)	(acre-feet)	(acres)		
0.0	00	0.255	470	.4	0.000	0.000	0.255		
1.0	00	0.288	489	2	0.271	0.271	0.290		
2.0)0	0.322	508	.1	0.305	0.576	0.326		
3.0	00	0.358	526	9	0.340	0.916	0.364		
4.(0.395	545	-	0.376	1.292	0.403		
			• • •	•	0.010				
Device	Routin	g	Invert	Out	let Devices				
#1	Primar	v	0.00'	12.0)" Round Culve	rt			
				L= '	130.0' CMP, pro	iecting, no head	wall. Ke= 0.900		
					t / Outlet Invert=				
					0.013 Corrugated				
#2	Device	1	-2.00'		' Horiz. Orifice/G			0.70 01	
#Z Dev		5 1	-2.00	-	ited to weir flow a				
що.			2 001				n		
#3	Primar	У	2.00')" Horiz. Orifice/		J		
				LIM	ited to weir flow a	at low heads			


Primary OutFlow Max=5.02 cfs @ 8.29 hrs HW=2.96' (Free Discharge)

-1=Culvert (Passes 1.32 cfs of 4.68 cfs potential flow)

2=Orifice/Grate (Orifice Controls 1.32 cfs @ 8.28 fps)


-3=Orifice/Grate (Orifice Controls 3.70 cfs @ 4.71 fps)

Pond 3P: POND

APPENDIX F: CONVEYANCE HYDROCAD ANALYSIS

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
5.011	98	Imp (2S, 3 S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12SA, 12SB)
1.847	86	grass C (2S, 3S, 4S, 5S, 6S, 9S, 10S, 11S, 12SA)
1.986	90	grass D (2S, 3S, 5S, 6S, 7S, 8S, 10S, 11S)
0.090	86	grass c (12SB)
8.934	94	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
 (acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
8.934	Other	2S, 3 S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12SA, 12SB
8.934		TOTAL AREA

6962 Conveyance

Prepared by Hewlett-Packard Company	Pr
HydroCAD® 10.00-22 s/n 05095 © 2018 HydroCAD Software Solutions LLC	

Printed 5/13/2019 Page 4

SG-A acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	0.000	0.000	5.011	5.011	Imp	2S, 3 S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12SA, 12SB
0.000	0.000	0.000	0.000	1.847	1.847	grass C	2S, 3S, 4S, 5S, 6S, 9S, 10S, 11S, 12SA
0.000	0.000	0.000	0.000	1.986	1.986	grass D	2S, 3S, 5S, 6S, 7S, 8S, 10S, 11S
0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.090 8.934	0.090 8.934	grass c TOTAL AREA	12SB

Ground Covers (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	1R	115.57	115.45	32.0	0.0037	0.013	12.0	0.0	0.0
2	2R	115.45	113.69	75.5	0.0233	0.013	12.0	0.0	0.0
3	3R	117.00	115.14	40.9	0.0455	0.013	8.0	0.0	0.0
4	4R	113.49	112.82	90.8	0.0074	0.013	12.0	0.0	0.0
5	5R	112.96	112.62	137.5	0.0025	0.013	12.0	0.0	0.0
6	6R	112.62	112.36	152.6	0.0017	0.013	18.0	0.0	0.0
7	7R	113.07	112.82	100.0	0.0025	0.013	12.0	0.0	0.0
8	8R	112.82	112.74	30.0	0.0027	0.013	12.0	0.0	0.0
9	9R	117.53	117.40	32.0	0.0041	0.013	12.0	0.0	0.0
10	10R	117.86	114.27	57.9	0.0620	0.013	12.0	0.0	0.0
11	11R	114.59	114.07	207.3	0.0025	0.013	12.0	0.0	0.0
12	12R	114.07	113.52	147.4	0.0037	0.013	15.0	0.0	0.0
13	13R	113.52	112.74	194.6	0.0040	0.013	18.0	0.0	0.0
14	14R	112.36	112.25	17.6	0.0062	0.013	18.0	0.0	0.0
15	15R	114.16	114.14	7.8	0.0026	0.013	12.0	0.0	0.0
16	16R	114.14	114.02	47.6	0.0025	0.013	12.0	0.0	0.0
17	17R	114.02	113.77	100.0	0.0025	0.013	12.0	0.0	0.0
18	18R	111.25	101.00	117.4	0.0873	0.013	12.0	0.0	0.0
19	19R	113.25	113.07	71.4	0.0025	0.013	12.0	0.0	0.0
20	20R	114.41	114.16	100.0	0.0025	0.013	12.0	0.0	0.0
21	21R	114.53	114.41	49.2	0.0024	0.013	12.0	0.0	0.0
22	22R	117.96	114.07	194.4	0.0200	0.013	12.0	0.0	0.0

Pipe Listing (all nodes)

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SBUH method, Split Pervious/Imperv. Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 2S: Basin 2	Runoff Area=1.490 ac 56.85% Impervious Runoff Depth>1.79" Tc=5.0 min CN=88/98 Runoff=0.66 cfs 0.222 af
Subcatchment 3 S: Basin 3 Roofs	Runoff Area=0.189 ac 100.00% Impervious Runoff Depth>2.17" Tc=5.0 min CN=0/98 Runoff=0.10 cfs 0.034 af
Subcatchment 3S: Basin 3	Runoff Area=1.425 ac 53.19% Impervious Runoff Depth>1.76" Tc=5.0 min CN=88/98 Runoff=0.62 cfs 0.209 af
Subcatchment 4S: Basin 4	Runoff Area=0.088 ac 89.77% Impervious Runoff Depth>2.06" Tc=5.0 min CN=86/98 Runoff=0.05 cfs 0.015 af
Subcatchment 5S: Basin 5	Runoff Area=1.435 ac 64.81% Impervious Runoff Depth>1.86" Tc=5.0 min CN=88/98 Runoff=0.67 cfs 0.222 af
Subcatchment 6S: Basin 6	Runoff Area=1.057 ac 40.40% Impervious Runoff Depth>1.69" Tc=5.0 min CN=89/98 Runoff=0.44 cfs 0.149 af
Subcatchment 7S: Basin 7	Runoff Area=0.448 ac 41.29% Impervious Runoff Depth>1.74" Tc=5.0 min CN=90/98 Runoff=0.20 cfs 0.065 af
Subcatchment 8S: Basin 8	Runoff Area=0.299 ac 75.25% Impervious Runoff Depth>1.99" Tc=5.0 min CN=90/98 Runoff=0.15 cfs 0.050 af
Subcatchment9S: Basin 9	Runoff Area=0.305 ac 46.23% Impervious Runoff Depth>1.63" Tc=5.0 min CN=86/98 Runoff=0.12 cfs 0.041 af
Subcatchment 10S: Basin 10	Runoff Area=0.667 ac 38.83% Impervious Runoff Depth>1.55" Tc=5.0 min CN=86/98 Runoff=0.25 cfs 0.086 af
Subcatchment11S: Basin11	Runoff Area=1.141 ac 64.07% Impervious Runoff Depth>1.85" Tc=5.0 min CN=88/98 Runoff=0.53 cfs 0.176 af
Subcatchment 12SA: Basin 12A	Runoff Area=0.130 ac 53.85% Impervious Runoff Depth>1.70" Tc=5.0 min CN=86/98 Runoff=0.05 cfs 0.018 af
Subcatchment 12SB: Basin 12B	Runoff Area=0.260 ac 65.38% Impervious Runoff Depth>1.82" Tc=5.0 min CN=86/98 Runoff=0.12 cfs 0.039 af
Reach 1R: CB 1 TO CB 2 12.0" Round Pipe n=0.013	Avg. Flow Depth=0.38' Max Vel=2.44 fps Inflow=0.66 cfs 0.222 af L=32.0' S=0.0037 '/' Capacity=2.18 cfs Outflow=0.66 cfs 0.222 af
Reach 2R: CB 2 TO MH 1 12.0" Round Pipe n=0.013	Avg. Flow Depth=0.26' Max Vel=4.92 fps Inflow=0.78 cfs 0.262 af L=75.5' S=0.0233 '/' Capacity=5.44 cfs Outflow=0.78 cfs 0.262 af
Reach 3R: CB 3 TO MH 1 8.0" Round Pipe n=0.013	Avg. Flow Depth=0.11' Max Vel=4.03 fps Inflow=0.15 cfs 0.050 af L=40.9' S=0.0455 '/' Capacity=2.58 cfs Outflow=0.15 cfs 0.050 af

6962 Conveyance Prepared by Hewlett-Packard Company

Type IA 24-hr 2 year Rainfall=2.40" Printed 5/13/2019

	Printed 5/13/2019
HydroCAD® 10.00-22 s/n 05095 © 2018 HydroCAD Software Solutions LLC	Page 7
Reach 4R: MH 1 TO MH 2 Avg. Flow Depth=0.39' Max Vel=3.47 fps Inflo 12.0" Round Pipe n=0.013 L=90.8' S=0.0074 '/' Capacity=3.06 cfs Outfloor	
Reach 5R: CB 4 TO MH 2 Avg. Flow Depth=0.37' Max Vel=1.97 fps Inflo 12.0" Round Pipe n=0.013 L=137.5' S=0.0025 '/' Capacity=1.77 cfs Outflow	
Reach 6R: MH 2 TO MH 6 Avg. Flow Depth=0.69' Max Vel=2.37 fps Inflo 18.0" Round Pipe n=0.013 L=152.6' S=0.0017 '/' Capacity=4.34 cfs Outflow	
Reach 7R: CO 2 TO CO 3 Avg. Flow Depth=0.25' Max Vel=1.60 fps Inflo 12.0" Round Pipe n=0.013 L=100.0' S=0.0025 '/' Capacity=1.78 cfs Outfloor	
Reach 8R: CO 1 TO MH 6Avg. Flow Depth=0.25' Max Vel=1.64 fpsInflo12.0" Round Pipen=0.013L=30.0'S=0.0027 '/'Capacity=1.84 cfsOutflow	
Reach 9R: CB 6 TO CB 7 Avg. Flow Depth=0.36' Max Vel=2.47 fps Inflo 12.0" Round Pipe n=0.013 L=32.0' S=0.0041 '/' Capacity=2.27 cfs Outfloor	
Reach 10R: CB 7 TO MH 3 Avg. Flow Depth=0.20' Max Vel=6.94 fps Inflo 12.0" Round Pipe n=0.013 L=57.9' S=0.0620 '/' Capacity=8.87 cfs Outflow	
Reach 11R: CB 5 TO MH 3 Avg. Flow Depth=0.42' Max Vel=2.11 fps Inflo 12.0" Round Pipe n=0.013 L=207.3' S=0.0025 '/' Capacity=1.78 cfs Outflow	
Reach 12R: MH 3 TO MH 4 Avg. Flow Depth=0.52' Max Vel=2.96 fps Inflo 15.0" Round Pipe n=0.013 L=147.4' S=0.0037 '/' Capacity=3.95 cfs Outflow	
Reach 13R: MH 4 TO MH 6 Avg. Flow Depth=0.58' Max Vel=3.33 fps Inflo 18.0" Round Pipe n=0.013 L=194.6' S=0.0040 '/' Capacity=6.65 cfs Outflow	
Reach 14R: MH 6 TO OUTFALLAvg. Flow Depth=0.73'Max Vel=4.64 fpsInflo18.0"Round Pipen=0.013L=17.6'S=0.0062 '/'Capacity=8.30 cfsOutflow	
Reach 15R: CO 6 TO CO 5 Avg. Flow Depth=0.34' Max Vel=1.90 fps Inflo 12.0" Round Pipe n=0.013 L=7.8' S=0.0026 '/' Capacity=1.80 cfs Outfloor	
Reach 16R: CO 5 TO CO 4 Avg. Flow Depth=0.34' Max Vel=1.89 fps Inflo 12.0" Round Pipe n=0.013 L=47.6' S=0.0025 '/' Capacity=1.79 cfs Outflow	
Reach 17R: CO 4 TO MH 4 Avg. Flow Depth=0.34' Max Vel=1.88 fps Inflo 12.0" Round Pipe n=0.013 L=100.0' S=0.0025 '/' Capacity=1.78 cfs Outflow	
Reach 18R: MH 7 TO OUTFALL Avg. Flow Depth=0.00 12.0" Round Pipe n=0.013 L=117.4' S=0.0873 '/' Capacity=10.53 cfs Outflow	
Reach 19R: CO 3 TO CO 4Avg. Flow Depth=0.25'Max Vel=1.61 fpsInflo12.0"Round Pipen=0.013L=71.4'S=0.0025 '/'Capacity=1.79 cfsOutflo	
Reach 20R: CO 7 TO CO 6 Avg. Flow Depth=0.34' Max Vel=1.88 fps Inflo 12.0" Round Pipe n=0.013 L=100.0' S=0.0025 '/' Capacity=1.78 cfs Outflow	
Reach 21R: CO 8 TO CO 7 Avg Flow Depth=0.34' Max Vel=1.87 fps Inflo	w=0.44 cfs_0.149 af

 Reach 21R: CO 8 TO CO 7
 Avg. Flow Depth=0.34'
 Max Vel=1.87 fps
 Inflow=0.44 cfs
 0.149 af

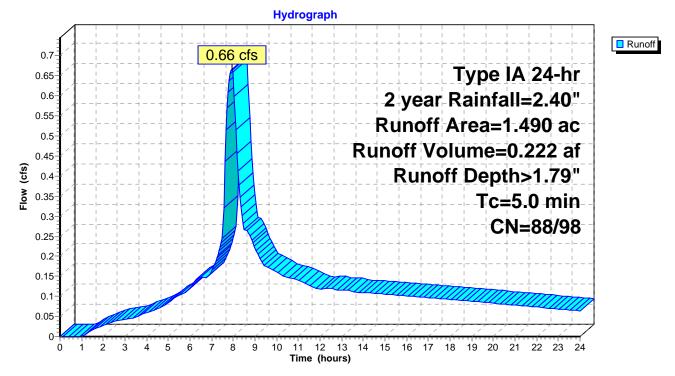
 12.0"
 Round Pipe
 n=0.013
 L=49.2'
 S=0.0024 '/'
 Capacity=1.76 cfs
 Outflow=0.44 cfs
 0.149 af

 Reach 22R: CO 9 TO MH 3
 Avg. Flow Depth=0.10'
 Max Vel=2.57 fps
 Inflow=0.10 cfs
 0.034 af

 12.0"
 Round Pipe
 n=0.013
 L=194.4'
 S=0.0200 '/'
 Capacity=5.04 cfs
 Outflow=0.10 cfs
 0.034 af

Total Runoff Area = 8.934 ac Runoff Volume = 1.328 af Average Runoff Depth = 1.78" 43.91% Pervious = 3.923 ac 56.09% Impervious = 5.011 ac

Summary for Subcatchment 2S: Basin 2

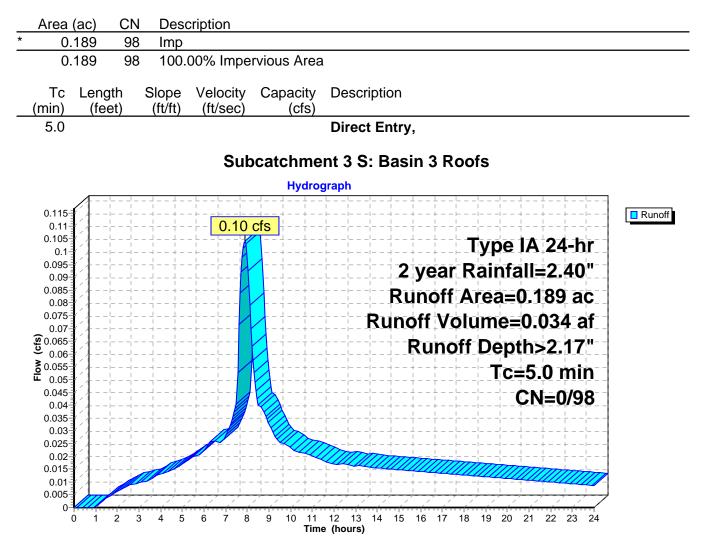

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.66 cfs @ 7.93 hrs, Volume= 0.222 af, Depth> 1.79"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 2 year Rainfall=2.40"

	Area	(ac)	CN	Desc	ription		
*	0.	847	98	Imp			
*	0.	343	90	gras	s D		
*	0.3	300	86	gras	s C		
	1.	490	94	Weig	hted Aver	age	
	0.643 88 43.15% Pervious Area						
	0.847		98	98 56.85% Impervious Area			
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0						Direct Entry,

Subcatchment 2S: Basin 2



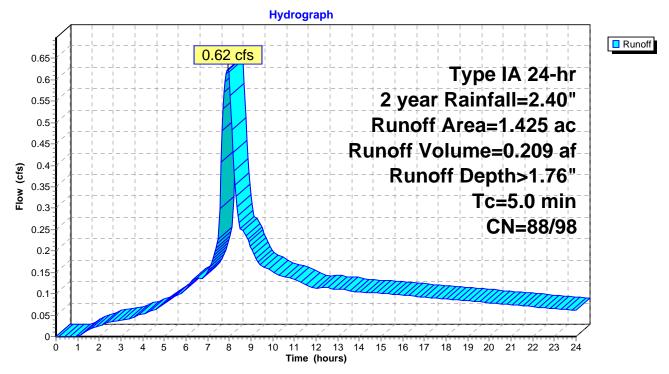
Summary for Subcatchment 3 S: Basin 3 Roofs

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.10 cfs @ 7.90 hrs, Volume= 0.034 af, Depth> 2.17"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 2 year Rainfall=2.40"

Summary for Subcatchment 3S: Basin 3


[49] Hint: Tc<2dt may require smaller dt

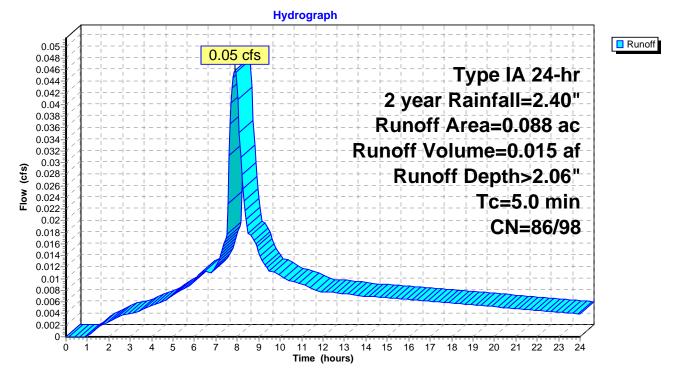
Runoff = 0.62 cfs @ 7.93 hrs, Volume= 0.209 af, Depth> 1.76"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 2 year Rainfall=2.40"

	Area	(ac)	CN	Desc	cription						
*	0.	758	98	Imp	mp						
*	0.	367	90	gras	s D						
*	0.	300	86	gras	s C						
	1.	425	93	Weig	ghted Aver	age					
	0.	667	88	46.8	1% Pervio	us Area					
	0.758 98		98	53.19% Impervious Area							
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	5.0						Direct Entry,				

Subcatchment 3S: Basin 3

Summary for Subcatchment 4S: Basin 4

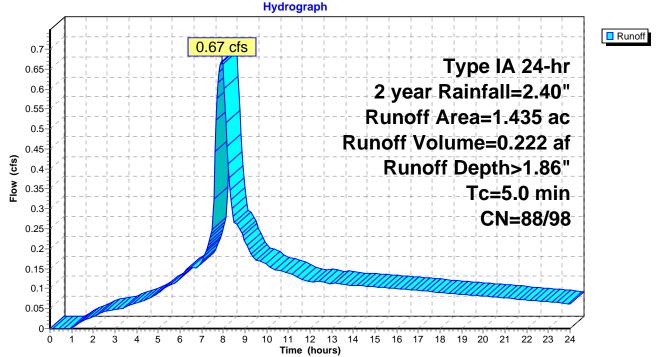

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.05 cfs @ 7.91 hrs, Volume= 0.015 af, Depth> 2.06"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 2 year Rainfall=2.40"

	Area	(ac)	CN	Desc	cription					
*	0.	079	98	Imp	imp					
*	0.	009	86	gras	s C					
	0.088 97 Weighted Average									
	0.009 86 10.23% Pervious Area									
	0.079		98 89.77% Impervious Area			vious Area				
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	5.0			, <i>1</i>			Direct Entry,			

Subcatchment 4S: Basin 4


Summary for Subcatchment 5S: Basin 5

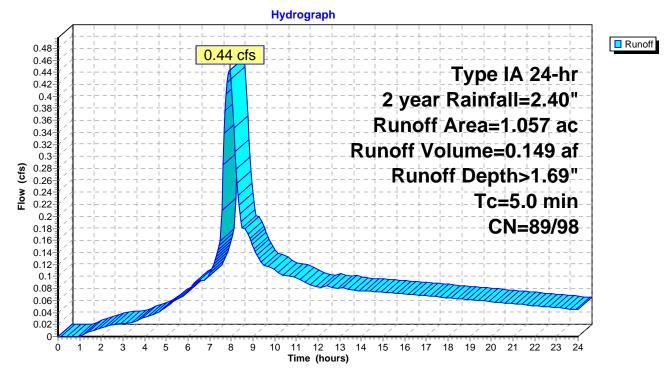
[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.67 cfs @ 7.92 hrs, Volume= 0.222 af, Depth> 1.86"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 2 year Rainfall=2.40"

	Area (a	ac)	CN	Desc	cription							
*	0.9	930	98	Imp								
*	0.2	255	90	gras	s D							
*	0.2	250	86	gras	s C							
	1.4	135	94	Weig	hted Aver	age						
	0.5	505	88	35.1	9% Pervio	us Area						
	0.9	930	98	64.8	1% Imperv	vious Area						
		Lengt		Slope	Velocity	Capacity	Description					
	(min)	(feet	[)	(ft/ft)	(ft/sec)	(cfs)						
	5.0						Direct Entry,					
	Subcatchment 5S: Basin 5											

Summary for Subcatchment 6S: Basin 6


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.44 cfs @ 7.94 hrs, Volume= 0.149 af, Depth> 1.69"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 2 year Rainfall=2.40"

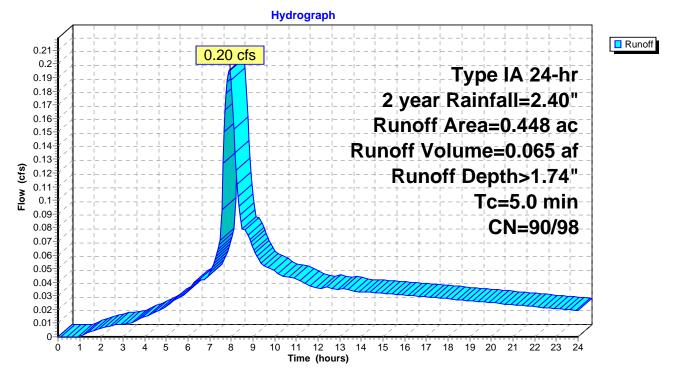
	Area (ac)	CN	Desc	ription		
*	0.4	127	98	Imp			
*	0.4	140	90	grass	s D		
*	0.1	90	86	grass	s C		
	1.0)57	93		hted Aver		
	0.630 89 59.60% Pervious Area					us Area	
	0.4	127	98	40.40	0% Imperv	vious Area	
	Tc (min)	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0						Direct Entry,

Subcatchment 6S: Basin 6

Summary for Subcatchment 7S: Basin 7

[49] Hint: Tc<2dt may require smaller dt

0.20 cfs @ 7.93 hrs, Volume= 0.065 af, Depth> 1.74" Runoff


Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 2 year Rainfall=2.40"

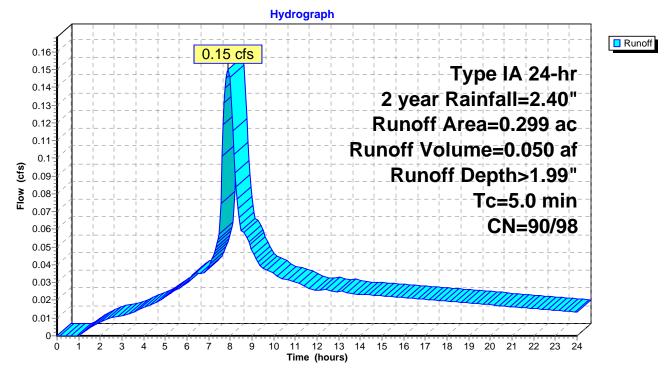
	Area (ac)) CN	Desc	cription		
*	0.185	5 98	Imp			
*	0.263	3 90	gras	s D		
	0.448	3 93	Weig	ghted Aver	age	
	0.263	3 90	58.7	1% Pervio	us Area	
	0.185	5 98	41.2	9% Imperv	vious Area	
		ength feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	
		1661)	(1011)	(10360)	(013)	
	5.0					Direct Entry.

ect Entry,

Subcatchment 7S: Basin 7

Summary for Subcatchment 8S: Basin 8

[49] Hint: Tc<2dt may require smaller dt

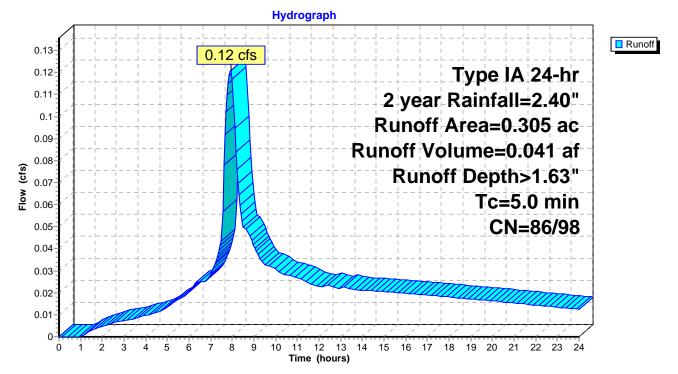

0.15 cfs @ 7.91 hrs, Volume= 0.050 af, Depth> 1.99" Runoff

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 2 year Rainfall=2.40"

_	Area	(ac)	CN	Desc	cription					
*	0.	225	98	Imp	mp					
*	0.	074	90	gras	s D					
	0.	299	96	Weig	phted Aver	age				
	0.	074	90	24.7	24.75% Pervious Area					
	0.225		98 75.25% Impervious Ar		vious Area					
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
_	5.0						Direct Entry,			

Summary for Subcatchment 9S: Basin 9

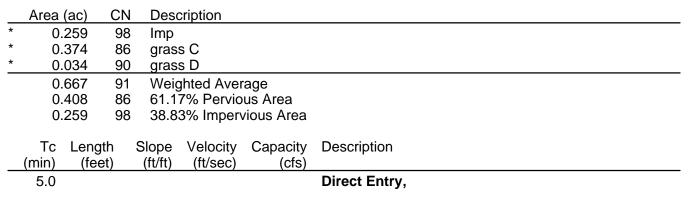
[49] Hint: Tc<2dt may require smaller dt


0.12 cfs @ 7.94 hrs, Volume= 0.041 af, Depth> 1.63" Runoff

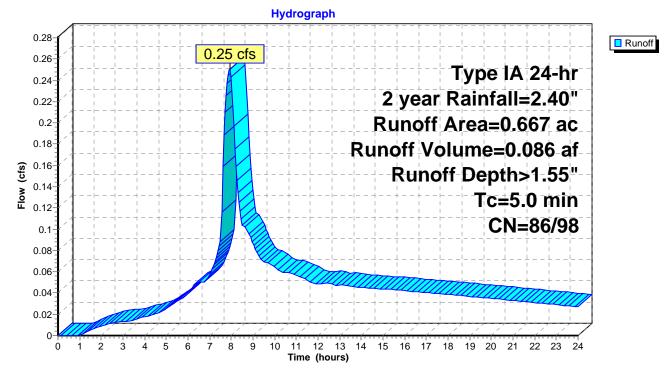
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 2 year Rainfall=2.40"

	Area	(ac)	CN	Desc	cription						
*	0.	141	98	Imp	mp						
*	0.	164	86	gras	s C						
	0.305 92 Weighted Average										
	0.164 86 53.77% Pervious Area										
	0.141 9		98	98 46.23% Impervious Area							
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	5.0						Direct Entry,				

Subcatchment 9S: Basin 9



Summary for Subcatchment 10S: Basin 10

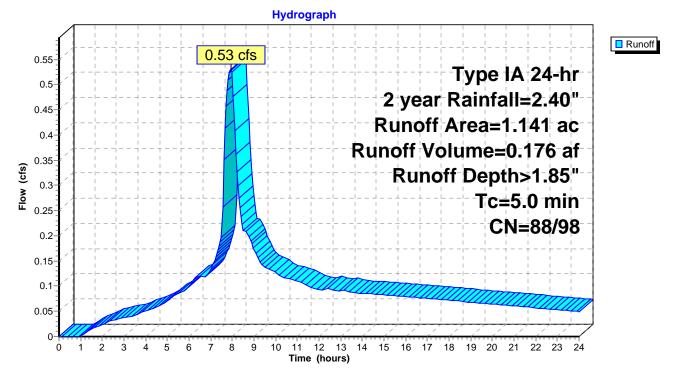

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.25 cfs @ 7.95 hrs, Volume= 0.086 af, Depth> 1.55"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 2 year Rainfall=2.40"

Subcatchment 10S: Basin 10

Summary for Subcatchment 11S: Basin 11


[49] Hint: Tc<2dt may require smaller dt

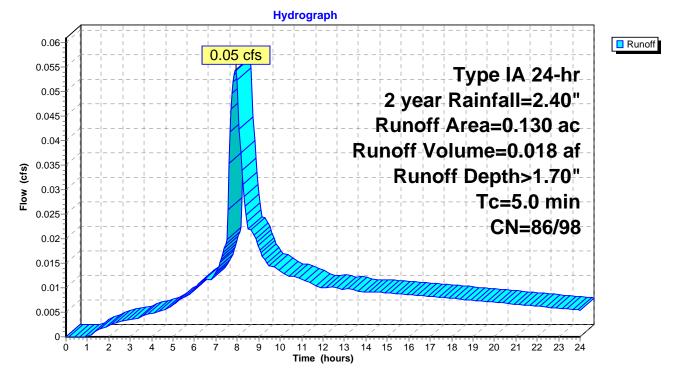
Runoff = 0.53 cfs @ 7.92 hrs, Volume= 0.176 af, Depth> 1.85"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 2 year Rainfall=2.40"

	Area ((ac)	CN	Desc	ription		
*	0.1	731	98	Imp			
*	0.2	210	90	gras	s D		
*	0.2	200	86	grass	s C		
	1.141 94 Weighted Average						
	0.4	410	88	35.9	3% Pervio	us Area	
	0.	731	98	64.0	7% Imperv	vious Area	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0						Direct Entry,

Subcatchment 11S: Basin 11

Summary for Subcatchment 12SA: Basin 12A


[49] Hint: Tc<2dt may require smaller dt

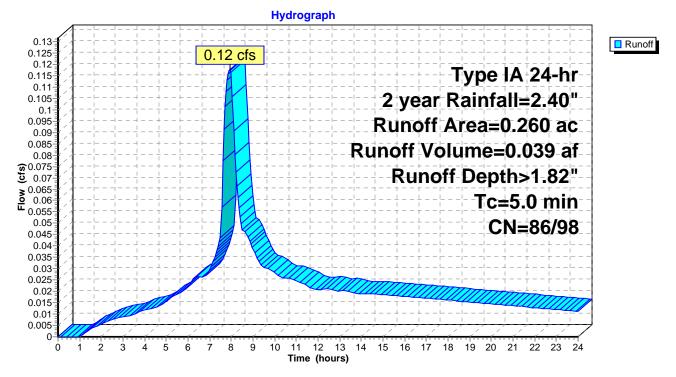
Runoff = 0.05 cfs @ 7.93 hrs, Volume= 0.018 af, Depth> 1.70"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 2 year Rainfall=2.40"

	Area (a	c) CN	Des	cription						
*	0.07	70 98	3 Imp	np						
*	0.06	60 86	6 gras	s C						
	0.13	30 92	2 Weig	ghted Aver	age					
	0.06	60 86	6 46.1	5% Pervio	us Area					
	0.07	70 98	3 53.8	5% Imperv	vious Area					
_	Tc L (min)	_ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	5.0					Direct Entry,				

Subcatchment 12SA: Basin 12A

Summary for Subcatchment 12SB: Basin 12B


[49] Hint: Tc<2dt may require smaller dt

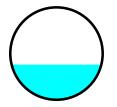
Runoff = 0.12 cfs @ 7.92 hrs, Volume= 0.039 af, Depth> 1.82"

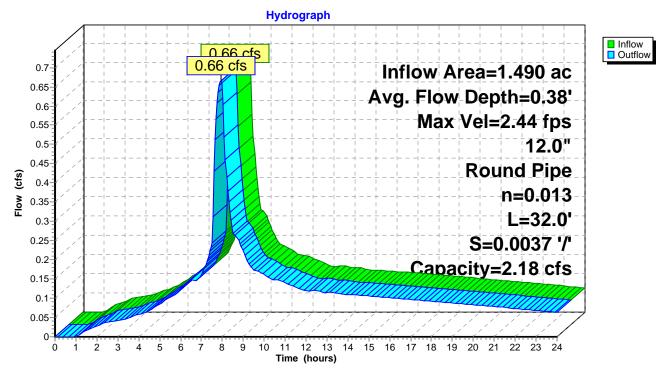
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 2 year Rainfall=2.40"

	Area	(ac)	CN	Desc	cription		
*	0.	170	98	Imp			
*	0.0	090	86	gras	S C		
	0.260 94 Weighted Average						
	0.090 86 34.62% Pervious Area						
	0.170		98 65.38% Impervious Area			vious Area	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	5.0						Direct Entry,

Subcatchment 12SB: Basin 12B

Summary for Reach 1R: CB 1 TO CB 2


[52] Hint: Inlet/Outlet conditions not evaluated

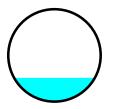

Inflow Area =1.490 ac, 56.85% Impervious, Inflow Depth >1.79" for 2 year eventInflow =0.66 cfs @7.93 hrs, Volume=0.222 afOutflow =0.66 cfs @7.93 hrs, Volume=0.222 af, Atten= 0%, Lag= 0.3 min

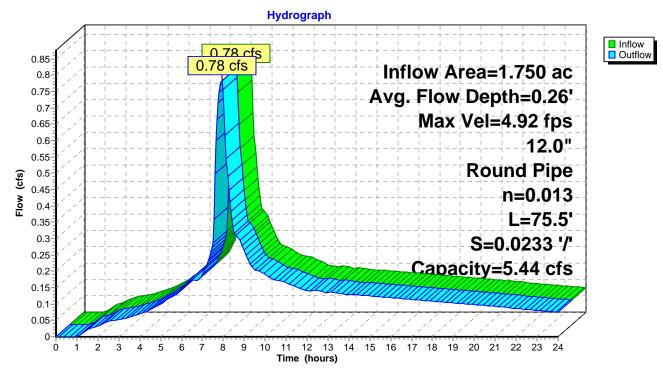
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.44 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.41 fps, Avg. Travel Time= 0.4 min

Peak Storage= 9 cf @ 7.93 hrs Average Depth at Peak Storage= 0.38' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.18 cfs

12.0" Round Pipe n= 0.013 Length= 32.0' Slope= 0.0037 '/' Inlet Invert= 115.57', Outlet Invert= 115.45'

Reach 1R: CB 1 TO CB 2


Summary for Reach 2R: CB 2 TO MH 1


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach 1R outlet invert by 0.26' @ 7.95 hrs

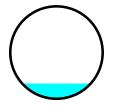
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 4.92 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.81 fps, Avg. Travel Time= 0.4 min

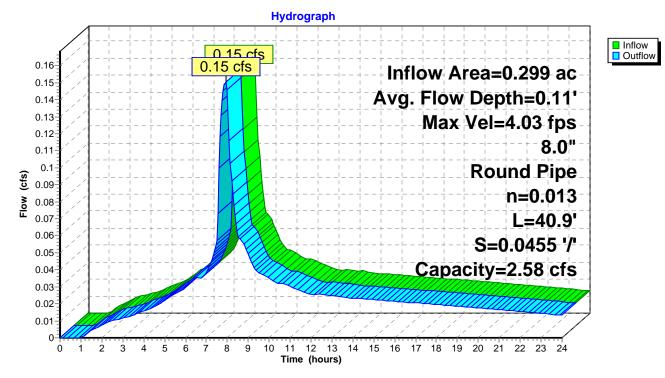
Peak Storage= 12 cf @ 7.93 hrs Average Depth at Peak Storage= 0.26' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.44 cfs

12.0" Round Pipe n= 0.013 Length= 75.5' Slope= 0.0233 '/' Inlet Invert= 115.45', Outlet Invert= 113.69'

Reach 2R: CB 2 TO MH 1

Summary for Reach 3R: CB 3 TO MH 1


[52] Hint: Inlet/Outlet conditions not evaluated

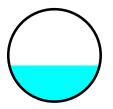

Inflow Area =0.299 ac, 75.25% Impervious, Inflow Depth > 1.99" for 2 year eventInflow =0.15 cfs @7.91 hrs, Volume=0.050 afOutflow =0.15 cfs @7.91 hrs, Volume=0.050 af, Atten= 0%, Lag= 0.2 min

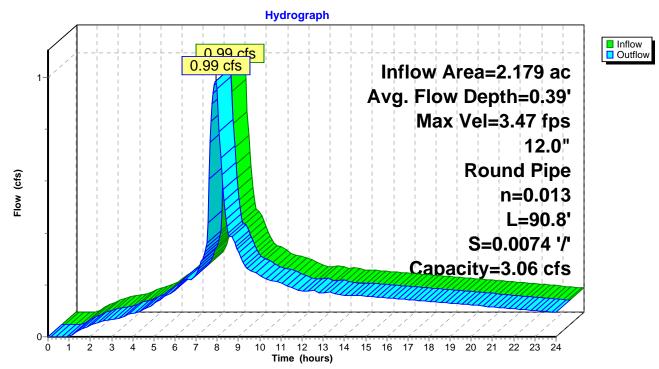
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 4.03 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.27 fps, Avg. Travel Time= 0.3 min

Peak Storage= 2 cf @ 7.91 hrs Average Depth at Peak Storage= 0.11' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.58 cfs

8.0" Round Pipe n= 0.013 Length= 40.9' Slope= 0.0455 '/' Inlet Invert= 117.00', Outlet Invert= 115.14'

Reach 3R: CB 3 TO MH 1


Summary for Reach 4R: MH 1 TO MH 2


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach 2R outlet invert by 0.19' @ 7.95 hrs

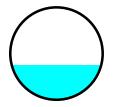
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 3.47 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.01 fps, Avg. Travel Time= 0.8 min

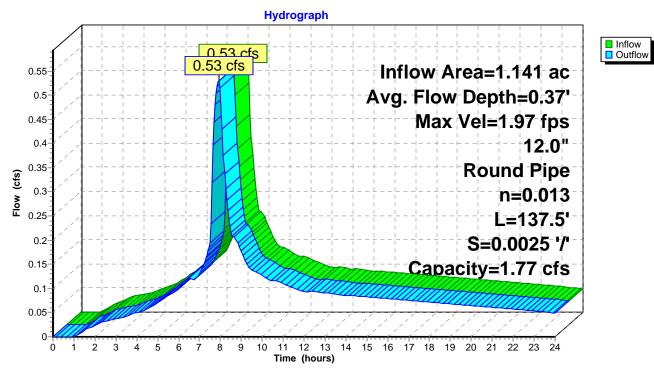
Peak Storage= 26 cf @ 7.93 hrs Average Depth at Peak Storage= 0.39' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.06 cfs

12.0" Round Pipe n= 0.013 Length= 90.8' Slope= 0.0074 '/' Inlet Invert= 113.49', Outlet Invert= 112.82'

Reach 4R: MH 1 TO MH 2

Summary for Reach 5R: CB 4 TO MH 2


[52] Hint: Inlet/Outlet conditions not evaluated


Inflow Area =1.141 ac, 64.07% Impervious, Inflow Depth >1.85" for 2 year eventInflow =0.53 cfs @7.92 hrs, Volume=0.176 afOutflow =0.53 cfs @7.93 hrs, Volume=0.176 af, Atten= 0%, Lag= 0.8 min

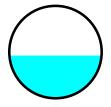
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 1.97 fps, Min. Travel Time= 1.2 min Avg. Velocity = 1.13 fps, Avg. Travel Time= 2.0 min

Peak Storage= 37 cf @ 7.93 hrs Average Depth at Peak Storage= 0.37' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.77 cfs

12.0" Round Pipe n= 0.013 Length= 137.5' Slope= 0.0025 '/' Inlet Invert= 112.96', Outlet Invert= 112.62'

Reach 5R: CB 4 TO MH 2

Summary for Reach 6R: MH 2 TO MH 6


[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach 4R OUTLET depth by 0.10' @ 7.95 hrs
[62] Hint: Exceeded Reach 5R OUTLET depth by 0.32' @ 7.95 hrs
[63] Warning: Exceeded Reach 8R INLET depth by 0.24' @ 7.95 hrs

Inflow Area =4.292 ac, 56.92% Impervious, Inflow Depth > 1.77" for 2 year eventInflow =1.89 cfs @7.94 hrs, Volume=0.633 afOutflow =1.89 cfs @7.95 hrs, Volume=0.632 af, Atten= 0%, Lag= 0.8 min

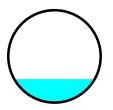
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.37 fps, Min. Travel Time= 1.1 min Avg. Velocity = 1.38 fps, Avg. Travel Time= 1.8 min

Peak Storage= 122 cf @ 7.95 hrs Average Depth at Peak Storage= 0.69' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 4.34 cfs

18.0" Round Pipe n= 0.013 Length= 152.6' Slope= 0.0017 '/' Inlet Invert= 112.62', Outlet Invert= 112.36'

Hydrograph InflowOutflow 1.89 cfs 1.89 cfs 2 Inflow Area=4.292 ac Avg. Flow Depth=0.69' Max Vel=2.37 fps 18.0" **Round Pipe** Flow (cfs) n=0.013 1 L=152.6' S=0.0017 '/' Capacity=4.34 cfs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ò Time (hours)

Reach 6R: MH 2 TO MH 6


Summary for Reach 7R: CO 2 TO CO 3

[52] Hint: Inlet/Outlet conditions not evaluated[62] Hint: Exceeded Reach 19R OUTLET depth by 0.01' @ 8.10 hrs

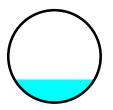
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 1.60 fps, Min. Travel Time= 1.0 min Avg. Velocity = 0.92 fps, Avg. Travel Time= 1.8 min

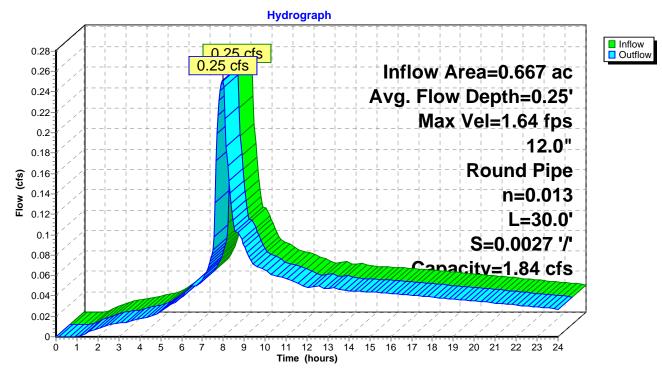
Peak Storage= 16 cf @ 7.97 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.78 cfs

12.0" Round Pipe n= 0.013 Length= 100.0' Slope= 0.0025 '/' Inlet Invert= 113.07', Outlet Invert= 112.82'

Hydrograph Inflow
Outflow 0.25 cfs 0.25 cfs 0.28 Inflow Area=0.667 ac 0.26 0.24 Avg. Flow Depth=0.25' 0.22 Max Vel=1.60 fps 0.2 12.0" 0.18 **Round Pipe** 0.16 Flow (cfs) n=0.013 0.14 0.12 L=100.0' 0.1 S=0.0025 '/' 0.08 Capacity=1.78 cfs 0.06 0.04 0.02 0-7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 ż 4 5 6 10 Ó Time (hours)

Reach 7R: CO 2 TO CO 3


Summary for Reach 8R: CO 1 TO MH 6


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach 7R outlet invert by 0.25' @ 7.95 hrs

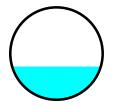
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 1.64 fps, Min. Travel Time= 0.3 min Avg. Velocity = 0.94 fps, Avg. Travel Time= 0.5 min

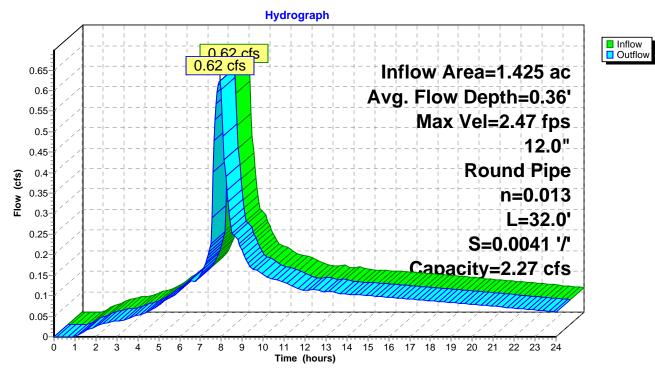
Peak Storage= 5 cf @ 7.97 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.84 cfs

12.0" Round Pipe n= 0.013 Length= 30.0' Slope= 0.0027 '/' Inlet Invert= 112.82', Outlet Invert= 112.74'

Reach 8R: CO 1 TO MH 6

Summary for Reach 9R: CB 6 TO CB 7


[52] Hint: Inlet/Outlet conditions not evaluated


Inflow Area =1.425 ac, 53.19% Impervious, Inflow Depth > 1.76" for 2 year eventInflow =0.62 cfs @ 7.93 hrs, Volume=0.209 afOutflow =0.62 cfs @ 7.93 hrs, Volume=0.209 af, Atten= 0%, Lag= 0.2 min

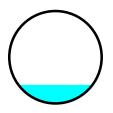
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.47 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.42 fps, Avg. Travel Time= 0.4 min

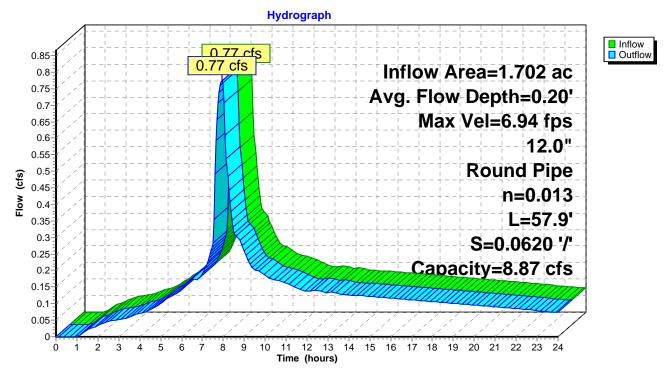
Peak Storage= 8 cf @ 7.93 hrs Average Depth at Peak Storage= 0.36' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.27 cfs

12.0" Round Pipe n= 0.013 Length= 32.0' Slope= 0.0041 '/' Inlet Invert= 117.53', Outlet Invert= 117.40'

Reach 9R: CB 6 TO CB 7

Summary for Reach 10R: CB 7 TO MH 3


[52] Hint: Inlet/Outlet conditions not evaluated
[63] Warning: Exceeded Reach 9R INLET depth by 0.33' @ 0.00 hrs
[62] Hint: Exceeded Reach 22R OUTLET depth by 3.89' @ 7.95 hrs


Inflow Area =1.702 ac, 60.28% Impervious, Inflow Depth > 1.82" for 2 year eventInflow =0.77 cfs @7.93 hrs, Volume=0.258 afOutflow =0.77 cfs @7.93 hrs, Volume=0.258 af, Atten= 0%, Lag= 0.1 min

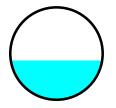
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 6.94 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.94 fps, Avg. Travel Time= 0.2 min

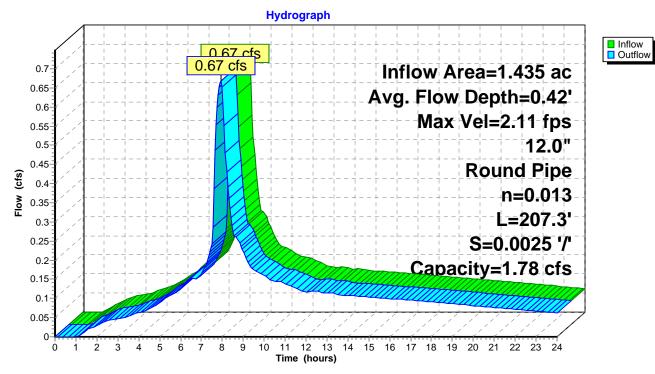
Peak Storage= 6 cf @ 7.93 hrs Average Depth at Peak Storage= 0.20' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 8.87 cfs

12.0" Round Pipe n= 0.013 Length= 57.9' Slope= 0.0620 '/' Inlet Invert= 117.86', Outlet Invert= 114.27'

Reach 10R: CB 7 TO MH 3

Summary for Reach 11R: CB 5 TO MH 3


[52] Hint: Inlet/Outlet conditions not evaluated


Inflow Area =1.435 ac, 64.81% Impervious, Inflow Depth > 1.86" for 2 year eventInflow =0.67 cfs @ 7.92 hrs, Volume=0.222 afOutflow =0.67 cfs @ 7.94 hrs, Volume=0.222 af, Atten= 0%, Lag= 1.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.11 fps, Min. Travel Time= 1.6 min Avg. Velocity = 1.22 fps, Avg. Travel Time= 2.8 min

Peak Storage= 66 cf @ 7.94 hrs Average Depth at Peak Storage= 0.42' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.78 cfs

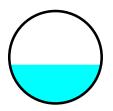
12.0" Round Pipe n= 0.013 Length= 207.3' Slope= 0.0025 '/' Inlet Invert= 114.59', Outlet Invert= 114.07'

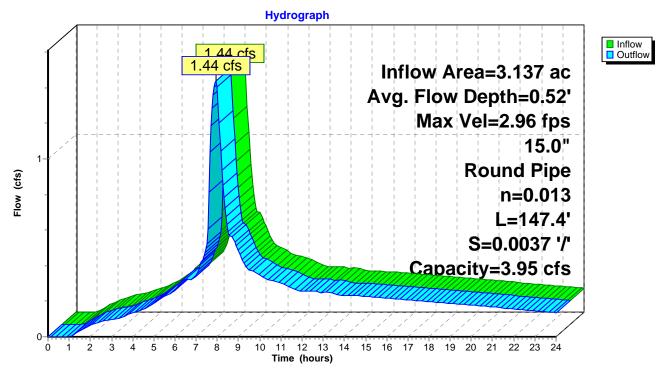
Reach 11R: CB 5 TO MH 3

Summary for Reach 12R: MH 3 TO MH 4

[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach 10R OUTLET depth by 0.12' @ 7.95 hrs
[62] Hint: Exceeded Reach 11R OUTLET depth by 0.10' @ 7.95 hrs

 Inflow Area =
 3.137 ac, 62.35% Impervious, Inflow Depth > 1.84" for 2 year event


 Inflow =
 1.44 cfs @
 7.94 hrs, Volume=
 0.480 af

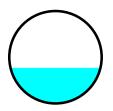

 Outflow =
 1.44 cfs @
 7.94 hrs, Volume=
 0.480 af, Atten= 0%, Lag= 0.5 min

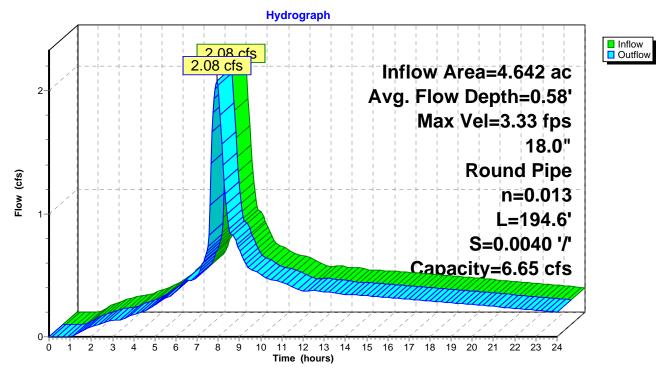
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.96 fps, Min. Travel Time= 0.8 min Avg. Velocity = 1.72 fps, Avg. Travel Time= 1.4 min

Peak Storage= 72 cf @ 7.94 hrs Average Depth at Peak Storage= 0.52' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 3.95 cfs

15.0" Round Pipe n= 0.013 Length= 147.4' Slope= 0.0037 '/' Inlet Invert= 114.07', Outlet Invert= 113.52'

Reach 12R: MH 3 TO MH 4


Summary for Reach 13R: MH 4 TO MH 6


[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach 12R OUTLET depth by 0.06' @ 8.10 hrs
[61] Hint: Exceeded Reach 17R outlet invert by 0.33' @ 7.95 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 3.33 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.92 fps, Avg. Travel Time= 1.7 min

Peak Storage= 122 cf @ 7.96 hrs Average Depth at Peak Storage= 0.58' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 6.65 cfs

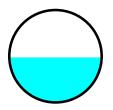
18.0" Round Pipe n= 0.013 Length= 194.6' Slope= 0.0040 '/' Inlet Invert= 113.52', Outlet Invert= 112.74'

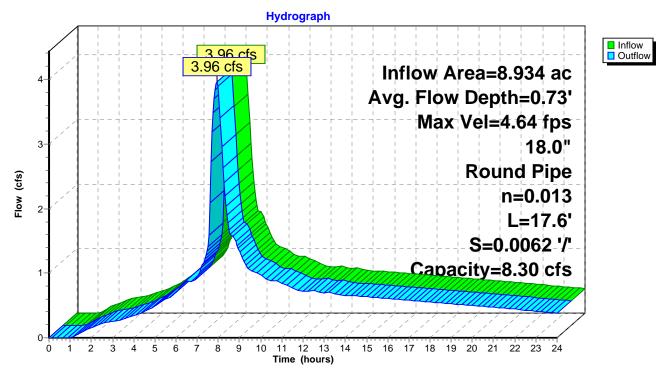
Reach 13R: MH 4 TO MH 6

Summary for Reach 14R: MH 6 TO OUTFALL

[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach 6R OUTLET depth by 0.04' @ 8.10 hrs
[61] Hint: Exceeded Reach 13R outlet invert by 0.35' @ 7.95 hrs

 Inflow Area =
 8.934 ac, 56.09% Impervious, Inflow Depth > 1.78" for 2 year event


 Inflow =
 3.96 cfs @
 7.96 hrs, Volume=
 1.325 af

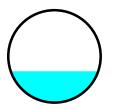

 Outflow =
 3.96 cfs @
 7.96 hrs, Volume=
 1.325 af, Atten= 0%, Lag= 0.0 min

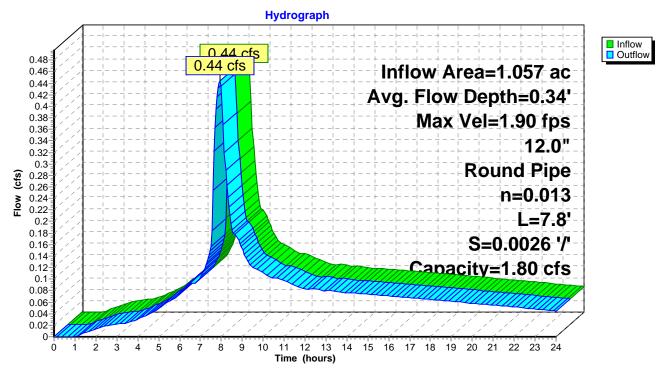
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 4.64 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.72 fps, Avg. Travel Time= 0.1 min

Peak Storage= 15 cf @ 7.96 hrs Average Depth at Peak Storage= 0.73' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 8.30 cfs

18.0" Round Pipe n= 0.013 Length= 17.6' Slope= 0.0062 '/' Inlet Invert= 112.36', Outlet Invert= 112.25'

Reach 14R: MH 6 TO OUTFALL


Summary for Reach 15R: CO 6 TO CO 5

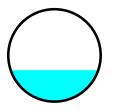

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach 20R outlet invert by 0.34' @ 7.95 hrs

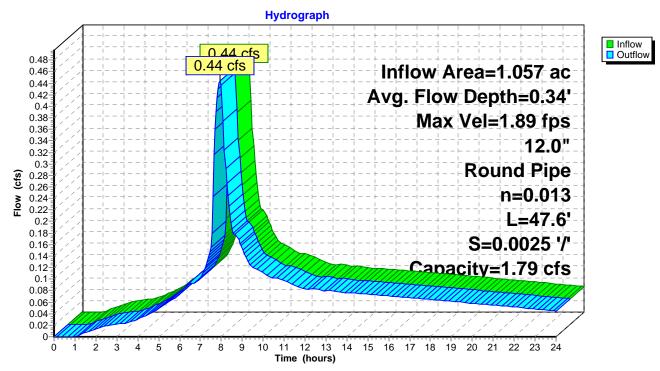
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 1.90 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.09 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 7.95 hrs Average Depth at Peak Storage= 0.34' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.80 cfs

12.0" Round Pipe n= 0.013 Length= 7.8' Slope= 0.0026 '/' Inlet Invert= 114.16', Outlet Invert= 114.14'

Reach 15R: CO 6 TO CO 5


Summary for Reach 16R: CO 5 TO CO 4

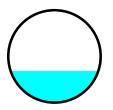

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach 15R outlet invert by 0.34' @ 7.95 hrs

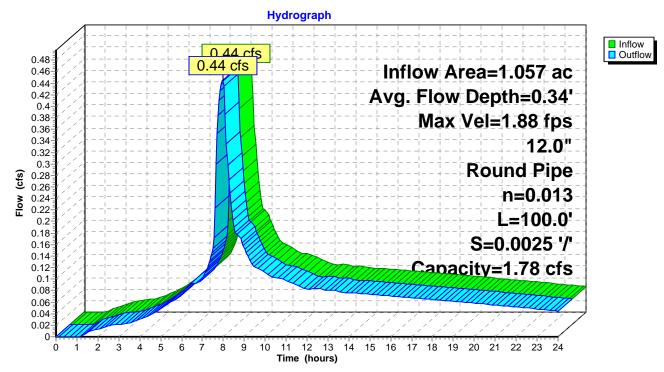
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 1.89 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.08 fps, Avg. Travel Time= 0.7 min

Peak Storage= 11 cf @ 7.96 hrs Average Depth at Peak Storage= 0.34' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.79 cfs

12.0" Round Pipe n= 0.013 Length= 47.6' Slope= 0.0025 '/' Inlet Invert= 114.14', Outlet Invert= 114.02'

Reach 16R: CO 5 TO CO 4

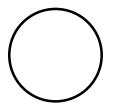

Summary for Reach 17R: CO 4 TO MH 4

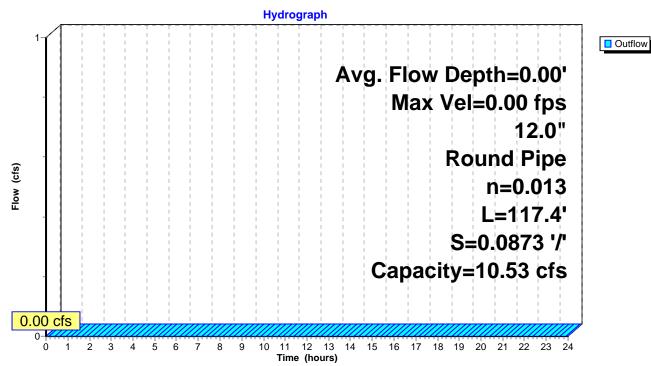

[52] Hint: Inlet/Outlet conditions not evaluated[62] Hint: Exceeded Reach 16R OUTLET depth by 0.01' @ 8.10 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 1.88 fps, Min. Travel Time= 0.9 min Avg. Velocity = 1.08 fps, Avg. Travel Time= 1.5 min

Peak Storage= 24 cf @ 7.97 hrs Average Depth at Peak Storage= 0.34' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.78 cfs

12.0" Round Pipe n= 0.013 Length= 100.0' Slope= 0.0025 '/' Inlet Invert= 114.02', Outlet Invert= 113.77'


Reach 17R: CO 4 TO MH 4


Summary for Reach 18R: MH 7 TO OUTFALL

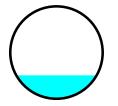
[43] Hint: Has no inflow (Outflow=Zero)

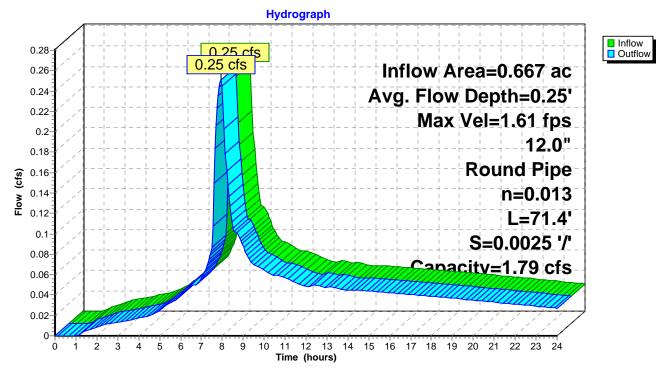
Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 10.53 cfs

12.0" Round Pipe n= 0.013 Length= 117.4' Slope= 0.0873 '/' Inlet Invert= 111.25', Outlet Invert= 101.00'

Reach 18R: MH 7 TO OUTFALL

Summary for Reach 19R: CO 3 TO CO 4


[52] Hint: Inlet/Outlet conditions not evaluated

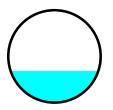

Inflow Area =0.667 ac, 38.83% Impervious, Inflow Depth > 1.55" for 2 year eventInflow =0.25 cfs @ 7.95 hrs, Volume=0.086 afOutflow =0.25 cfs @ 7.95 hrs, Volume=0.086 af, Atten= 0%, Lag= 0.5 min

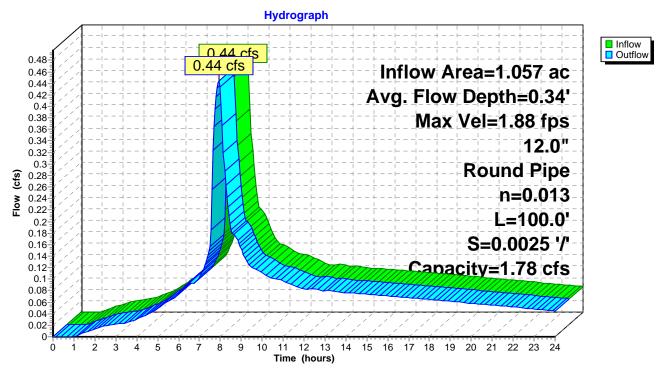
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 1.61 fps, Min. Travel Time= 0.7 min Avg. Velocity = 0.92 fps, Avg. Travel Time= 1.3 min

Peak Storage= 11 cf @ 7.95 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.79 cfs

12.0" Round Pipe n= 0.013 Length= 71.4' Slope= 0.0025 '/' Inlet Invert= 113.25', Outlet Invert= 113.07'

Reach 19R: CO 3 TO CO 4


Summary for Reach 20R: CO 7 TO CO 6


[52] Hint: Inlet/Outlet conditions not evaluated[61] Hint: Exceeded Reach 21R outlet invert by 0.34' @ 7.95 hrs

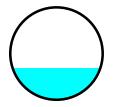
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 1.88 fps, Min. Travel Time= 0.9 min Avg. Velocity = 1.08 fps, Avg. Travel Time= 1.5 min

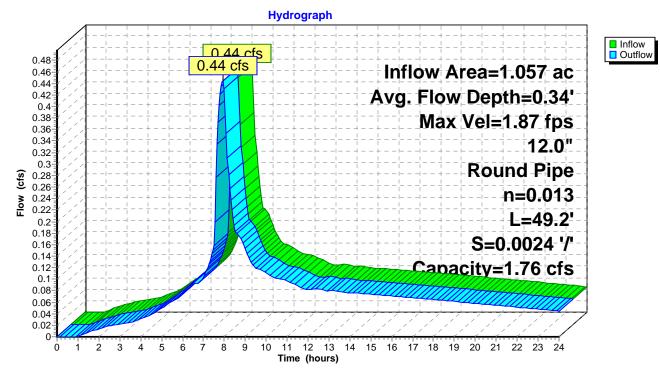
Peak Storage= 24 cf @ 7.95 hrs Average Depth at Peak Storage= 0.34' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.78 cfs

12.0" Round Pipe n= 0.013 Length= 100.0' Slope= 0.0025 '/' Inlet Invert= 114.41', Outlet Invert= 114.16'

Reach 20R: CO 7 TO CO 6

Summary for Reach 21R: CO 8 TO CO 7


[52] Hint: Inlet/Outlet conditions not evaluated


Inflow Area =1.057 ac, 40.40% Impervious, Inflow Depth > 1.69" for 2 year eventInflow =0.44 cfs @ 7.94 hrs, Volume=0.149 afOutflow =0.44 cfs @ 7.94 hrs, Volume=0.149 af, Atten= 0%, Lag= 0.4 min

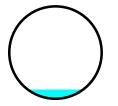
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 1.87 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.07 fps, Avg. Travel Time= 0.8 min

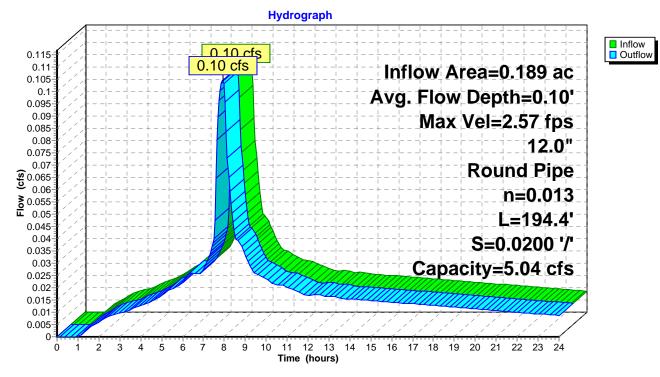
Peak Storage= 12 cf @ 7.94 hrs Average Depth at Peak Storage= 0.34' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.76 cfs

12.0" Round Pipe n= 0.013 Length= 49.2' Slope= 0.0024 '/' Inlet Invert= 114.53', Outlet Invert= 114.41'

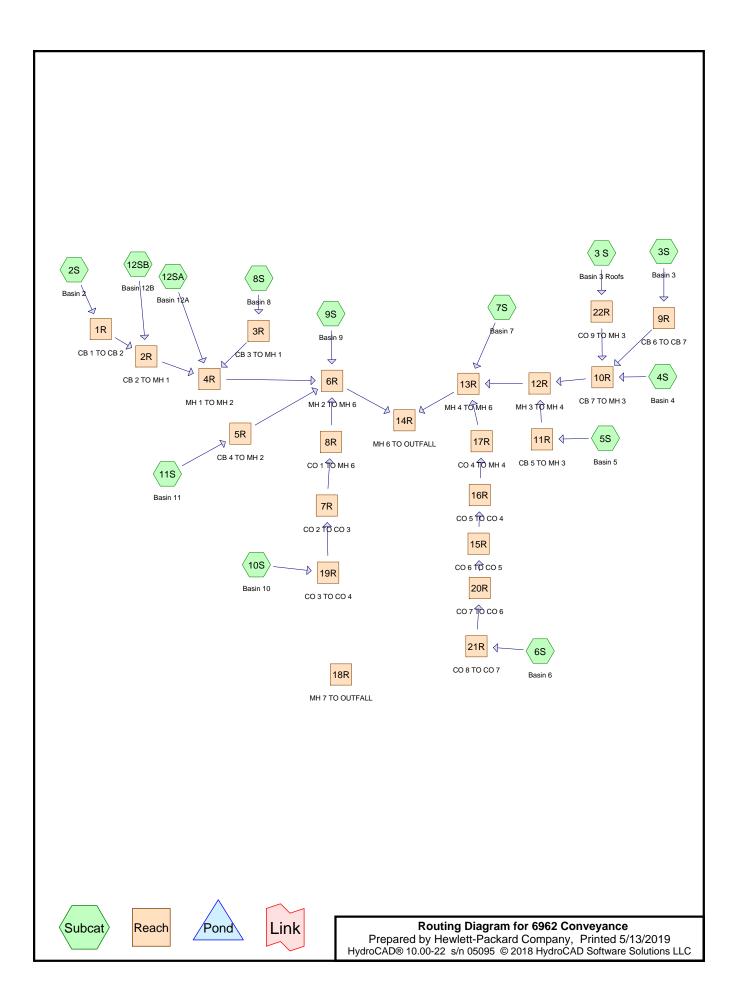
Reach 21R: CO 8 TO CO 7

Summary for Reach 22R: CO 9 TO MH 3


[52] Hint: Inlet/Outlet conditions not evaluated


Inflow Area =0.189 ac, 100.00% Impervious, Inflow Depth > 2.17" for 2 year eventInflow =0.10 cfs @ 7.90 hrs, Volume=0.034 afOutflow =0.10 cfs @ 7.92 hrs, Volume=0.034 af, Atten= 0%, Lag= 0.9 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.57 fps, Min. Travel Time= 1.3 min Avg. Velocity = 1.45 fps, Avg. Travel Time= 2.2 min


Peak Storage= 8 cf @ 7.92 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.04 cfs

12.0" Round Pipe n= 0.013 Length= 194.4' Slope= 0.0200 '/' Inlet Invert= 117.96', Outlet Invert= 114.07'

Reach 22R: CO 9 TO MH 3

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
5.011	98	Imp (2S, 3 S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12SA, 12SB)
1.847	86	grass C (2S, 3S, 4S, 5S, 6S, 9S, 10S, 11S, 12SA)
1.986	90	grass D (2S, 3S, 5S, 6S, 7S, 8S, 10S, 11S)
0.090	86	grass c (12SB)
8.934	94	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
 (acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
8.934	Other	2S, 3 S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12SA, 12SB
8.934		TOTAL AREA

6962 Conveyance

Prepared by Hewlett-Packard Company	Pr
HydroCAD® 10.00-22 s/n 05095 © 2018 HydroCAD Software Solutions LLC	

Printed 5/13/2019 Page 4

	G-A cres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0	.000	0.000	0.000	0.000	5.011	5.011	Imp	2S, 3 S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12SA, 12SB
0	.000	0.000	0.000	0.000	1.847	1.847	grass C	2S, 3S, 4S, 5S, 6S, 9S, 10S, 11S, 12SA
0	.000	0.000	0.000	0.000	1.986	1.986	grass D	2S, 3S, 5S, 6S, 7S, 8S, 10S, 11S
-	.000 .000	0.000 0.000	0.000 0.000	0.000 0.000	0.090 8.934	0.090 8.934	grass c TOTAL AREA	12SB

Ground Covers (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	1R	115.57	115.45	32.0	0.0037	0.013	12.0	0.0	0.0
2	2R	115.45	113.69	75.5	0.0233	0.013	12.0	0.0	0.0
3	3R	117.00	115.14	40.9	0.0455	0.013	8.0	0.0	0.0
4	4R	113.49	112.82	90.8	0.0074	0.013	12.0	0.0	0.0
5	5R	112.96	112.62	137.5	0.0025	0.013	12.0	0.0	0.0
6	6R	112.62	112.36	152.6	0.0017	0.013	18.0	0.0	0.0
7	7R	113.07	112.82	100.0	0.0025	0.013	12.0	0.0	0.0
8	8R	112.82	112.74	30.0	0.0027	0.013	12.0	0.0	0.0
9	9R	117.53	117.40	32.0	0.0041	0.013	12.0	0.0	0.0
10	10R	117.86	114.27	57.9	0.0620	0.013	12.0	0.0	0.0
11	11R	114.59	114.07	207.3	0.0025	0.013	12.0	0.0	0.0
12	12R	114.07	113.52	147.4	0.0037	0.013	15.0	0.0	0.0
13	13R	113.52	112.74	194.6	0.0040	0.013	18.0	0.0	0.0
14	14R	112.36	112.25	17.6	0.0062	0.013	18.0	0.0	0.0
15	15R	114.16	114.14	7.8	0.0026	0.013	12.0	0.0	0.0
16	16R	114.14	114.02	47.6	0.0025	0.013	12.0	0.0	0.0
17	17R	114.02	113.77	100.0	0.0025	0.013	12.0	0.0	0.0
18	18R	111.25	101.00	117.4	0.0873	0.013	12.0	0.0	0.0
19	19R	113.25	113.07	71.4	0.0025	0.013	12.0	0.0	0.0
20	20R	114.41	114.16	100.0	0.0025	0.013	12.0	0.0	0.0
21	21R	114.53	114.41	49.2	0.0024	0.013	12.0	0.0	0.0
22	22R	117.96	114.07	194.4	0.0200	0.013	12.0	0.0	0.0

Pipe Listing (all nodes)

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SBUH method, Split Pervious/Imperv. Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 2S: Basin 2	Runoff Area=1.490 ac 56.85% Impervious Runoff Depth>2.73" Tc=5.0 min CN=88/98 Runoff=1.02 cfs 0.340 af
Subcatchment3 S: Basin 3 Roofs	Runoff Area=0.189 ac 100.00% Impervious Runoff Depth>3.16" Tc=5.0 min CN=0/98 Runoff=0.15 cfs 0.050 af
Subcatchment 3S: Basin 3	Runoff Area=1.425 ac 53.19% Impervious Runoff Depth>2.70" Tc=5.0 min CN=88/98 Runoff=0.97 cfs 0.320 af
Subcatchment 4S: Basin 4	Runoff Area=0.088 ac 89.77% Impervious Runoff Depth>3.04" Tc=5.0 min CN=86/98 Runoff=0.07 cfs 0.022 af
Subcatchment 5S: Basin 5	Runoff Area=1.435 ac 64.81% Impervious Runoff Depth>2.81" Tc=5.0 min CN=88/98 Runoff=1.01 cfs 0.336 af
Subcatchment 6S: Basin 6	Runoff Area=1.057 ac 40.40% Impervious Runoff Depth>2.62" Tc=5.0 min CN=89/98 Runoff=0.70 cfs 0.231 af
Subcatchment 7S: Basin 7	Runoff Area=0.448 ac 41.29% Impervious Runoff Depth>2.68" Tc=5.0 min CN=90/98 Runoff=0.30 cfs 0.100 af
Subcatchment 8S: Basin 8	Runoff Area=0.299 ac 75.25% Impervious Runoff Depth>2.96" Tc=5.0 min CN=90/98 Runoff=0.22 cfs 0.074 af
Subcatchment9S: Basin 9	Runoff Area=0.305 ac 46.23% Impervious Runoff Depth>2.54" Tc=5.0 min CN=86/98 Runoff=0.19 cfs 0.065 af
Subcatchment 10S: Basin 10	Runoff Area=0.667 ac 38.83% Impervious Runoff Depth>2.45" Tc=5.0 min CN=86/98 Runoff=0.41 cfs 0.136 af
Subcatchment 11S: Basin 11	Runoff Area=1.141 ac 64.07% Impervious Runoff Depth>2.81" Tc=5.0 min CN=88/98 Runoff=0.80 cfs 0.267 af
Subcatchment 12SA: Basin 12A	Runoff Area=0.130 ac 53.85% Impervious Runoff Depth>2.63" Tc=5.0 min CN=86/98 Runoff=0.09 cfs 0.028 af
Subcatchment 12SB: Basin 12B	Runoff Area=0.260 ac 65.38% Impervious Runoff Depth>2.76" Tc=5.0 min CN=86/98 Runoff=0.18 cfs 0.060 af
Reach 1R: CB 1 TO CB 2 12.0" Round Pipe n=0.013	Avg. Flow Depth=0.48' Max Vel=2.73 fps Inflow=1.02 cfs 0.340 af L=32.0' S=0.0037 '/' Capacity=2.18 cfs Outflow=1.02 cfs 0.340 af
Reach 2R: CB 2 TO MH 1 12.0" Round Pipe n=0.013	Avg. Flow Depth=0.32' Max Vel=5.56 fps Inflow=1.20 cfs 0.399 af L=75.5' S=0.0233 '/' Capacity=5.44 cfs Outflow=1.20 cfs 0.399 af
Reach 3R: CB 3 TO MH 1 8.0" Round Pipe n=0.013	Avg. Flow Depth=0.13' Max Vel=4.53 fps Inflow=0.22 cfs 0.074 af L=40.9' S=0.0455 '/' Capacity=2.58 cfs Outflow=0.22 cfs 0.074 af

6962 Conveyance

Type IA 24-hr 10 year Rainfall=3.40"

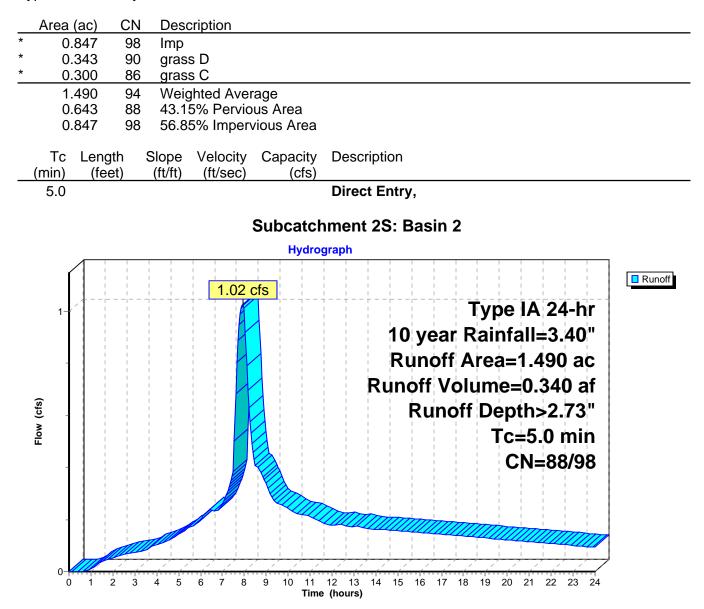
Prepared by Hewlett-Packard Company	Printed 5/13/2019
HydroCAD® 10.00-22 s/n 05095 © 2018 HydroCAD S	oftware Solutions LLC Page 7
	w Depth=0.50' Max Vel=3.88 fps Inflow=1.51 cfs 0.502 af S=0.0074 '/' Capacity=3.06 cfs Outflow=1.51 cfs 0.501 af
	w Depth=0.47' Max Vel=2.20 fps Inflow=0.80 cfs 0.267 af S=0.0025 '/' Capacity=1.77 cfs Outflow=0.80 cfs 0.267 af
···· · · · · · · · · · · · · · · · · ·	w Depth=0.90' Max Vel=2.63 fps Inflow=2.91 cfs 0.969 af S=0.0017 '/' Capacity=4.34 cfs Outflow=2.91 cfs 0.968 af
	w Depth=0.32' Max Vel=1.84 fps Inflow=0.41 cfs 0.136 af S=0.0025 '/' Capacity=1.78 cfs Outflow=0.41 cfs 0.136 af
	w Depth=0.32' Max Vel=1.88 fps Inflow=0.41 cfs 0.136 af S=0.0027 '/' Capacity=1.84 cfs Outflow=0.41 cfs 0.136 af
	w Depth=0.46' Max Vel=2.77 fps Inflow=0.97 cfs 0.320 af S=0.0041 '/' Capacity=2.27 cfs Outflow=0.97 cfs 0.320 af
	w Depth=0.25' Max Vel=7.85 fps Inflow=1.18 cfs 0.392 af S=0.0620 '/' Capacity=8.87 cfs Outflow=1.18 cfs 0.392 af
	w Depth=0.54' Max Vel=2.34 fps Inflow=1.01 cfs 0.336 af S=0.0025 '/' Capacity=1.78 cfs Outflow=1.01 cfs 0.336 af
	w Depth=0.67' Max Vel=3.30 fps Inflow=2.20 cfs 0.729 af S=0.0037 '/' Capacity=3.95 cfs Outflow=2.20 cfs 0.728 af
	w Depth=0.73' Max Vel=3.73 fps Inflow=3.20 cfs 1.059 af S=0.0040 '/' Capacity=6.65 cfs Outflow=3.20 cfs 1.058 af
	w Depth=0.96' Max Vel=5.14 fps Inflow=6.11 cfs 2.026 af S=0.0062 '/' Capacity=8.30 cfs Outflow=6.11 cfs 2.026 af
	w Depth=0.43' Max Vel=2.15 fps Inflow=0.70 cfs 0.231 af S=0.0026 '/' Capacity=1.80 cfs Outflow=0.70 cfs 0.231 af
	w Depth=0.43' Max Vel=2.14 fps Inflow=0.70 cfs 0.231 af S=0.0025 '/' Capacity=1.79 cfs Outflow=0.70 cfs 0.231 af
	w Depth=0.44' Max Vel=2.13 fps Inflow=0.70 cfs 0.231 af S=0.0025 '/' Capacity=1.78 cfs Outflow=0.70 cfs 0.231 af
Reach 18R: MH 7 TO OUTFALL 12.0" Round Pipe n=0.013 L=117.4' S	Avg. Flow Depth=0.00' Max Vel=0.00 fps S=0.0873 '/' Capacity=10.53 cfs Outflow=0.00 cfs 0.000 af
	w Depth=0.32' Max Vel=1.84 fps Inflow=0.41 cfs 0.136 af S=0.0025 '/' Capacity=1.79 cfs Outflow=0.41 cfs 0.136 af
	w Depth=0.44' Max Vel=2.13 fps Inflow=0.70 cfs 0.231 af S=0.0025 '/' Capacity=1.78 cfs Outflow=0.70 cfs 0.231 af
Reach 21R: CO 8 TO CO 7 Avg. Flo	w Depth=0.44' Max Vel=2.11 fps Inflow=0.70 cfs 0.231 af

 Reach 21R: CO 8 TO CO 7
 Avg. Flow Depth=0.44'
 Max Vel=2.11 fps
 Inflow=0.70 cfs
 0.231 af

 12.0" Round Pipe
 n=0.013
 L=49.2'
 S=0.0024 '/'
 Capacity=1.76 cfs
 Outflow=0.70 cfs
 0.231 af

 Reach 22R: CO 9 TO MH 3
 Avg. Flow Depth=0.12'
 Max Vel=2.87 fps
 Inflow=0.15 cfs
 0.050 af

 12.0"
 Round Pipe
 n=0.013
 L=194.4'
 S=0.0200 '/'
 Capacity=5.04 cfs
 Outflow=0.15 cfs
 0.050 af

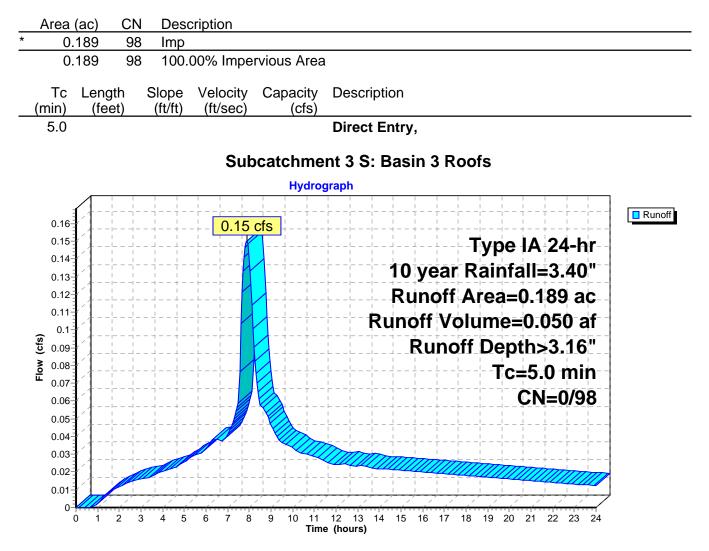

Total Runoff Area = 8.934 ac Runoff Volume = 2.030 af Average Runoff Depth = 2.73" 43.91% Pervious = 3.923 ac 56.09% Impervious = 5.011 ac

Summary for Subcatchment 2S: Basin 2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.02 cfs @ 7.92 hrs, Volume= 0.340 af, Depth> 2.73"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 year Rainfall=3.40"

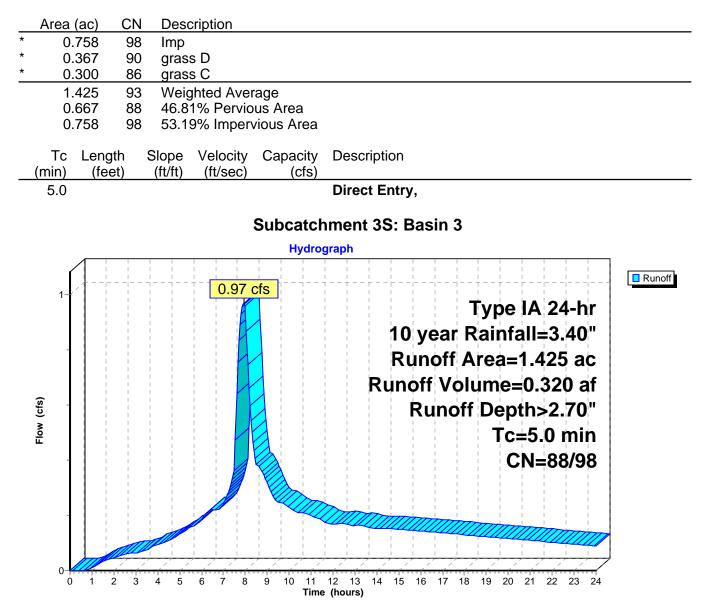


Summary for Subcatchment 3 S: Basin 3 Roofs

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.15 cfs @ 7.90 hrs, Volume= 0.050 af, Depth> 3.16"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 year Rainfall=3.40"



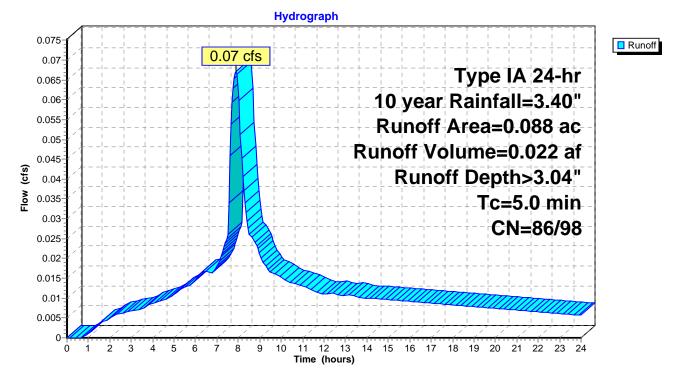
Summary for Subcatchment 3S: Basin 3

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.97 cfs @ 7.92 hrs, Volume= 0.320 af, Depth> 2.70"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 year Rainfall=3.40"

Summary for Subcatchment 4S: Basin 4

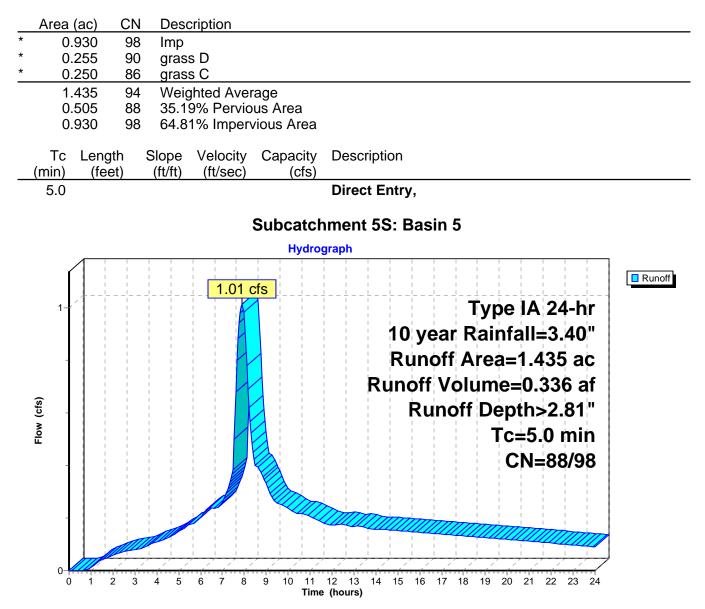

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.07 cfs @ 7.90 hrs, Volume= 0.022 af, Depth> 3.04"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 year Rainfall=3.40"

	Area	(ac)	CN	Desc	cription		
*	0.	079	98	Imp			
*	0.	009	86	gras	s C		
	0.	088	97	Weig	phted Aver	age	
	0.	009	86	10.2	3% Pervio	us Area	
	0.079 98		89.77% Impervious Area				
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	5.0			/	· · · · ·		Direct Entry,

Subcatchment 4S: Basin 4



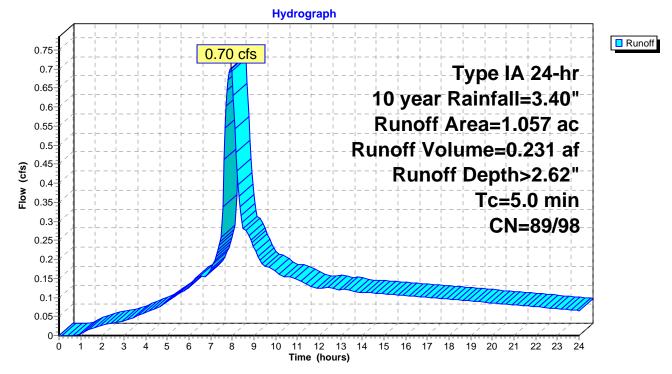
Summary for Subcatchment 5S: Basin 5

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.01 cfs @ 7.91 hrs, Volume= 0.336 af, Depth> 2.81"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 year Rainfall=3.40"

Summary for Subcatchment 6S: Basin 6


[49] Hint: Tc<2dt may require smaller dt

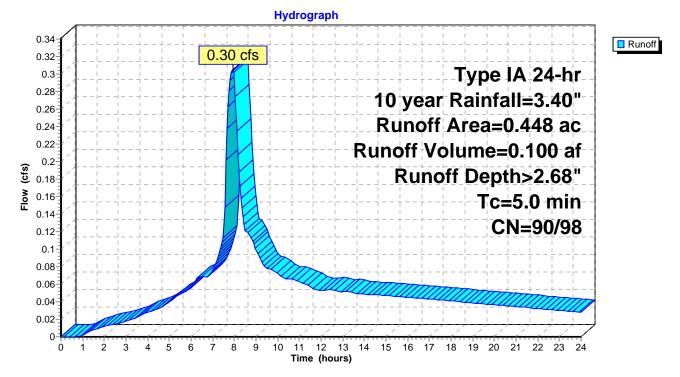
Runoff = 0.70 cfs @ 7.92 hrs, Volume= 0.231 af, Depth> 2.62"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 year Rainfall=3.40"

	Area ((ac)	CN	Desc	cription					
*	0.4	427	98	Imp						
*	0.4	440	90	gras	s D					
*	0.1	190	86	gras	s C					
	1.057 93 We				Weighted Average					
	0.630 89			59.6	0% Pervio	us Area				
	0.427 98		98	40.40% Impervious Area						
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	5.0						Direct Entry,			

Subcatchment 6S: Basin 6

Summary for Subcatchment 7S: Basin 7


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.30 cfs @ 7.92 hrs, Volume= 0.100 af, Depth> 2.68"

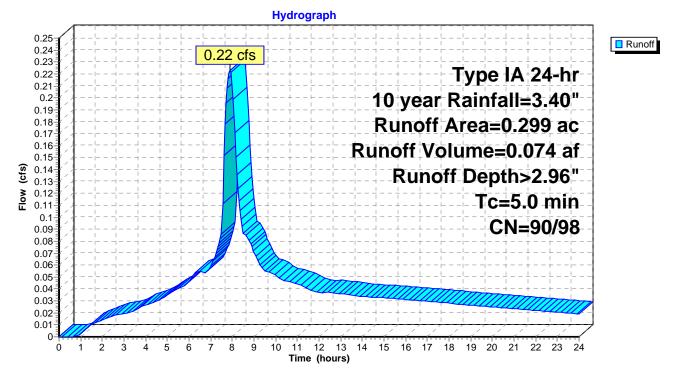
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 year Rainfall=3.40"

	Area	(ac)	CN	Desc	cription						
*	0.	185	98	Imp	mp						
*	0.	263	90	gras	grass D						
	0.448 93 Weighted Average										
	0.263 90 58.71% Pervious Area										
	0.185 98			41.29% Impervious Area							
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	5.0						Direct Entry,				

Summary for Subcatchment 8S: Basin 8

[49] Hint: Tc<2dt may require smaller dt

0.22 cfs @ 7.91 hrs, Volume= 0.074 af, Depth> 2.96" Runoff


Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 year Rainfall=3.40"

	Area (ac)	CN	Desc	cription		
*	0.225	98	Imp			
*	0.074	90	gras	s D		
	0.299	96	Weig	phted Aver	age	
	0.074 90 24.75% Per				us Area	
	0.225	98	75.2	5% Imperv	vious Area	
	Tc Len (min) (fe	gth eet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0					Direct Entry,

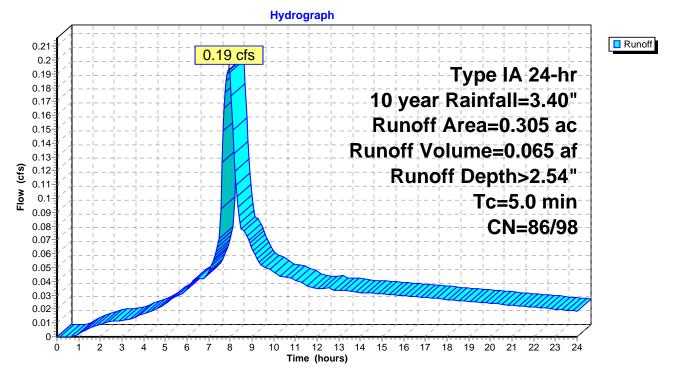
lrect Entry,

Subcatchment 8S: Basin 8

Summary for Subcatchment 9S: Basin 9

[49] Hint: Tc<2dt may require smaller dt

0.19 cfs @ 7.93 hrs, Volume= 0.065 af, Depth> 2.54" Runoff

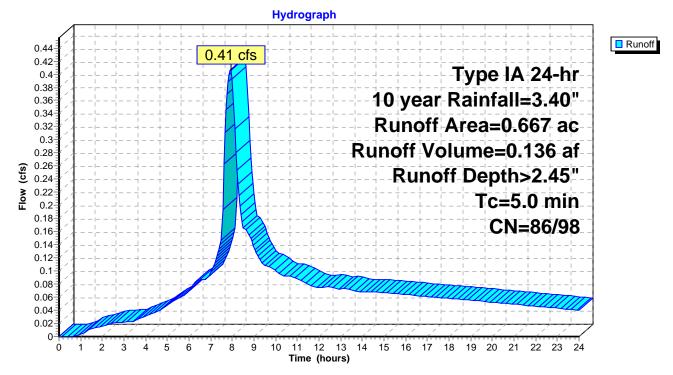

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 year Rainfall=3.40"

	Area (ac)	CN	Desc	ription		
*	0.141	98	Imp			
*	0.164	86	grass	s C		
	0.305	92	Weig	hted Aver	age	
	0.164 86 53.77% Pervious Area				us Area	
	0.141 9		98 46.23% Impervious Area		vious Area	
	Tc Leng	0	Slope	Velocity	Capacity	Description
	<u>(min)</u> (fe	et)	(ft/ft)	(ft/sec)	(cfs)	
	5.0					Direct Entry.

irect Entry,

Subcatchment 9S: Basin 9

Summary for Subcatchment 10S: Basin 10


[49] Hint: Tc<2dt may require smaller dt

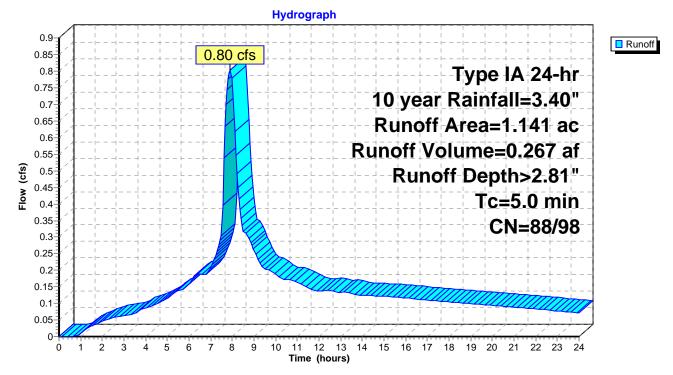
Runoff = 0.41 cfs @ 7.93 hrs, Volume= 0.136 af, Depth> 2.45"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 year Rainfall=3.40"

	Area ((ac)	CN	Desc	cription		
*	0.2	259	98	Imp			
*	0.3	374	86	gras	s C		
*	0.0	034	90	gras	s D		
	0.0	667	91	Weig	ghted Aver	age	
	0.408 86 61.17% Pervious Area					us Area	
	0.259 98		38.83% Impervious Area				
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0						Direct Entry,

Subcatchment 10S: Basin 10

Summary for Subcatchment 11S: Basin 11


[49] Hint: Tc<2dt may require smaller dt

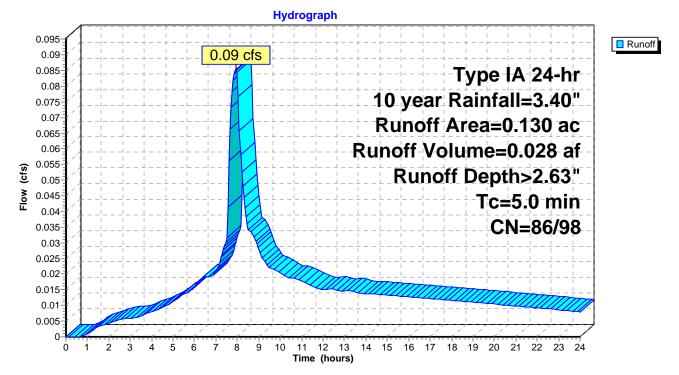
Runoff = 0.80 cfs @ 7.91 hrs, Volume= 0.267 af, Depth> 2.81"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 year Rainfall=3.40"

	Area (a	ac) C	N Des	cription		
*	0.7	31 9	8 Imp			
*	0.2	10 9	0 gras	is D		
*	0.2	<u> </u>	6 gras	is C		
	1.14	41 9	4 Wei	ghted Aver	age	
	0.410 88 35.93% Pervious Area					
	0.731 98 64.07% Impervious Area			7% Imperv	vious Area	
	Tc l (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0					Direct Entry,

Subcatchment 11S: Basin 11

Summary for Subcatchment 12SA: Basin 12A


[49] Hint: Tc<2dt may require smaller dt

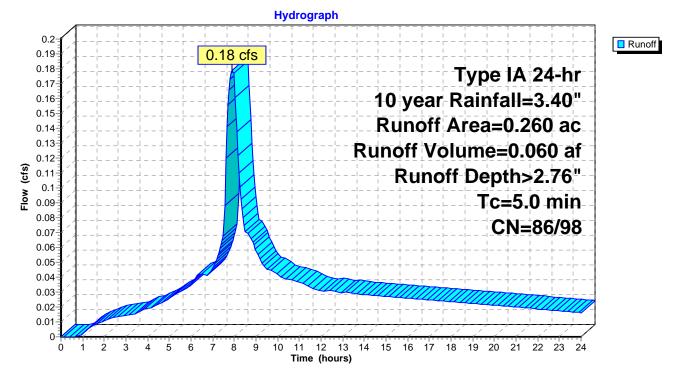
Runoff = 0.09 cfs @ 7.92 hrs, Volume= 0.028 af, Depth> 2.63"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 year Rainfall=3.40"

	Area (ad	c) CN	Dese	cription		
*	0.07	0 98	Imp			
*	0.06	68 0	gras	s C		
	0.13	0 92	Weig	ghted Aver	age	
	0.060 86 46.15% Pervious Area					
	0.070 98		53.8	5% Imperv	vious Area	
	Tc L (min)	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	5.0	× /		, /		Direct Entry,

Subcatchment 12SA: Basin 12A

Summary for Subcatchment 12SB: Basin 12B

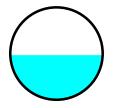

[49] Hint: Tc<2dt may require smaller dt

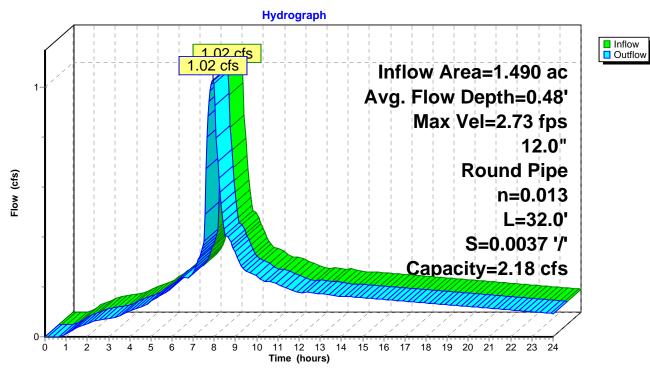
Runoff = 0.18 cfs @ 7.91 hrs, Volume= 0.060 af, Depth> 2.76"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 year Rainfall=3.40"

	Area (ac) CN	Dese	cription					
*	0.170) 98	Imp						
*	0.090) 86	gras	s c					
	0.260) 94	Weig	ghted Aver	age				
	0.090 86 3			34.62% Pervious Area					
	0.170) 98	65.3	8% Imperv	vious Area				
		ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	5.0					Direct Entry,			

Subcatchment 12SB: Basin 12B


Summary for Reach 1R: CB 1 TO CB 2

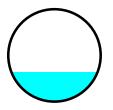

[52] Hint: Inlet/Outlet conditions not evaluated

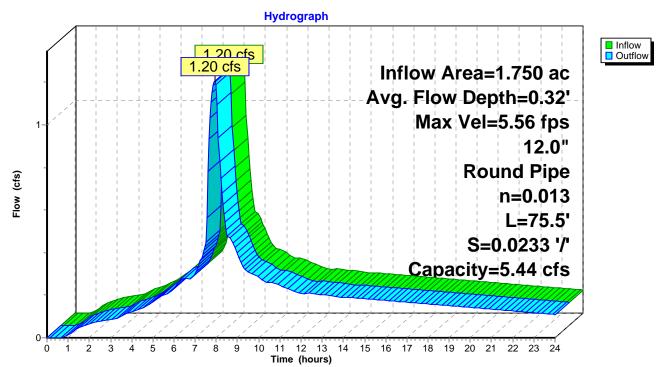
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.73 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.59 fps, Avg. Travel Time= 0.3 min

Peak Storage= 12 cf @ 7.92 hrs Average Depth at Peak Storage= 0.48' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.18 cfs

12.0" Round Pipe n= 0.013 Length= 32.0' Slope= 0.0037 '/' Inlet Invert= 115.57', Outlet Invert= 115.45'

Reach 1R: CB 1 TO CB 2


Summary for Reach 2R: CB 2 TO MH 1


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach 1R outlet invert by 0.32' @ 7.90 hrs

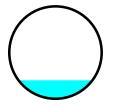
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 5.56 fps, Min. Travel Time= 0.2 min Avg. Velocity = 3.17 fps, Avg. Travel Time= 0.4 min

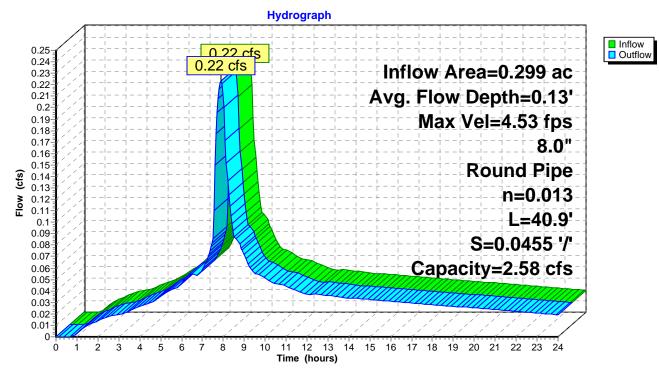
Peak Storage= 16 cf @ 7.92 hrs Average Depth at Peak Storage= 0.32' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.44 cfs

12.0" Round Pipe n= 0.013 Length= 75.5' Slope= 0.0233 '/' Inlet Invert= 115.45', Outlet Invert= 113.69'

Reach 2R: CB 2 TO MH 1

Summary for Reach 3R: CB 3 TO MH 1


[52] Hint: Inlet/Outlet conditions not evaluated

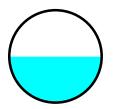

Inflow Area =0.299 ac, 75.25% Impervious, Inflow Depth > 2.96" for 10 year eventInflow =0.22 cfs @7.91 hrs, Volume=0.074 afOutflow =0.22 cfs @7.91 hrs, Volume=0.074 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 4.53 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.56 fps, Avg. Travel Time= 0.3 min

Peak Storage= 2 cf @ 7.91 hrs Average Depth at Peak Storage= 0.13' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.58 cfs

8.0" Round Pipe n= 0.013 Length= 40.9' Slope= 0.0455 '/' Inlet Invert= 117.00', Outlet Invert= 115.14'

Reach 3R: CB 3 TO MH 1


Summary for Reach 4R: MH 1 TO MH 2

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach 2R outlet invert by 0.30' @ 7.90 hrs

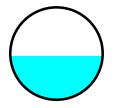
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 3.88 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.26 fps, Avg. Travel Time= 0.7 min

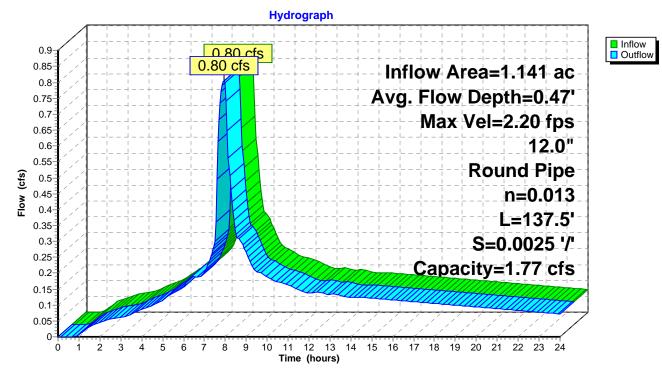
Peak Storage= 35 cf @ 7.92 hrs Average Depth at Peak Storage= 0.50' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.06 cfs

12.0" Round Pipe n= 0.013 Length= 90.8' Slope= 0.0074 '/' Inlet Invert= 113.49', Outlet Invert= 112.82'

Hydrograph InflowOutflow 1.51 cfs 1.51 cfs Inflow Area=2.179 ac Avg. Flow Depth=0.50' Max Vel=3.88 fps 12.0" **Round Pipe** 1 Flow (cfs) n=0.013 L=90.8' S=0.0074 '/' Capacity=3.06 cfs 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ò 1 Time (hours)

Reach 4R: MH 1 TO MH 2


Summary for Reach 5R: CB 4 TO MH 2


[52] Hint: Inlet/Outlet conditions not evaluated

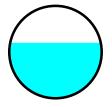
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.20 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.28 fps, Avg. Travel Time= 1.8 min

Peak Storage= 50 cf @ 7.93 hrs Average Depth at Peak Storage= 0.47' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.77 cfs

12.0" Round Pipe n= 0.013 Length= 137.5' Slope= 0.0025 '/' Inlet Invert= 112.96', Outlet Invert= 112.62'

Reach 5R: CB 4 TO MH 2

Summary for Reach 6R: MH 2 TO MH 6


[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach 4R OUTLET depth by 0.20' @ 7.95 hrs
[63] Warning: Exceeded Reach 5R INLET depth by 0.09' @ 7.95 hrs
[63] Warning: Exceeded Reach 8R INLET depth by 0.38' @ 7.95 hrs

Inflow Area =4.292 ac, 56.92% Impervious, Inflow Depth > 2.71" for 10 year eventInflow =2.91 cfs @ 7.93 hrs, Volume=0.969 afOutflow =2.91 cfs @ 7.94 hrs, Volume=0.968 af, Atten= 0%, Lag= 0.7 min

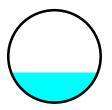
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.63 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.56 fps, Avg. Travel Time= 1.6 min

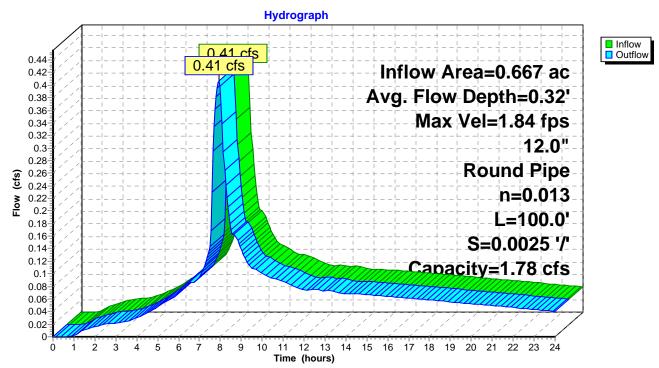
Peak Storage= 169 cf @ 7.94 hrs Average Depth at Peak Storage= 0.90' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 4.34 cfs

18.0" Round Pipe n= 0.013 Length= 152.6' Slope= 0.0017 '/' Inlet Invert= 112.62', Outlet Invert= 112.36'

Hydrograph Inflow
Outflow 2 91 cfs 2.91 cfs Inflow Area=4.292 ac 3 Avg. Flow Depth=0.90' Max Vel=2.63 fps 18.0" 2 **Round Pipe** Flow (cfs) n=0.013 L=152.6' S=0.0017 '/' 1 Capacity=4.34 cfs 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 Ó Time (hours)

Reach 6R: MH 2 TO MH 6


Summary for Reach 7R: CO 2 TO CO 3

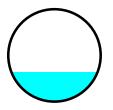

[52] Hint: Inlet/Outlet conditions not evaluated[62] Hint: Exceeded Reach 19R OUTLET depth by 0.01' @ 8.10 hrs

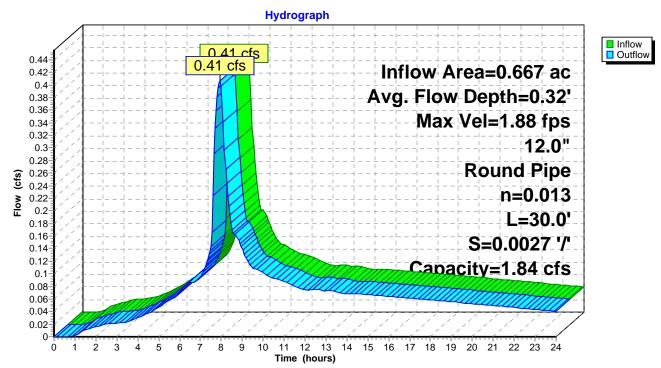
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 1.84 fps, Min. Travel Time= 0.9 min Avg. Velocity = 1.05 fps, Avg. Travel Time= 1.6 min

Peak Storage= 22 cf @ 7.95 hrs Average Depth at Peak Storage= 0.32' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.78 cfs

12.0" Round Pipe n= 0.013 Length= 100.0' Slope= 0.0025 '/' Inlet Invert= 113.07', Outlet Invert= 112.82'

Reach 7R: CO 2 TO CO 3


Summary for Reach 8R: CO 1 TO MH 6


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach 7R outlet invert by 0.32' @ 7.95 hrs

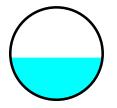
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 1.88 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.07 fps, Avg. Travel Time= 0.5 min

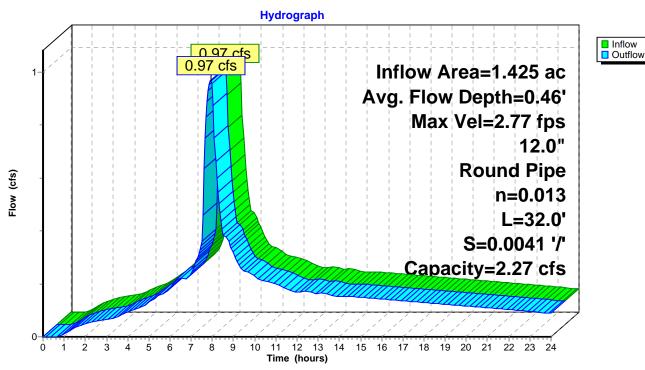
Peak Storage= 6 cf @ 7.95 hrs Average Depth at Peak Storage= 0.32' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.84 cfs

12.0" Round Pipe n= 0.013 Length= 30.0' Slope= 0.0027 '/' Inlet Invert= 112.82', Outlet Invert= 112.74'

Reach 8R: CO 1 TO MH 6

Summary for Reach 9R: CB 6 TO CB 7


[52] Hint: Inlet/Outlet conditions not evaluated


Inflow Area =1.425 ac, 53.19% Impervious, Inflow Depth > 2.70" for 10 year eventInflow =0.97 cfs @ 7.92 hrs, Volume=0.320 afOutflow =0.97 cfs @ 7.92 hrs, Volume=0.320 af, Atten= 0%, Lag= 0.2 min

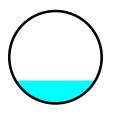
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.77 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.60 fps, Avg. Travel Time= 0.3 min

Peak Storage= 11 cf @ 7.92 hrs Average Depth at Peak Storage= 0.46' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.27 cfs

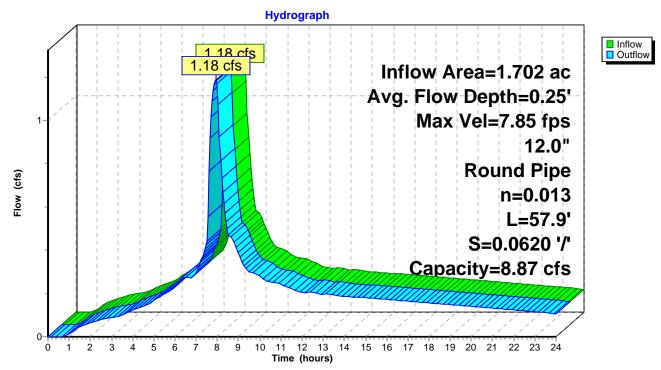
12.0" Round Pipe n= 0.013 Length= 32.0' Slope= 0.0041 '/' Inlet Invert= 117.53', Outlet Invert= 117.40'

Reach 9R: CB 6 TO CB 7

Summary for Reach 10R: CB 7 TO MH 3


[52] Hint: Inlet/Outlet conditions not evaluated
[63] Warning: Exceeded Reach 9R INLET depth by 0.33' @ 0.00 hrs
[63] Warning: Exceeded Reach 22R INLET depth by 0.03' @ 7.95 hrs

Inflow Area =1.702 ac, 60.28% Impervious, Inflow Depth > 2.77" for 10 year eventInflow =1.18 cfs @7.92 hrs, Volume=0.392 afOutflow =1.18 cfs @7.92 hrs, Volume=0.392 af, Atten= 0%, Lag= 0.2 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 7.85 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.45 fps, Avg. Travel Time= 0.2 min

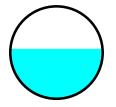
Peak Storage= 9 cf @ 7.92 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 8.87 cfs

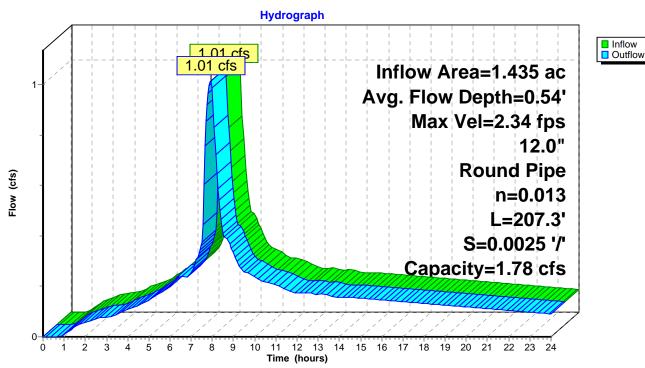
12.0" Round Pipe n= 0.013 Length= 57.9' Slope= 0.0620 '/' Inlet Invert= 117.86', Outlet Invert= 114.27'

Type IA 24-hr 10 year Rainfall=3.40" Printed 5/13/2019 tions LLC Page 37

Reach 10R: CB 7 TO MH 3

Summary for Reach 11R: CB 5 TO MH 3


[52] Hint: Inlet/Outlet conditions not evaluated


Inflow Area =1.435 ac, 64.81% Impervious, Inflow Depth > 2.81" for 10 year eventInflow =1.01 cfs @ 7.91 hrs, Volume=0.336 afOutflow =1.01 cfs @ 7.93 hrs, Volume=0.336 af, Atten= 0%, Lag= 1.1 min

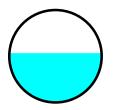
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.34 fps, Min. Travel Time= 1.5 min Avg. Velocity = 1.37 fps, Avg. Travel Time= 2.5 min

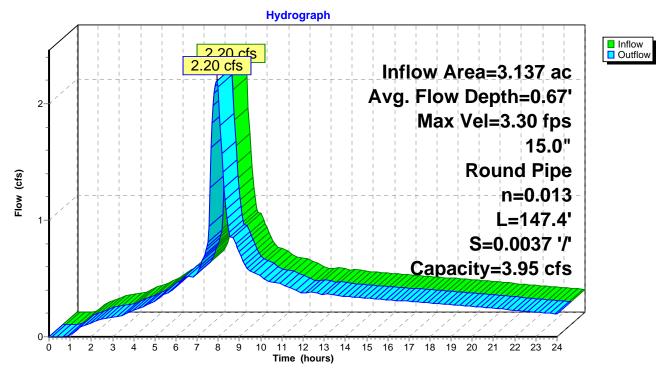
Peak Storage= 90 cf @ 7.93 hrs Average Depth at Peak Storage= 0.54' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.78 cfs

12.0" Round Pipe n= 0.013 Length= 207.3' Slope= 0.0025 '/' Inlet Invert= 114.59', Outlet Invert= 114.07'

Reach 11R: CB 5 TO MH 3

Summary for Reach 12R: MH 3 TO MH 4


[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach 10R OUTLET depth by 0.22' @ 7.95 hrs
[62] Hint: Exceeded Reach 11R OUTLET depth by 0.13' @ 7.95 hrs


Inflow Area =3.137 ac, 62.35% Impervious, Inflow Depth > 2.79" for 10 year eventInflow =2.20 cfs @ 7.93 hrs, Volume=0.729 afOutflow =2.20 cfs @ 7.93 hrs, Volume=0.728 af, Atten= 0%, Lag= 0.5 min

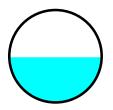
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 3.30 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.93 fps, Avg. Travel Time= 1.3 min

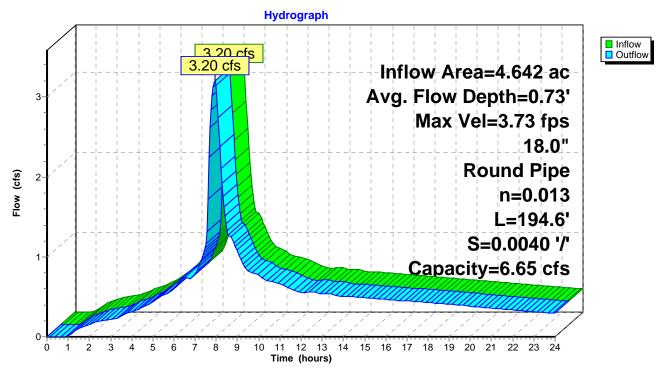
Peak Storage= 98 cf @ 7.93 hrs Average Depth at Peak Storage= 0.67' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 3.95 cfs

15.0" Round Pipe n= 0.013 Length= 147.4' Slope= 0.0037 '/' Inlet Invert= 114.07', Outlet Invert= 113.52'

Reach 12R: MH 3 TO MH 4

Summary for Reach 13R: MH 4 TO MH 6


[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach 12R OUTLET depth by 0.08' @ 8.10 hrs
[62] Hint: Exceeded Reach 17R OUTLET depth by 0.05' @ 7.95 hrs


Inflow Area =4.642 ac, 55.32% Impervious, Inflow Depth > 2.74" for 10 year eventInflow =3.20 cfs @7.94 hrs, Volume=1.059 afOutflow =3.20 cfs @7.95 hrs, Volume=1.058 af, Atten= 0%, Lag= 0.7 min

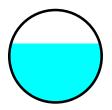
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 3.73 fps, Min. Travel Time= 0.9 min Avg. Velocity = 2.16 fps, Avg. Travel Time= 1.5 min

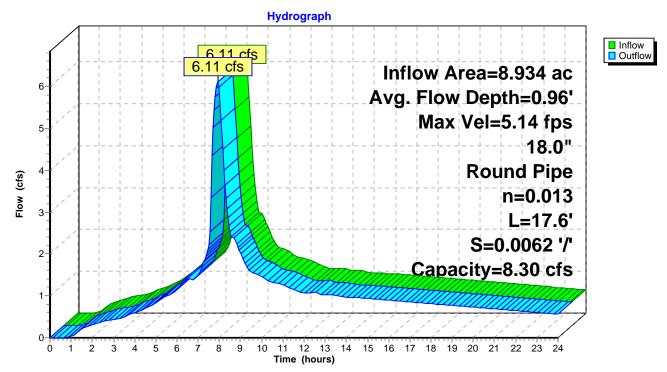
Peak Storage= 167 cf @ 7.95 hrs Average Depth at Peak Storage= 0.73' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 6.65 cfs

18.0" Round Pipe n= 0.013 Length= 194.6' Slope= 0.0040 '/' Inlet Invert= 113.52', Outlet Invert= 112.74'

Reach 13R: MH 4 TO MH 6

Summary for Reach 14R: MH 6 TO OUTFALL


[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach 6R OUTLET depth by 0.06' @ 8.00 hrs
[61] Hint: Exceeded Reach 13R outlet invert by 0.58' @ 7.95 hrs

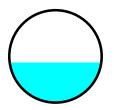

Inflow Area =8.934 ac, 56.09% Impervious, Inflow Depth > 2.72" for 10 year eventInflow =6.11 cfs @7.95 hrs, Volume=2.026 afOutflow =6.11 cfs @7.95 hrs, Volume=2.026 af, Atten= 0%, Lag= 0.0 min

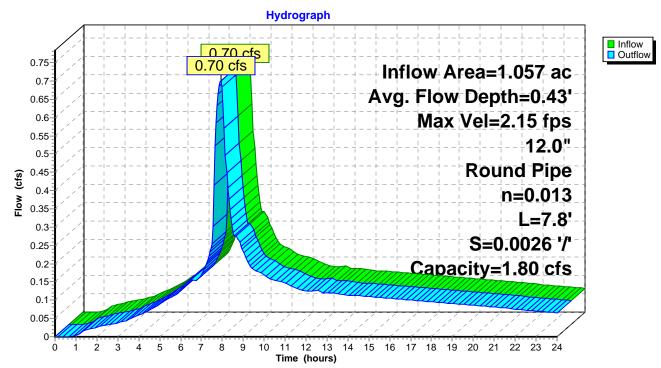
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 5.14 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.06 fps, Avg. Travel Time= 0.1 min

Peak Storage= 21 cf @ 7.95 hrs Average Depth at Peak Storage= 0.96' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 8.30 cfs

18.0" Round Pipe n= 0.013 Length= 17.6' Slope= 0.0062 '/' Inlet Invert= 112.36', Outlet Invert= 112.25'

Reach 14R: MH 6 TO OUTFALL


Summary for Reach 15R: CO 6 TO CO 5


[52] Hint: Inlet/Outlet conditions not evaluated[61] Hint: Exceeded Reach 20R outlet invert by 0.43' @ 7.95 hrs

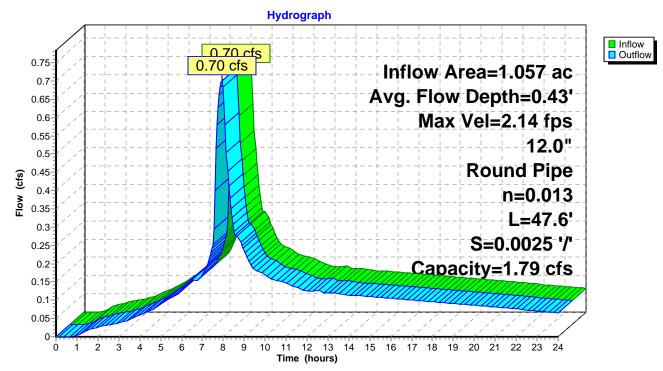
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.15 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.24 fps, Avg. Travel Time= 0.1 min

Peak Storage= 3 cf @ 7.94 hrs Average Depth at Peak Storage= 0.43' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.80 cfs

12.0" Round Pipe n= 0.013 Length= 7.8' Slope= 0.0026 '/' Inlet Invert= 114.16', Outlet Invert= 114.14'

Reach 15R: CO 6 TO CO 5


Summary for Reach 16R: CO 5 TO CO 4

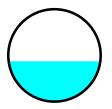

[52] Hint: Inlet/Outlet conditions not evaluated[62] Hint: Exceeded Reach 15R OUTLET depth by 0.01' @ 8.10 hrs

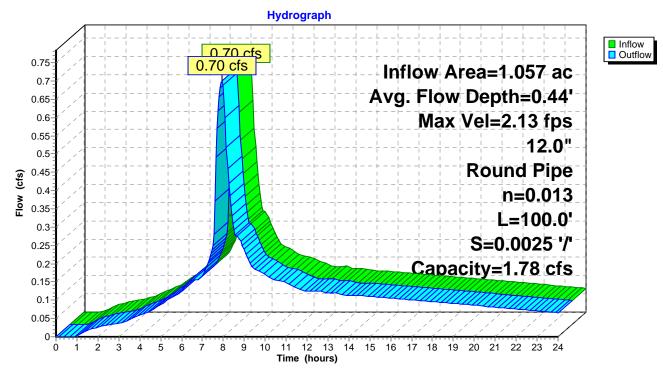
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.14 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.23 fps, Avg. Travel Time= 0.6 min

Peak Storage= 16 cf @ 7.94 hrs Average Depth at Peak Storage= 0.43' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.79 cfs

12.0" Round Pipe n= 0.013 Length= 47.6' Slope= 0.0025 '/' Inlet Invert= 114.14', Outlet Invert= 114.02'

Reach 16R: CO 5 TO CO 4

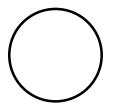

Summary for Reach 17R: CO 4 TO MH 4

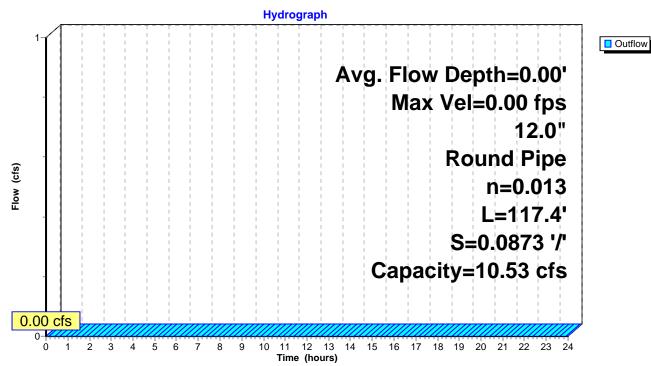

[52] Hint: Inlet/Outlet conditions not evaluated[62] Hint: Exceeded Reach 16R OUTLET depth by 0.01' @ 8.10 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.13 fps, Min. Travel Time= 0.8 min Avg. Velocity = 1.23 fps, Avg. Travel Time= 1.4 min

Peak Storage= 33 cf @ 7.95 hrs Average Depth at Peak Storage= 0.44' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.78 cfs

12.0" Round Pipe n= 0.013 Length= 100.0' Slope= 0.0025 '/' Inlet Invert= 114.02', Outlet Invert= 113.77'


Reach 17R: CO 4 TO MH 4


Summary for Reach 18R: MH 7 TO OUTFALL

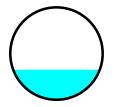
[43] Hint: Has no inflow (Outflow=Zero)

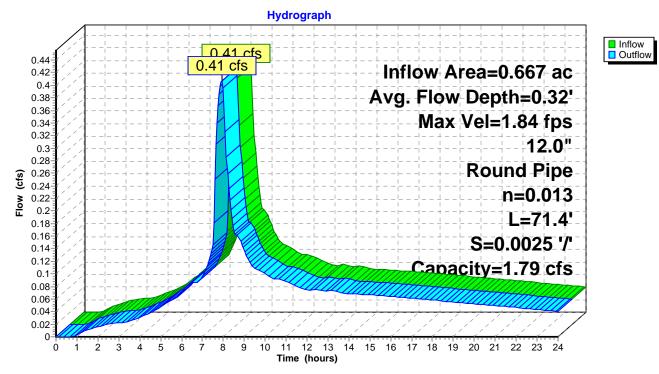
Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 10.53 cfs

12.0" Round Pipe n= 0.013 Length= 117.4' Slope= 0.0873 '/' Inlet Invert= 111.25', Outlet Invert= 101.00'

Reach 18R: MH 7 TO OUTFALL

Summary for Reach 19R: CO 3 TO CO 4


[52] Hint: Inlet/Outlet conditions not evaluated

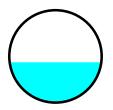

Inflow Area =0.667 ac, 38.83% Impervious, Inflow Depth > 2.45" for 10 year eventInflow =0.41 cfs @ 7.93 hrs, Volume=0.136 afOutflow =0.41 cfs @ 7.94 hrs, Volume=0.136 af, Atten= 0%, Lag= 0.5 min

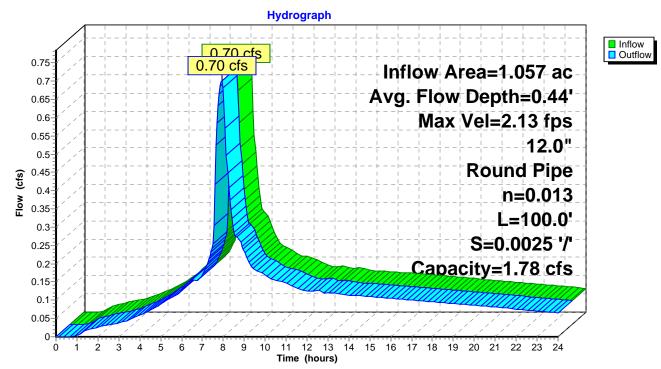
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 1.84 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.05 fps, Avg. Travel Time= 1.1 min

Peak Storage= 16 cf @ 7.94 hrs Average Depth at Peak Storage= 0.32' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.79 cfs

12.0" Round Pipe n= 0.013 Length= 71.4' Slope= 0.0025 '/' Inlet Invert= 113.25', Outlet Invert= 113.07'

Reach 19R: CO 3 TO CO 4


Summary for Reach 20R: CO 7 TO CO 6


[52] Hint: Inlet/Outlet conditions not evaluated[61] Hint: Exceeded Reach 21R outlet invert by 0.44' @ 7.95 hrs

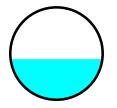
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.13 fps, Min. Travel Time= 0.8 min Avg. Velocity = 1.22 fps, Avg. Travel Time= 1.4 min

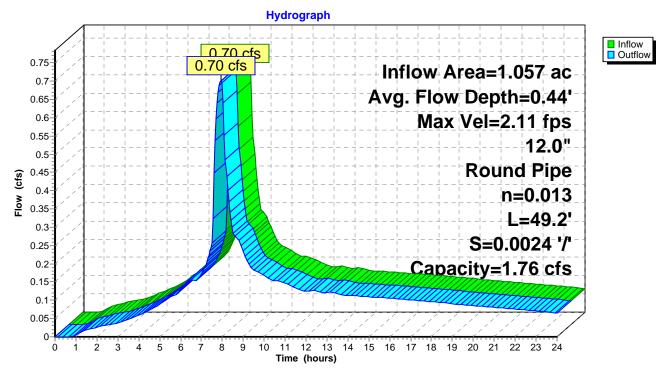
Peak Storage= 33 cf @ 7.94 hrs Average Depth at Peak Storage= 0.44' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.78 cfs

12.0" Round Pipe n= 0.013 Length= 100.0' Slope= 0.0025 '/' Inlet Invert= 114.41', Outlet Invert= 114.16'

Reach 20R: CO 7 TO CO 6

Summary for Reach 21R: CO 8 TO CO 7


[52] Hint: Inlet/Outlet conditions not evaluated

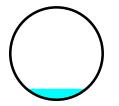

Inflow Area =1.057 ac, 40.40% Impervious, Inflow Depth > 2.62" for 10 year eventInflow =0.70 cfs @ 7.92 hrs, Volume=0.231 afOutflow =0.70 cfs @ 7.93 hrs, Volume=0.231 af, Atten= 0%, Lag= 0.4 min

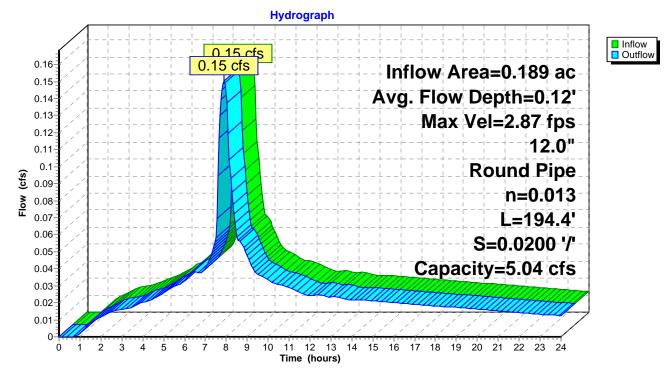
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.11 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.21 fps, Avg. Travel Time= 0.7 min

Peak Storage= 16 cf @ 7.93 hrs Average Depth at Peak Storage= 0.44' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.76 cfs

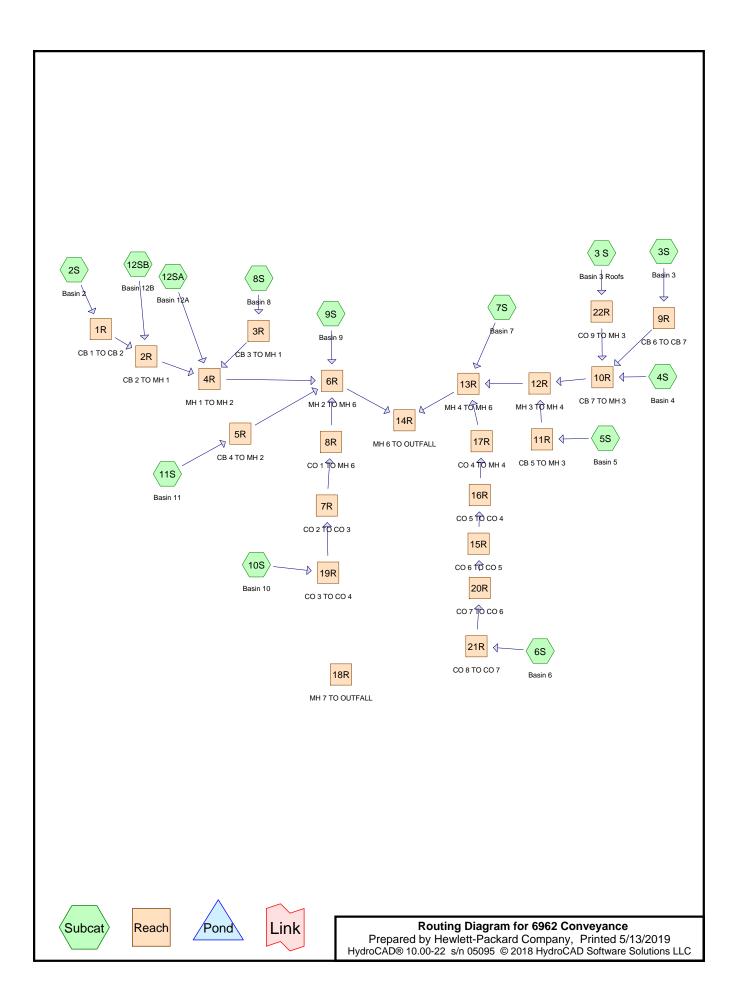
12.0" Round Pipe n= 0.013 Length= 49.2' Slope= 0.0024 '/' Inlet Invert= 114.53', Outlet Invert= 114.41'

Reach 21R: CO 8 TO CO 7


Summary for Reach 22R: CO 9 TO MH 3


[52] Hint: Inlet/Outlet conditions not evaluated

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.87 fps, Min. Travel Time= 1.1 min Avg. Velocity = 1.62 fps, Avg. Travel Time= 2.0 min


Peak Storage= 10 cf @ 7.91 hrs Average Depth at Peak Storage= 0.12' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.04 cfs

12.0" Round Pipe n= 0.013 Length= 194.4' Slope= 0.0200 '/' Inlet Invert= 117.96', Outlet Invert= 114.07'

Reach 22R: CO 9 TO MH 3

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
5.011	98	Imp (2S, 3 S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12SA, 12SB)
1.847	86	grass C (2S, 3S, 4S, 5S, 6S, 9S, 10S, 11S, 12SA)
1.986	90	grass D (2S, 3S, 5S, 6S, 7S, 8S, 10S, 11S)
0.090	86	grass c (12SB)
8.934	94	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
 (acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
8.934	Other	2S, 3 S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12SA, 12SB
8.934		TOTAL AREA

6962 Conveyance

Prepared by Hewlett-Packard Company	Pr
HydroCAD® 10.00-22 s/n 05095 © 2018 HydroCAD Software Solutions LLC	

Printed 5/13/2019 Page 4

SG-A acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	0.000	0.000	5.011	5.011	Imp	2S, 3 S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12SA, 12SB
0.000	0.000	0.000	0.000	1.847	1.847	grass C	2S, 3S, 4S, 5S, 6S, 9S, 10S, 11S, 12SA
0.000	0.000	0.000	0.000	1.986	1.986	grass D	2S, 3S, 5S, 6S, 7S, 8S, 10S, 11S
0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.090 8.934	0.090 8.934	grass c TOTAL AREA	12SB

Ground Covers (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	1R	115.57	115.45	32.0	0.0037	0.013	12.0	0.0	0.0
2	2R	115.45	113.69	75.5	0.0233	0.013	12.0	0.0	0.0
3	3R	117.00	115.14	40.9	0.0455	0.013	8.0	0.0	0.0
4	4R	113.49	112.82	90.8	0.0074	0.013	12.0	0.0	0.0
5	5R	112.96	112.62	137.5	0.0025	0.013	12.0	0.0	0.0
6	6R	112.62	112.36	152.6	0.0017	0.013	18.0	0.0	0.0
7	7R	113.07	112.82	100.0	0.0025	0.013	12.0	0.0	0.0
8	8R	112.82	112.74	30.0	0.0027	0.013	12.0	0.0	0.0
9	9R	117.53	117.40	32.0	0.0041	0.013	12.0	0.0	0.0
10	10R	117.86	114.27	57.9	0.0620	0.013	12.0	0.0	0.0
11	11R	114.59	114.07	207.3	0.0025	0.013	12.0	0.0	0.0
12	12R	114.07	113.52	147.4	0.0037	0.013	15.0	0.0	0.0
13	13R	113.52	112.74	194.6	0.0040	0.013	18.0	0.0	0.0
14	14R	112.36	112.25	17.6	0.0062	0.013	18.0	0.0	0.0
15	15R	114.16	114.14	7.8	0.0026	0.013	12.0	0.0	0.0
16	16R	114.14	114.02	47.6	0.0025	0.013	12.0	0.0	0.0
17	17R	114.02	113.77	100.0	0.0025	0.013	12.0	0.0	0.0
18	18R	111.25	101.00	117.4	0.0873	0.013	12.0	0.0	0.0
19	19R	113.25	113.07	71.4	0.0025	0.013	12.0	0.0	0.0
20	20R	114.41	114.16	100.0	0.0025	0.013	12.0	0.0	0.0
21	21R	114.53	114.41	49.2	0.0024	0.013	12.0	0.0	0.0
22	22R	117.96	114.07	194.4	0.0200	0.013	12.0	0.0	0.0

Pipe Listing (all nodes)

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SBUH method, Split Pervious/Imperv. Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 2S: Basin 2	Runoff Area=1.490 ac 56.85% Impervious Runoff Depth>3.22" Tc=5.0 min CN=88/98 Runoff=1.21 cfs 0.399 af
Subcatchment 3 S: Basin 3 Roofs	Runoff Area=0.189 ac 100.00% Impervious Runoff Depth>3.66" Tc=5.0 min CN=0/98 Runoff=0.17 cfs 0.058 af
Subcatchment 3S: Basin 3	Runoff Area=1.425 ac 53.19% Impervious Runoff Depth>3.18" Tc=5.0 min CN=88/98 Runoff=1.14 cfs 0.377 af
Subcatchment 4S: Basin 4	Runoff Area=0.088 ac 89.77% Impervious Runoff Depth>3.54" Tc=5.0 min CN=86/98 Runoff=0.08 cfs 0.026 af
Subcatchment 5S: Basin 5	Runoff Area=1.435 ac 64.81% Impervious Runoff Depth>3.30" Tc=5.0 min CN=88/98 Runoff=1.19 cfs 0.394 af
Subcatchment 6S: Basin 6	Runoff Area=1.057 ac 40.40% Impervious Runoff Depth>3.10" Tc=5.0 min CN=89/98 Runoff=0.83 cfs 0.273 af
Subcatchment 7S: Basin 7	Runoff Area=0.448 ac 41.29% Impervious Runoff Depth>3.17" Tc=5.0 min CN=90/98 Runoff=0.36 cfs 0.118 af
Subcatchment 8S: Basin 8	Runoff Area=0.299 ac 75.25% Impervious Runoff Depth>3.45" Tc=5.0 min CN=90/98 Runoff=0.26 cfs 0.086 af
Subcatchment9S: Basin 9	Runoff Area=0.305 ac 46.23% Impervious Runoff Depth>3.01" Tc=5.0 min CN=86/98 Runoff=0.23 cfs 0.076 af
Subcatchment 10S: Basin 10	Runoff Area=0.667 ac 38.83% Impervious Runoff Depth>2.92" Tc=5.0 min CN=86/98 Runoff=0.49 cfs 0.162 af
Subcatchment 11S: Basin 11	Runoff Area=1.141 ac 64.07% Impervious Runoff Depth>3.29" Tc=5.0 min CN=88/98 Runoff=0.94 cfs 0.313 af
Subcatchment 12SA: Basin 12A	Runoff Area=0.130 ac 53.85% Impervious Runoff Depth>3.10" Tc=5.0 min CN=86/98 Runoff=0.10 cfs 0.034 af
Subcatchment 12SB: Basin 12B	Runoff Area=0.260 ac 65.38% Impervious Runoff Depth>3.24" Tc=5.0 min CN=86/98 Runoff=0.21 cfs 0.070 af
Reach 1R: CB 1 TO CB 2 12.0" Round Pipe n=0.013	Avg. Flow Depth=0.53' Max Vel=2.85 fps Inflow=1.21 cfs 0.399 af L=32.0' S=0.0037 '/' Capacity=2.18 cfs Outflow=1.21 cfs 0.399 af
Reach 2R: CB 2 TO MH 1 12.0" Round Pipe n=0.013	Avg. Flow Depth=0.35' Max Vel=5.82 fps Inflow=1.42 cfs 0.469 af L=75.5' S=0.0233 '/' Capacity=5.44 cfs Outflow=1.42 cfs 0.469 af
Reach 3R: CB 3 TO MH 1 8.0" Round Pipe n=0.013	Avg. Flow Depth=0.14' Max Vel=4.73 fps Inflow=0.26 cfs 0.086 af L=40.9' S=0.0455 '/' Capacity=2.58 cfs Outflow=0.26 cfs 0.086 af

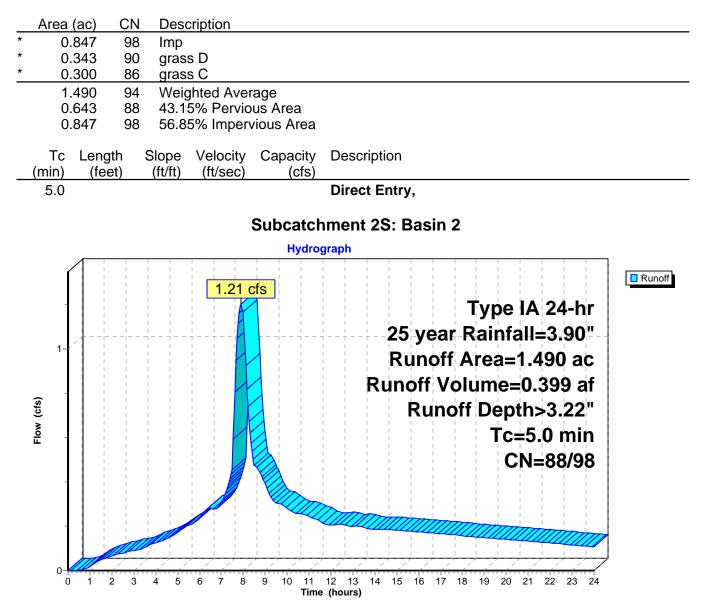
6962 Conveyance Prepared by Hewlett-Packard Company

Type IA 24-hr 25 year Rainfall=3.90" Printed 5/13/2019

Prepared by Hewlett-Packard Company HydroCAD® 10.00-22 s/n 05095 © 2018 HydroCAD Software Solutions LLC	Printed 5/13/2019 Page 7
Reach 4R: MH 1 TO MH 2 Avg. Flow Depth=0.55' Max Vel=4.04 fps Inflo 12.0" Round Pipe n=0.013 L=90.8' S=0.0074 '/' Capacity=3.06 cfs Outflo	ow=1.78 cfs 0.589 af
Reach 5R: CB 4 TO MH 2 Avg. Flow Depth=0.52' Max Vel=2.29 fps Inflo 12.0" Round Pipe n=0.013 L=137.5' S=0.0025 '/' Capacity=1.77 cfs Outflo	
Reach 6R: MH 2 TO MH 6Avg. Flow Depth=1.01' Max Vel=2.72 fpsInflo18.0" Round Pipen=0.013L=152.6' S=0.0017 '/' Capacity=4.34 cfsOutflo	
Reach 7R: CO 2 TO CO 3 Avg. Flow Depth=0.36' Max Vel=1.93 fps Inflo 12.0" Round Pipe n=0.013 L=100.0' S=0.0025 '/' Capacity=1.78 cfs Outflo	
Reach 8R: CO 1 TO MH 6Avg. Flow Depth=0.35'Max Vel=1.98 fpsInflo12.0"Round Pipen=0.013L=30.0'S=0.0027 '/'Capacity=1.84 cfsOutflo	
Reach 9R: CB 6 TO CB 7 Avg. Flow Depth=0.50' Max Vel=2.89 fps Inflo 12.0" Round Pipe n=0.013 L=32.0' S=0.0041 '/' Capacity=2.27 cfs Outflo	
Reach 10R: CB 7 TO MH 3 Avg. Flow Depth=0.27' Max Vel=8.23 fps Infle 12.0" Round Pipe n=0.013 L=57.9' S=0.0620 '/' Capacity=8.87 cfs Outfle	
Reach 11R: CB 5 TO MH 3 Avg. Flow Depth=0.60' Max Vel=2.43 fps Infle 12.0" Round Pipe n=0.013 L=207.3' S=0.0025 '/' Capacity=1.78 cfs Outfle	
Reach 12R: MH 3 TO MH 4 Avg. Flow Depth=0.74' Max Vel=3.43 fps Infle 15.0" Round Pipe n=0.013 L=147.4' S=0.0037 '/' Capacity=3.95 cfs Outfle	
Reach 13R: MH 4 TO MH 6 Avg. Flow Depth=0.81' Max Vel=3.88 fps Inflo 18.0" Round Pipe n=0.013 L=194.6' S=0.0040 '/' Capacity=6.65 cfs Outflo	ow=3.77 cfs 1.244 af
Reach 14R: MH 6 TO OUTFALLAvg. Flow Depth=1.08'Max Vel=5.29 fpsInflo18.0"Round Pipen=0.013L=17.6'S=0.0062 '/'Capacity=8.30 cfsOutflo	ow=7.20 cfs 2.383 af
Reach 15R: CO 6 TO CO 5 Avg. Flow Depth=0.48' Max Vel=2.25 fps Inflo 12.0" Round Pipe n=0.013 L=7.8' S=0.0026 '/' Capacity=1.80 cfs Outflo	ow=0.83 cfs 0.273 af
Reach 16R: CO 5 TO CO 4 Avg. Flow Depth=0.48' Max Vel=2.23 fps Inflo 12.0" Round Pipe n=0.013 L=47.6' S=0.0025 '/' Capacity=1.79 cfs Outflo	ow=0.83 cfs 0.273 af
Reach 17R: CO 4 TO MH 4 Avg. Flow Depth=0.48' Max Vel=2.23 fps Inflo 12.0" Round Pipe n=0.013 L=100.0' S=0.0025 '/' Capacity=1.78 cfs Outflo	ow=0.83 cfs 0.273 af
Reach 18R: MH 7 TO OUTFALL Avg. Flow Depth=0.0 12.0" Round Pipe n=0.013 L=117.4' S=0.0873 '/' Capacity=10.53 cfs Outflow	ow=0.00 cfs 0.000 af
Reach 19R: CO 3 TO CO 4 Avg. Flow Depth=0.36' Max Vel=1.94 fps Inflo 12.0" Round Pipe n=0.013 L=71.4' S=0.0025 '/' Capacity=1.79 cfs Outflo	ow=0.49 cfs 0.162 af
Reach 20R: CO 7 TO CO 6 Avg. Flow Depth=0.48' Max Vel=2.23 fps Inflo 12.0" Round Pipe n=0.013 L=100.0' S=0.0025 '/' Capacity=1.78 cfs Outflo Avg. Flow Depth=0.48' Max Vel=2.23 fps Inflo Avg. Flow Depth=0.48' Max Vel=2.21 fps Inflo Avg. Flow Depth=0.48' Max Vel=2.21 fps Inflo	ow=0.83 cfs 0.273 af
Reach 21R: CO 8 TO CO 7 Avg. Flow Depth=0.48' Max Vel=2.21 fps Inflo	

12.0" Round Pipe n=0.013 L=49.2' S=0.0024 '/' Capacity=1.76 cfs Outflow=0.83 cfs 0.273 af

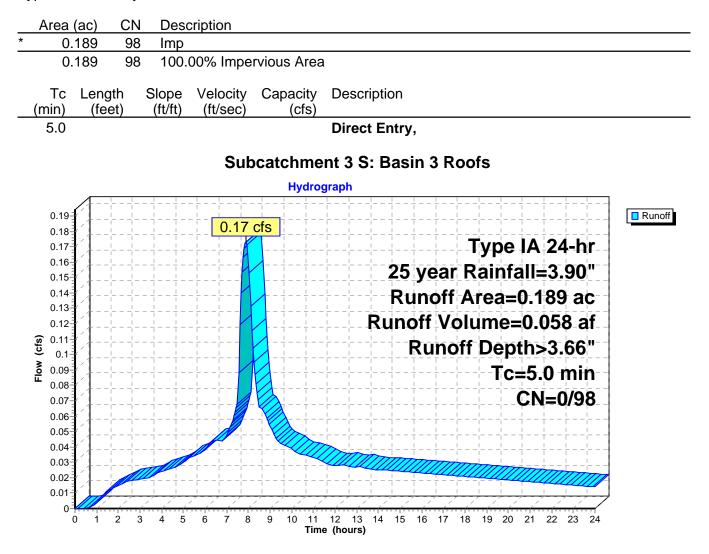
 Reach 22R: CO 9 TO MH 3
 Avg. Flow Depth=0.13'
 Max Vel=2.99 fps
 Inflow=0.17 cfs
 0.058 af


 12.0"
 Round Pipe
 n=0.013
 L=194.4'
 S=0.0200 '/'
 Capacity=5.04 cfs
 Outflow=0.17 cfs
 0.058 af

Total Runoff Area = 8.934 ac Runoff Volume = 2.387 af Average Runoff Depth = 3.21" 43.91% Pervious = 3.923 ac 56.09% Impervious = 5.011 ac

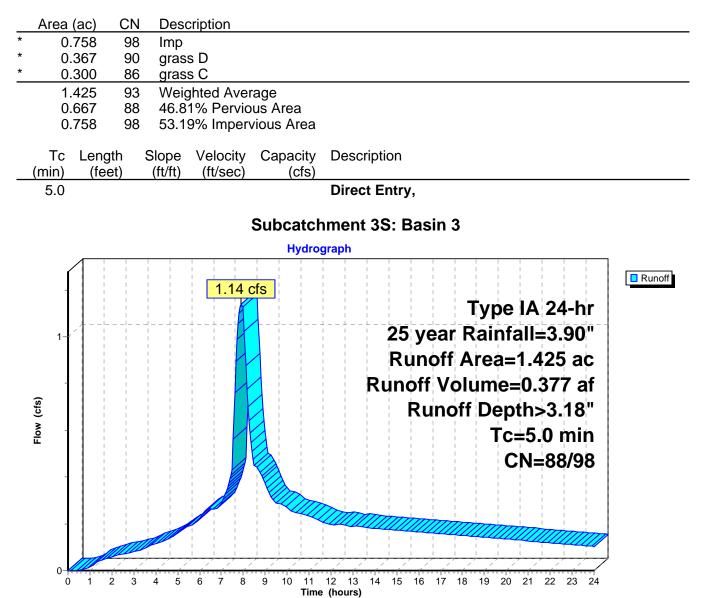
Summary for Subcatchment 2S: Basin 2

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.21 cfs @ 7.91 hrs, Volume= 0.399 af, Depth> 3.22"

Summary for Subcatchment 3 S: Basin 3 Roofs

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.17 cfs @ 7.90 hrs, Volume= 0.058 af, Depth> 3.66"

Summary for Subcatchment 3S: Basin 3

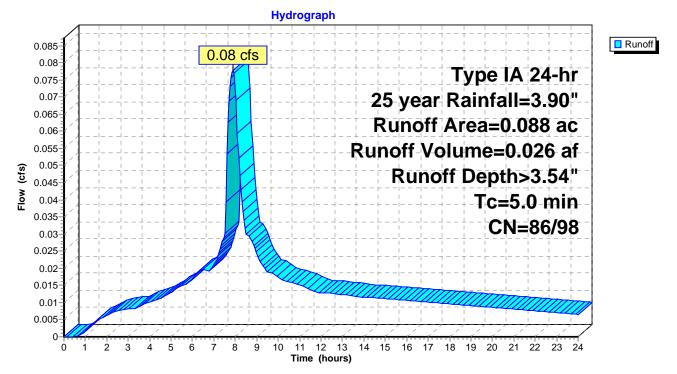
[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.14 cfs @ 7.92 hrs, Volume= 0.377 af, Depth> 3.18"

Summary for Subcatchment 4S: Basin 4

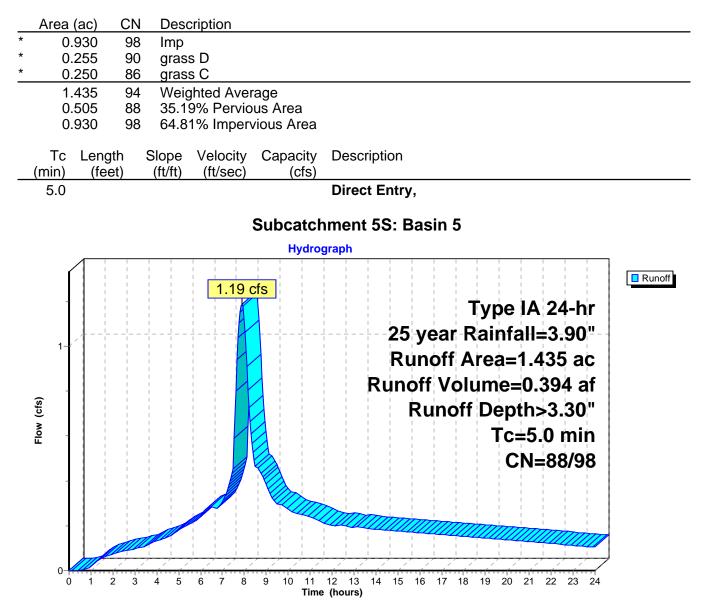
[49] Hint: Tc<2dt may require smaller dt

0.08 cfs @ 7.90 hrs, Volume= 0.026 af, Depth> 3.54" Runoff


Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25 year Rainfall=3.90"

_	Area (ac)	CN	Desc	cription		
*	0.079	98	Imp			
*	0.009	86	gras	s C		
	0.088	97	Weig	ghted Aver	age	
	0.009	86	10.2	3% Pervio	us Area	
	0.079	98	89.7	7% Imperv	vious Area	
		ngth eet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_			(ivit)	(10360)	(013)	
	5.0					Direct Entry.

irect Entry,

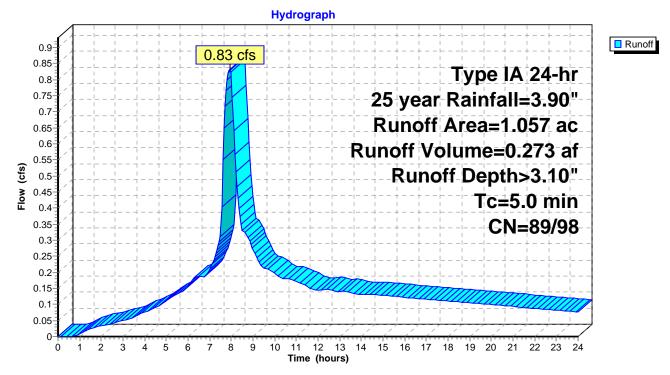

Subcatchment 4S: Basin 4

Summary for Subcatchment 5S: Basin 5

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.19 cfs @ 7.91 hrs, Volume= 0.394 af, Depth> 3.30"

Summary for Subcatchment 6S: Basin 6


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.83 cfs @ 7.92 hrs, Volume= 0.273 af, Depth> 3.10"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25 year Rainfall=3.90"

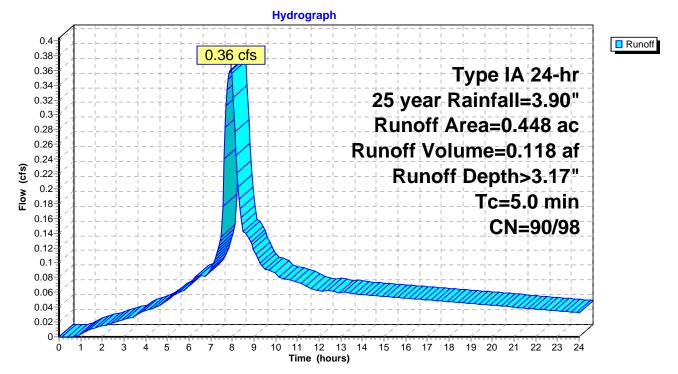
	Area ((ac)	CN	Desc	cription		
*	0.4	427	98	Imp			
*	0.4	440	90	gras	s D		
*	0.1	190	86	gras	s C		
	1.0	057	93	Weig	phted Aver	age	
	0.0	630	89	59.6	0% Pervio	us Area	
	0.4	427	98	40.4	0% Imperv	vious Area	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0						Direct Entry,

Subcatchment 6S: Basin 6

Summary for Subcatchment 7S: Basin 7

[49] Hint: Tc<2dt may require smaller dt

0.36 cfs @ 7.92 hrs, Volume= 0.118 af, Depth> 3.17" Runoff


Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25 year Rainfall=3.90"

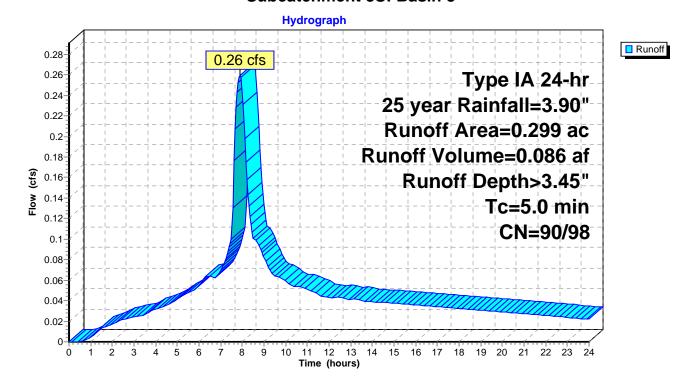
	Area (ac)) CN	Desc	cription			
*	0.185	5 98	Imp				
*	0.263	3 90	gras	s D			
_	0.448	93	Weig	ghted Aver	age		
	0.263	9 0	58.7	1% Pervio	us Area		
	0.185	5 98	41.2	9% Imperv	vious Area		
		0	Slope	Velocity	Capacity	Description	
_	<u>(min) (</u>	feet)	(ft/ft)	(ft/sec)	(cfs)		
	5.0					Direct Entry.	

ect Entry,

Subcatchment 7S: Basin 7

Summary for Subcatchment 8S: Basin 8

[49] Hint: Tc<2dt may require smaller dt

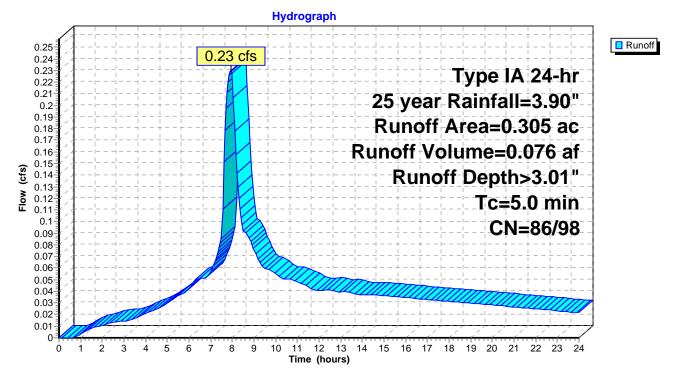

0.26 cfs @ 7.90 hrs, Volume= 0.086 af, Depth> 3.45" Runoff

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25 year Rainfall=3.90"

_	Area	(ac)	CN	Desc	cription		
*	0.	225	98	Imp			
*	0.	074	90	gras	s D		
	0.299 96 Weighted Average						
	0.074 90 24.75% Pervious Area						
	0.	225	98	75.2	5% Imper	vious Area	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	5.0	、		/			Direct Entry,

Subcatchment 8S: Basin 8

Summary for Subcatchment 9S: Basin 9


[49] Hint: Tc<2dt may require smaller dt

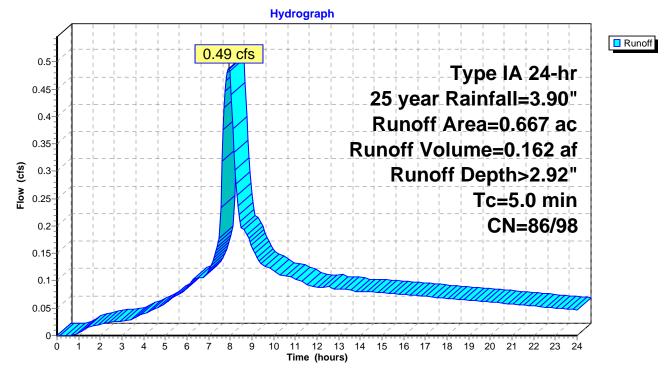
Runoff = 0.23 cfs @ 7.92 hrs, Volume= 0.076 af, Depth> 3.01"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25 year Rainfall=3.90"

	Area	(ac)	CN	Desc	cription		
*	0.	141	98	Imp			
*	0.	164	86	gras	s C		
	0.	305	92	Weig	hted Aver	age	
	0.	164	86	53.7	7% Pervio	us Area	
	0.	141	98	46.2	3% Imperv	vious Area	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	5.0						Direct Entry,

Subcatchment 9S: Basin 9

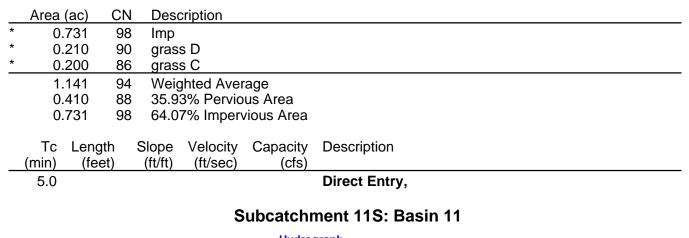
Summary for Subcatchment 10S: Basin 10

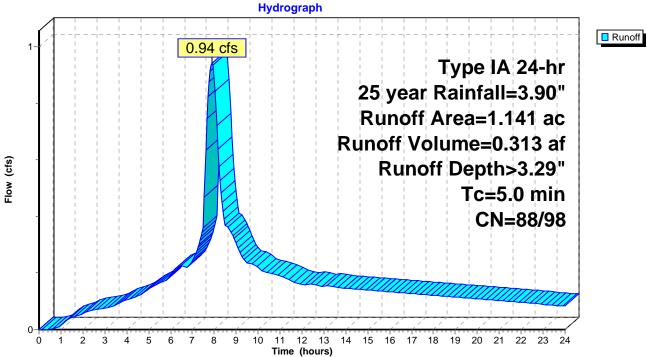

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.49 cfs @ 7.93 hrs, Volume= 0.162 af, Depth> 2.92"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25 year Rainfall=3.90"

	Area (ac) CN			Desc	Description						
*	0.	259	98	Imp							
*	0.	374	86	gras	s C						
*	0.	0.034 90 grass D									
	0.	667	91	Weig	phted Aver	age					
	0.408		86	61.1	7% Pervio	us Area					
	0.259		98	38.83% Impervious Area							
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	5.0	(100		(1011)	(14,000)	(010)	Direct Entry,				


Subcatchment 10S: Basin 10

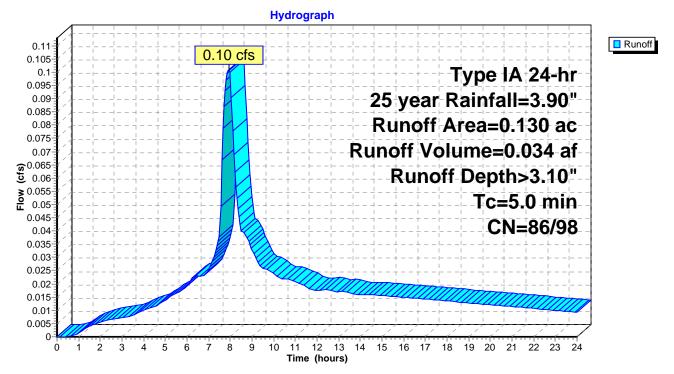


Summary for Subcatchment 11S: Basin 11

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.94 cfs @ 7.91 hrs, Volume= 0.313 af, Depth> 3.29"

Summary for Subcatchment 12SA: Basin 12A


[49] Hint: Tc<2dt may require smaller dt

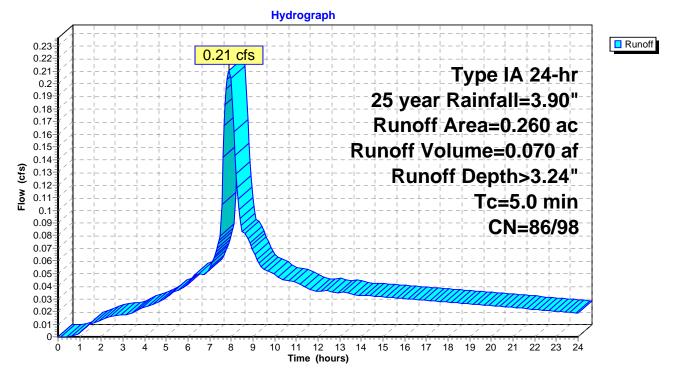
Runoff = 0.10 cfs @ 7.92 hrs, Volume= 0.034 af, Depth> 3.10"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25 year Rainfall=3.90"

	Area (ac)		CN	Desc	cription			
*	0.	0.070 98 Imp						
*	0.	.060 86 grass C						
	0.	130	92	Weig	phted Aver	age		
	0.060		86	46.15% Pervious Area				
	0.070		98	53.85% Impervious Area				
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	5.0			//	· · · · ·		Direct Entry,	

Subcatchment 12SA: Basin 12A

Summary for Subcatchment 12SB: Basin 12B


[49] Hint: Tc<2dt may require smaller dt

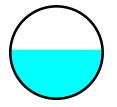
Runoff = 0.21 cfs @ 7.91 hrs, Volume= 0.070 af, Depth> 3.24"

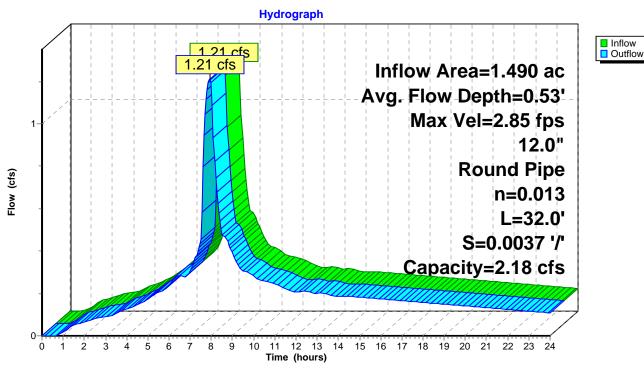
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25 year Rainfall=3.90"

	Area (ac)		CN	Description				
*	0.	170	98	Imp				
*	0.	.090 86 grass c						
	0.	0.260 94		Weig	hted Aver	age		
	0.090		86	34.6	2% Pervio	us Area		
	0.170		98	65.38% Impervious Area				
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	5.0						Direct Entry,	

Subcatchment 12SB: Basin 12B

Summary for Reach 1R: CB 1 TO CB 2


[52] Hint: Inlet/Outlet conditions not evaluated

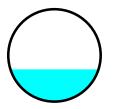

Inflow Area =1.490 ac, 56.85% Impervious, Inflow Depth > 3.22" for 25 year eventInflow =1.21 cfs @7.91 hrs, Volume=0.399 afOutflow =1.21 cfs @7.92 hrs, Volume=0.399 af, Atten= 0%, Lag= 0.2 min

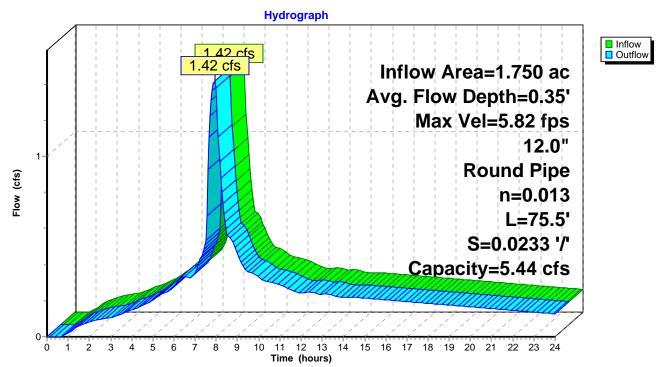
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.85 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.66 fps, Avg. Travel Time= 0.3 min

Peak Storage= 14 cf @ 7.92 hrs Average Depth at Peak Storage= 0.53' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.18 cfs

12.0" Round Pipe n= 0.013 Length= 32.0' Slope= 0.0037 '/' Inlet Invert= 115.57', Outlet Invert= 115.45'

Reach 1R: CB 1 TO CB 2


Summary for Reach 2R: CB 2 TO MH 1


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach 1R outlet invert by 0.35' @ 7.90 hrs

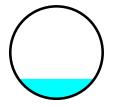
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 5.82 fps, Min. Travel Time= 0.2 min Avg. Velocity = 3.32 fps, Avg. Travel Time= 0.4 min

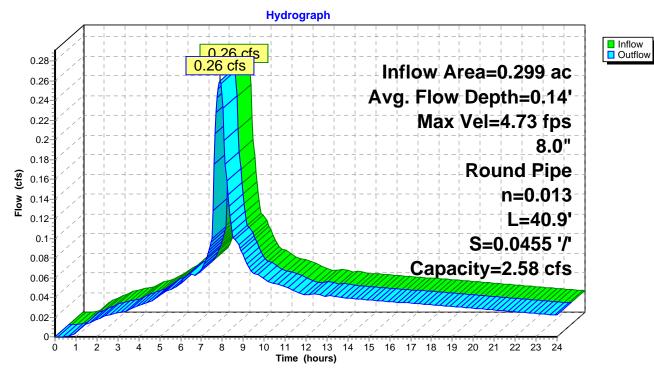
Peak Storage= 18 cf @ 7.92 hrs Average Depth at Peak Storage= 0.35' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.44 cfs

12.0" Round Pipe n= 0.013 Length= 75.5' Slope= 0.0233 '/' Inlet Invert= 115.45', Outlet Invert= 113.69'

Reach 2R: CB 2 TO MH 1

Summary for Reach 3R: CB 3 TO MH 1


[52] Hint: Inlet/Outlet conditions not evaluated

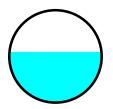

Inflow Area =0.299 ac, 75.25% Impervious, Inflow Depth > 3.45" for 25 year eventInflow =0.26 cfs @7.90 hrs, Volume=0.086 afOutflow =0.26 cfs @7.91 hrs, Volume=0.086 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 4.73 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.67 fps, Avg. Travel Time= 0.3 min

Peak Storage= 2 cf @ 7.91 hrs Average Depth at Peak Storage= 0.14' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.58 cfs

8.0" Round Pipe n= 0.013 Length= 40.9' Slope= 0.0455 '/' Inlet Invert= 117.00', Outlet Invert= 115.14'

Reach 3R: CB 3 TO MH 1


Summary for Reach 4R: MH 1 TO MH 2

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach 2R outlet invert by 0.35' @ 7.90 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 4.04 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.37 fps, Avg. Travel Time= 0.6 min

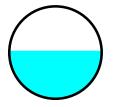
Peak Storage= 40 cf @ 7.92 hrs Average Depth at Peak Storage= 0.55' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.06 cfs

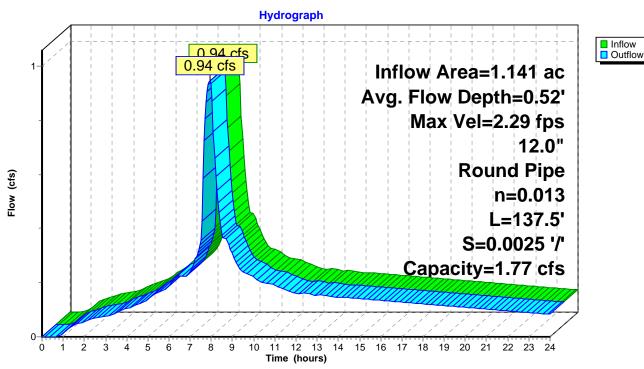
12.0" Round Pipe n= 0.013 Length= 90.8' Slope= 0.0074 '/' Inlet Invert= 113.49', Outlet Invert= 112.82'

Hydrograph Inflow
Outflow 1 78 cfs 1.78 cfs Inflow Area=2.179 ac Avg. Flow Depth=0.55' Max Vel=4.04 fps 12.0" **Round Pipe** Flow (cfs) n=0.013 L=90.8' S=0.0074 '/' Capacity=3.06 cfs 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ò 1 Time (hours)

Reach 4R: MH 1 TO MH 2

Summary for Reach 5R: CB 4 TO MH 2


[52] Hint: Inlet/Outlet conditions not evaluated


Inflow Area =1.141 ac, 64.07% Impervious, Inflow Depth > 3.29" for 25 year eventInflow =0.94 cfs @7.91 hrs, Volume=0.313 afOutflow =0.94 cfs @7.92 hrs, Volume=0.313 af, Atten= 0%, Lag= 0.8 min

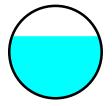
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.29 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.34 fps, Avg. Travel Time= 1.7 min

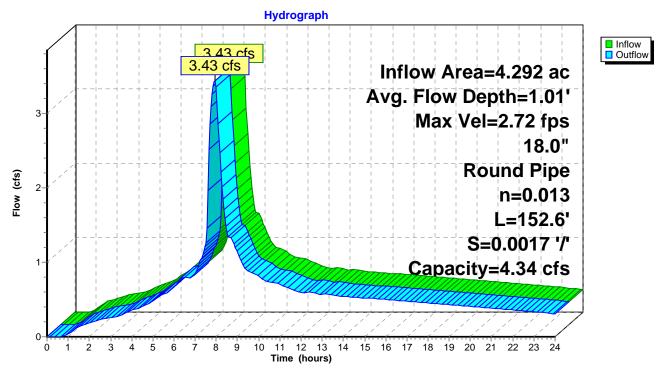
Peak Storage= 57 cf @ 7.92 hrs Average Depth at Peak Storage= 0.52' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.77 cfs

12.0" Round Pipe n= 0.013 Length= 137.5' Slope= 0.0025 '/' Inlet Invert= 112.96', Outlet Invert= 112.62'

Reach 5R: CB 4 TO MH 2

Summary for Reach 6R: MH 2 TO MH 6


[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach 4R OUTLET depth by 0.26' @ 7.95 hrs
[63] Warning: Exceeded Reach 5R INLET depth by 0.15' @ 7.95 hrs
[63] Warning: Exceeded Reach 8R INLET depth by 0.46' @ 7.95 hrs

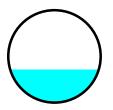

Inflow Area =4.292 ac, 56.92% Impervious, Inflow Depth > 3.19" for 25 year eventInflow =3.43 cfs @7.93 hrs, Volume=1.140 afOutflow =3.43 cfs @7.94 hrs, Volume=1.139 af, Atten= 0%, Lag= 0.7 min

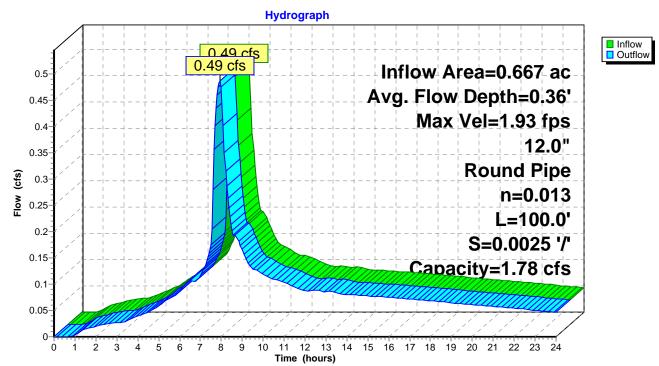
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.72 fps, Min. Travel Time= 0.9 min Avg. Velocity = 1.63 fps, Avg. Travel Time= 1.6 min

Peak Storage= 193 cf @ 7.94 hrs Average Depth at Peak Storage= 1.01' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 4.34 cfs

18.0" Round Pipe n= 0.013 Length= 152.6' Slope= 0.0017 '/' Inlet Invert= 112.62', Outlet Invert= 112.36'

Reach 6R: MH 2 TO MH 6


Summary for Reach 7R: CO 2 TO CO 3

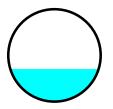

[52] Hint: Inlet/Outlet conditions not evaluated[62] Hint: Exceeded Reach 19R OUTLET depth by 0.01' @ 8.10 hrs

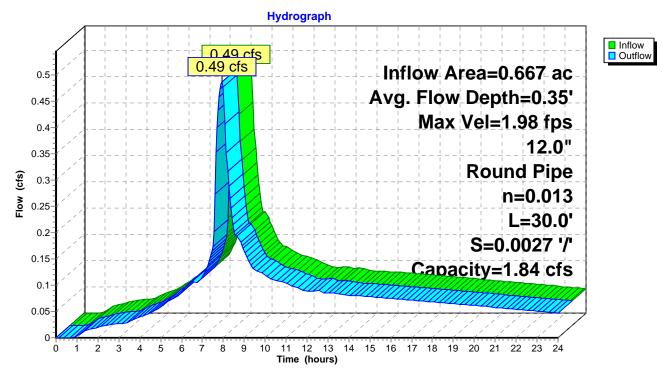
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 1.93 fps, Min. Travel Time= 0.9 min Avg. Velocity = 1.10 fps, Avg. Travel Time= 1.5 min

Peak Storage= 25 cf @ 7.95 hrs Average Depth at Peak Storage= 0.36' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.78 cfs

12.0" Round Pipe n= 0.013 Length= 100.0' Slope= 0.0025 '/' Inlet Invert= 113.07', Outlet Invert= 112.82'

Reach 7R: CO 2 TO CO 3


Summary for Reach 8R: CO 1 TO MH 6


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach 7R outlet invert by 0.35' @ 7.95 hrs

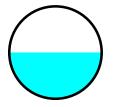
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 1.98 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.13 fps, Avg. Travel Time= 0.4 min

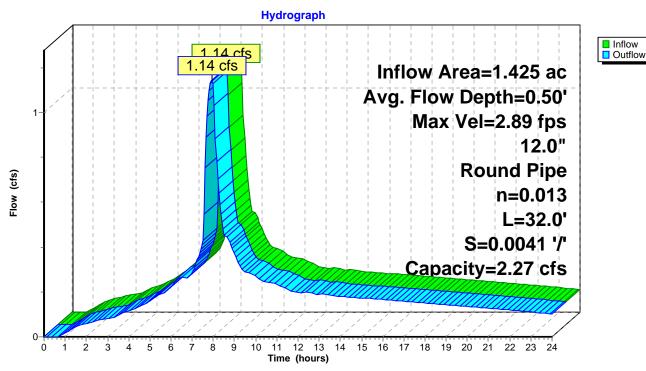
Peak Storage= 7 cf @ 7.95 hrs Average Depth at Peak Storage= 0.35' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.84 cfs

12.0" Round Pipe n= 0.013 Length= 30.0' Slope= 0.0027 '/' Inlet Invert= 112.82', Outlet Invert= 112.74'

Reach 8R: CO 1 TO MH 6

Summary for Reach 9R: CB 6 TO CB 7


[52] Hint: Inlet/Outlet conditions not evaluated


Inflow Area =1.425 ac, 53.19% Impervious, Inflow Depth > 3.18" for 25 year eventInflow =1.14 cfs @ 7.92 hrs, Volume=0.377 afOutflow =1.14 cfs @ 7.92 hrs, Volume=0.377 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.89 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.68 fps, Avg. Travel Time= 0.3 min

Peak Storage= 13 cf @ 7.92 hrs Average Depth at Peak Storage= 0.50' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.27 cfs

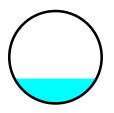
12.0" Round Pipe n= 0.013 Length= 32.0' Slope= 0.0041 '/' Inlet Invert= 117.53', Outlet Invert= 117.40'

Reach 9R: CB 6 TO CB 7

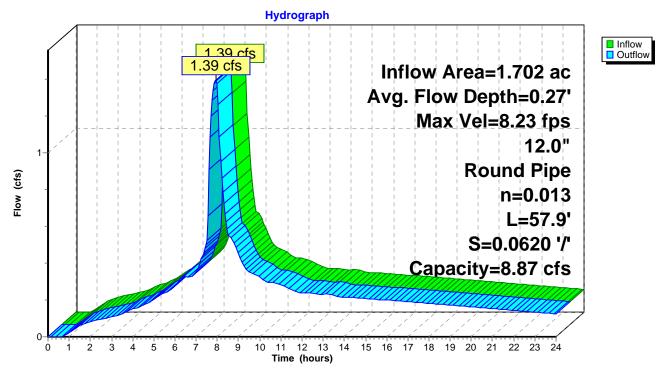
Summary for Reach 10R: CB 7 TO MH 3

[52] Hint: Inlet/Outlet conditions not evaluated
[63] Warning: Exceeded Reach 9R INLET depth by 0.33' @ 0.00 hrs
[63] Warning: Exceeded Reach 22R INLET depth by 0.04' @ 7.95 hrs

 Inflow Area =
 1.702 ac, 60.28% Impervious, Inflow Depth > 3.25" for 25 year event


 Inflow =
 1.39 cfs @
 7.92 hrs, Volume=
 0.461 af

 Outflow =
 1.39 cfs @
 7.92 hrs, Volume=
 0.461 af, Atten= 0%, Lag= 0.1 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 8.23 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.66 fps, Avg. Travel Time= 0.2 min

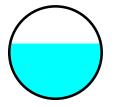
Peak Storage= 10 cf @ 7.92 hrs Average Depth at Peak Storage= 0.27' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 8.87 cfs

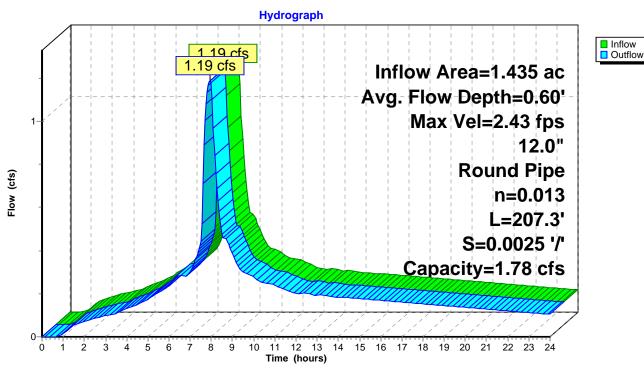
12.0" Round Pipe n= 0.013 Length= 57.9' Slope= 0.0620 '/' Inlet Invert= 117.86', Outlet Invert= 114.27'

Type IA 24-hr 25 year Rainfall=3.90" Printed 5/13/2019 ons LLC Page 37

Reach 10R: CB 7 TO MH 3

Summary for Reach 11R: CB 5 TO MH 3


[52] Hint: Inlet/Outlet conditions not evaluated


Inflow Area =1.435 ac, 64.81% Impervious, Inflow Depth > 3.30" for 25 year eventInflow =1.19 cfs @7.91 hrs, Volume=0.394 afOutflow =1.19 cfs @7.93 hrs, Volume=0.394 af, Atten= 0%, Lag= 1.1 min

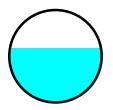
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.43 fps, Min. Travel Time= 1.4 min Avg. Velocity = 1.44 fps, Avg. Travel Time= 2.4 min

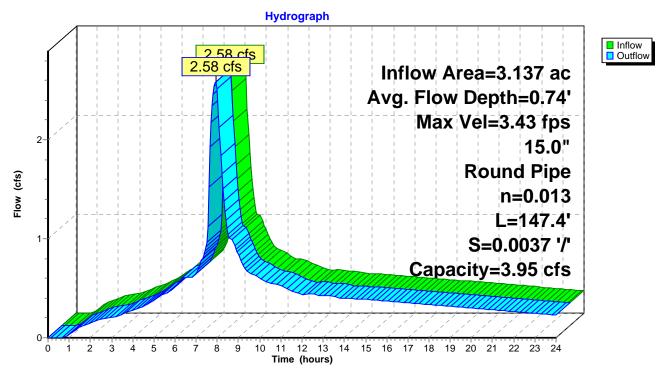
Peak Storage= 101 cf @ 7.93 hrs Average Depth at Peak Storage= 0.60' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.78 cfs

12.0" Round Pipe n= 0.013 Length= 207.3' Slope= 0.0025 '/' Inlet Invert= 114.59', Outlet Invert= 114.07'

Reach 11R: CB 5 TO MH 3

Summary for Reach 12R: MH 3 TO MH 4


[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach 10R OUTLET depth by 0.27' @ 7.95 hrs
[62] Hint: Exceeded Reach 11R OUTLET depth by 0.14' @ 7.95 hrs


Inflow Area =3.137 ac, 62.35% Impervious, Inflow Depth > 3.27" for 25 year eventInflow =2.58 cfs @7.92 hrs, Volume=0.855 afOutflow =2.58 cfs @7.93 hrs, Volume=0.854 af, Atten= 0%, Lag= 0.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 3.43 fps, Min. Travel Time= 0.7 min Avg. Velocity = 2.02 fps, Avg. Travel Time= 1.2 min

Peak Storage= 111 cf @ 7.93 hrs Average Depth at Peak Storage= 0.74' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 3.95 cfs

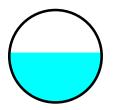
15.0" Round Pipe n= 0.013 Length= 147.4' Slope= 0.0037 '/' Inlet Invert= 114.07', Outlet Invert= 113.52'

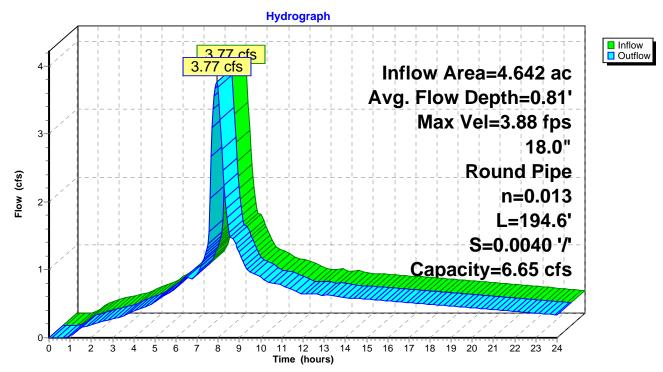
Reach 12R: MH 3 TO MH 4

Summary for Reach 13R: MH 4 TO MH 6

[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach 12R OUTLET depth by 0.08' @ 8.10 hrs
[62] Hint: Exceeded Reach 17R OUTLET depth by 0.08' @ 7.95 hrs

 Inflow Area =
 4.642 ac, 55.32% Impervious, Inflow Depth > 3.22" for 25 year event


 Inflow =
 3.77 cfs @
 7.93 hrs, Volume=
 1.245 af


 Outflow =
 3.77 cfs @
 7.94 hrs, Volume=
 1.244 af, Atten= 0%, Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 3.88 fps, Min. Travel Time= 0.8 min Avg. Velocity = 2.27 fps, Avg. Travel Time= 1.4 min

Peak Storage= 189 cf @ 7.94 hrs Average Depth at Peak Storage= 0.81' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 6.65 cfs

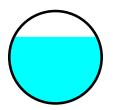
18.0" Round Pipe n= 0.013 Length= 194.6' Slope= 0.0040 '/' Inlet Invert= 113.52', Outlet Invert= 112.74'

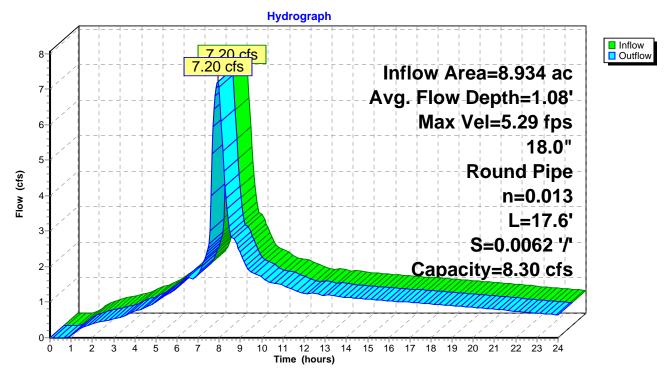
Reach 13R: MH 4 TO MH 6

Summary for Reach 14R: MH 6 TO OUTFALL

[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach 6R OUTLET depth by 0.07' @ 7.95 hrs
[61] Hint: Exceeded Reach 13R outlet invert by 0.70' @ 7.95 hrs

 Inflow Area =
 8.934 ac, 56.09% Impervious, Inflow Depth > 3.20" for 25 year event


 Inflow =
 7.20 cfs @
 7.94 hrs, Volume=
 2.383 af

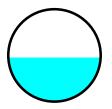

 Outflow =
 7.20 cfs @
 7.94 hrs, Volume=
 2.383 af, Atten= 0%, Lag= 0.0 min

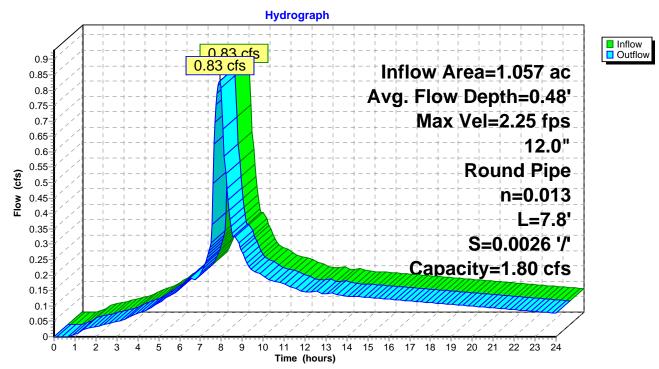
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 5.29 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.20 fps, Avg. Travel Time= 0.1 min

Peak Storage= 24 cf @ 7.94 hrs Average Depth at Peak Storage= 1.08' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 8.30 cfs

18.0" Round Pipe n= 0.013 Length= 17.6' Slope= 0.0062 '/' Inlet Invert= 112.36', Outlet Invert= 112.25'

Reach 14R: MH 6 TO OUTFALL


Summary for Reach 15R: CO 6 TO CO 5

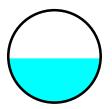

[52] Hint: Inlet/Outlet conditions not evaluated[61] Hint: Exceeded Reach 20R outlet invert by 0.48' @ 7.95 hrs

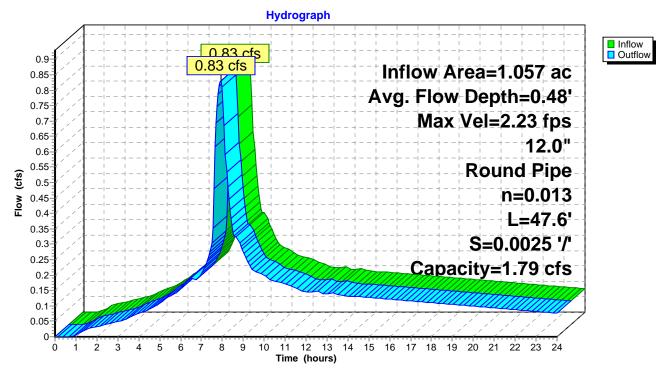
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.25 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.30 fps, Avg. Travel Time= 0.1 min

Peak Storage= 3 cf @ 7.93 hrs Average Depth at Peak Storage= 0.48' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.80 cfs

12.0" Round Pipe n= 0.013 Length= 7.8' Slope= 0.0026 '/' Inlet Invert= 114.16', Outlet Invert= 114.14'

Reach 15R: CO 6 TO CO 5


Summary for Reach 16R: CO 5 TO CO 4

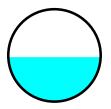

[52] Hint: Inlet/Outlet conditions not evaluated[62] Hint: Exceeded Reach 15R OUTLET depth by 0.01' @ 8.10 hrs

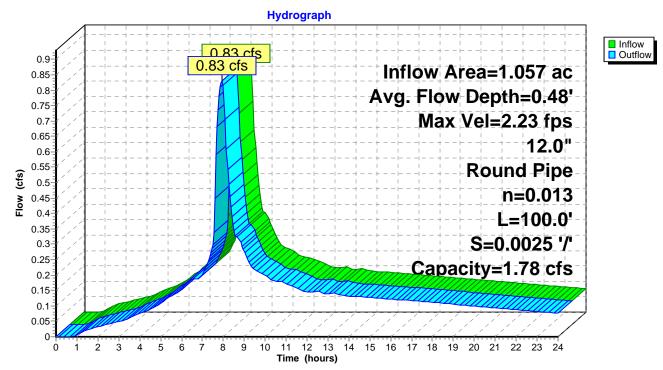
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.23 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.29 fps, Avg. Travel Time= 0.6 min

Peak Storage= 18 cf @ 7.94 hrs Average Depth at Peak Storage= 0.48' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.79 cfs

12.0" Round Pipe n= 0.013 Length= 47.6' Slope= 0.0025 '/' Inlet Invert= 114.14', Outlet Invert= 114.02'

Reach 16R: CO 5 TO CO 4


Summary for Reach 17R: CO 4 TO MH 4

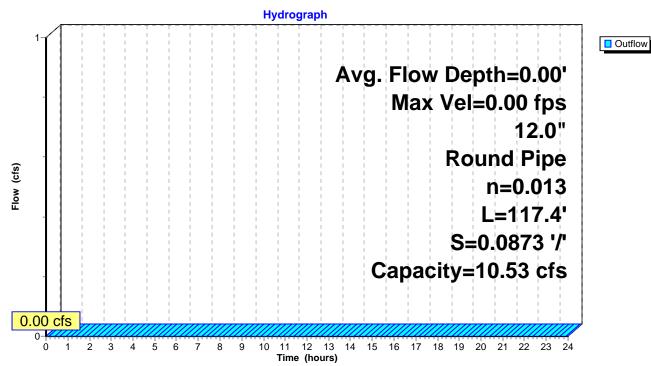

[52] Hint: Inlet/Outlet conditions not evaluated[62] Hint: Exceeded Reach 16R OUTLET depth by 0.01' @ 8.10 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.23 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.28 fps, Avg. Travel Time= 1.3 min

Peak Storage= 37 cf @ 7.95 hrs Average Depth at Peak Storage= 0.48' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.78 cfs

12.0" Round Pipe n= 0.013 Length= 100.0' Slope= 0.0025 '/' Inlet Invert= 114.02', Outlet Invert= 113.77'

Reach 17R: CO 4 TO MH 4


Summary for Reach 18R: MH 7 TO OUTFALL

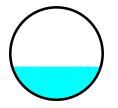
[43] Hint: Has no inflow (Outflow=Zero)

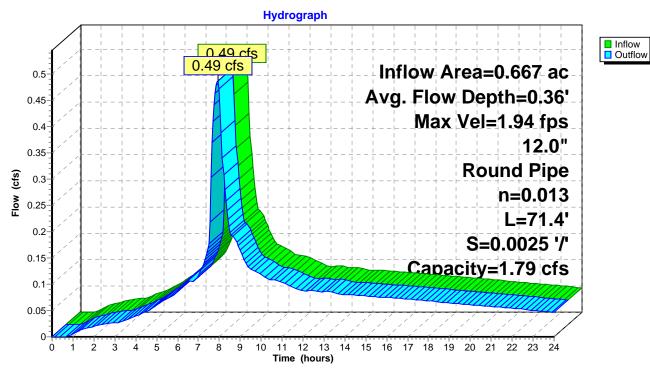
Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 10.53 cfs

12.0" Round Pipe n= 0.013 Length= 117.4' Slope= 0.0873 '/' Inlet Invert= 111.25', Outlet Invert= 101.00'

Reach 18R: MH 7 TO OUTFALL

Summary for Reach 19R: CO 3 TO CO 4


[52] Hint: Inlet/Outlet conditions not evaluated

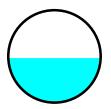

Inflow Area =0.667 ac, 38.83% Impervious, Inflow Depth > 2.92" for 25 year eventInflow =0.49 cfs @7.93 hrs, Volume=0.162 afOutflow =0.49 cfs @7.94 hrs, Volume=0.162 af, Atten= 0%, Lag= 0.5 min

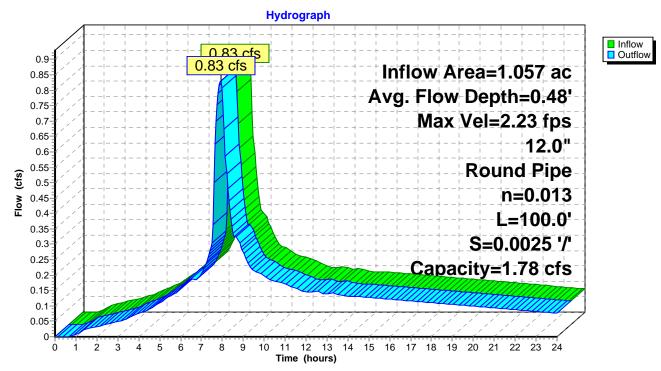
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 1.94 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.10 fps, Avg. Travel Time= 1.1 min

Peak Storage= 18 cf @ 7.94 hrs Average Depth at Peak Storage= 0.36' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.79 cfs

12.0" Round Pipe n= 0.013 Length= 71.4' Slope= 0.0025 '/' Inlet Invert= 113.25', Outlet Invert= 113.07'

Reach 19R: CO 3 TO CO 4


Summary for Reach 20R: CO 7 TO CO 6


[52] Hint: Inlet/Outlet conditions not evaluated[61] Hint: Exceeded Reach 21R outlet invert by 0.48' @ 7.95 hrs

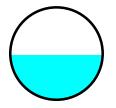
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.23 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.28 fps, Avg. Travel Time= 1.3 min

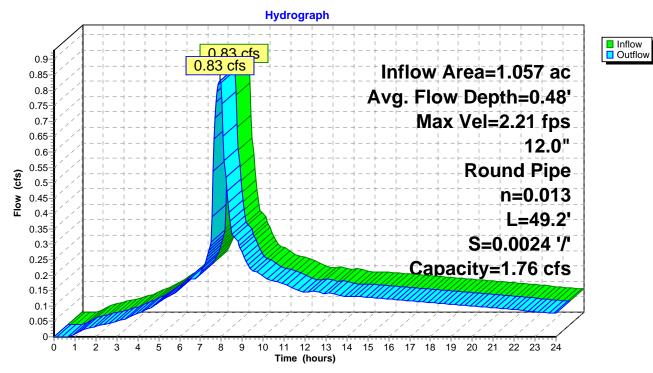
Peak Storage= 37 cf @ 7.93 hrs Average Depth at Peak Storage= 0.48' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.78 cfs

12.0" Round Pipe n= 0.013 Length= 100.0' Slope= 0.0025 '/' Inlet Invert= 114.41', Outlet Invert= 114.16'

Reach 20R: CO 7 TO CO 6

Summary for Reach 21R: CO 8 TO CO 7


[52] Hint: Inlet/Outlet conditions not evaluated


Inflow Area =1.057 ac, 40.40% Impervious, Inflow Depth > 3.10" for 25 year eventInflow =0.83 cfs @7.92 hrs, Volume =0.273 afOutflow =0.83 cfs @7.93 hrs, Volume =0.273 af, Atten = 0%, Lag = 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.21 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.27 fps, Avg. Travel Time= 0.6 min

Peak Storage= 18 cf @ 7.93 hrs Average Depth at Peak Storage= 0.48' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.76 cfs

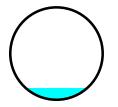
12.0" Round Pipe n= 0.013 Length= 49.2' Slope= 0.0024 '/' Inlet Invert= 114.53', Outlet Invert= 114.41'

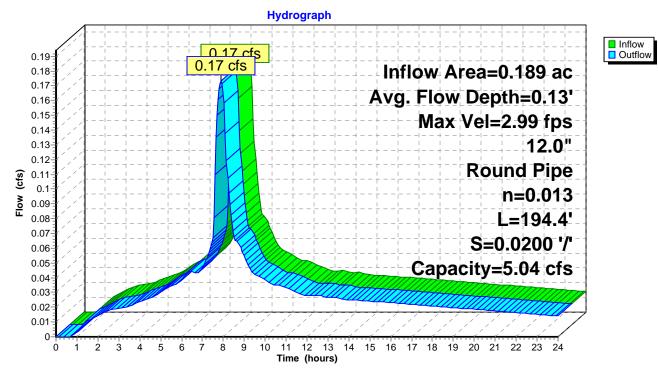
Reach 21R: CO 8 TO CO 7

Summary for Reach 22R: CO 9 TO MH 3

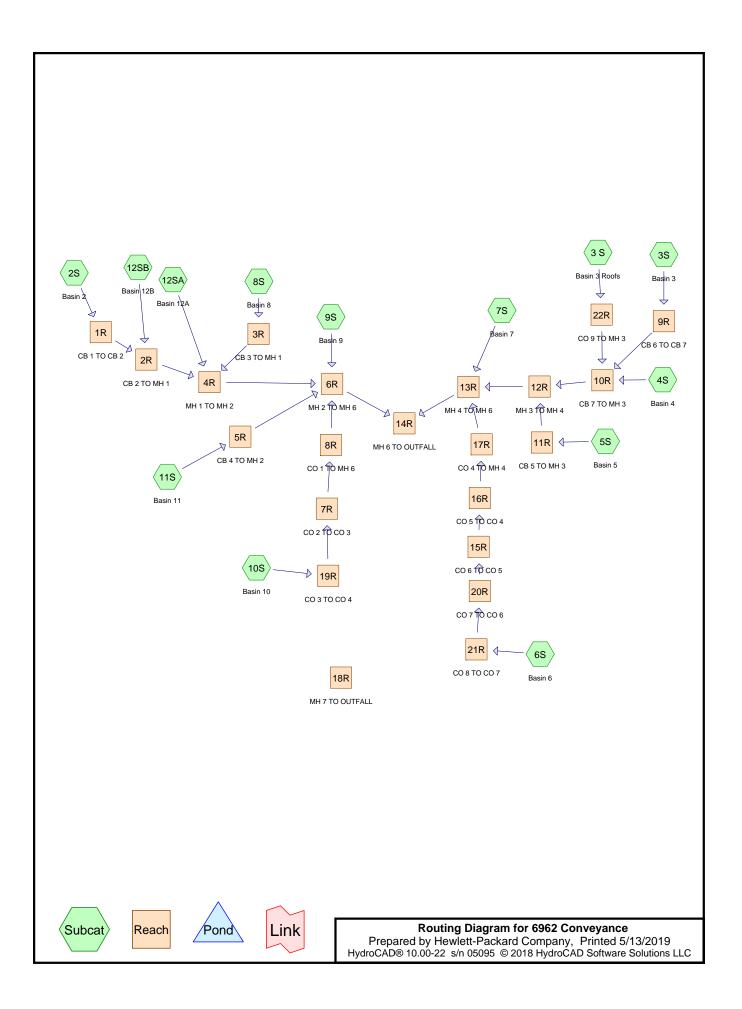
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.189 ac,100.00% Impervious, Inflow Depth > 3.66" for 25 year event


 Inflow =
 0.17 cfs @ 7.90 hrs, Volume=
 0.058 af


 Outflow =
 0.17 cfs @ 7.91 hrs, Volume=
 0.058 af, Atten= 0%, Lag= 0.8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.99 fps, Min. Travel Time= 1.1 min Avg. Velocity = 1.69 fps, Avg. Travel Time= 1.9 min


Peak Storage= 11 cf @ 7.91 hrs Average Depth at Peak Storage= 0.13' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.04 cfs

12.0" Round Pipe n= 0.013 Length= 194.4' Slope= 0.0200 '/' Inlet Invert= 117.96', Outlet Invert= 114.07'

Reach 22R: CO 9 TO MH 3

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
5.011	98	Imp (2S, 3 S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12SA, 12SB)
1.847	86	grass C (2S, 3S, 4S, 5S, 6S, 9S, 10S, 11S, 12SA)
1.986	90	grass D (2S, 3S, 5S, 6S, 7S, 8S, 10S, 11S)
0.090	86	grass c (12SB)
8.934	94	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
 (acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
8.934	Other	2S, 3 S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12SA, 12SB
8.934		TOTAL AREA

6962 Conveyance

Prepared by Hewlett-Packard Company	Pr
HydroCAD® 10.00-22 s/n 05095 © 2018 HydroCAD Software Solutions LLC	

Printed 5/13/2019 Page 4

	G-A cres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0	.000	0.000	0.000	0.000	5.011	5.011	Imp	2S, 3 S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12SA, 12SB
0	.000	0.000	0.000	0.000	1.847	1.847	grass C	2S, 3S, 4S, 5S, 6S, 9S, 10S, 11S, 12SA
0	.000	0.000	0.000	0.000	1.986	1.986	grass D	2S, 3S, 5S, 6S, 7S, 8S, 10S, 11S
-	.000 .000	0.000 0.000	0.000 0.000	0.000 0.000	0.090 8.934	0.090 8.934	grass c TOTAL AREA	12SB

Ground Covers (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	1R	115.57	115.45	32.0	0.0037	0.013	12.0	0.0	0.0
2	2R	115.45	113.69	75.5	0.0233	0.013	12.0	0.0	0.0
3	3R	117.00	115.14	40.9	0.0455	0.013	8.0	0.0	0.0
4	4R	113.49	112.82	90.8	0.0074	0.013	12.0	0.0	0.0
5	5R	112.96	112.62	137.5	0.0025	0.013	12.0	0.0	0.0
6	6R	112.62	112.36	152.6	0.0017	0.013	18.0	0.0	0.0
7	7R	113.07	112.82	100.0	0.0025	0.013	12.0	0.0	0.0
8	8R	112.82	112.74	30.0	0.0027	0.013	12.0	0.0	0.0
9	9R	117.53	117.40	32.0	0.0041	0.013	12.0	0.0	0.0
10	10R	117.86	114.27	57.9	0.0620	0.013	12.0	0.0	0.0
11	11R	114.59	114.07	207.3	0.0025	0.013	12.0	0.0	0.0
12	12R	114.07	113.52	147.4	0.0037	0.013	15.0	0.0	0.0
13	13R	113.52	112.74	194.6	0.0040	0.013	18.0	0.0	0.0
14	14R	112.36	112.25	17.6	0.0062	0.013	18.0	0.0	0.0
15	15R	114.16	114.14	7.8	0.0026	0.013	12.0	0.0	0.0
16	16R	114.14	114.02	47.6	0.0025	0.013	12.0	0.0	0.0
17	17R	114.02	113.77	100.0	0.0025	0.013	12.0	0.0	0.0
18	18R	111.25	101.00	117.4	0.0873	0.013	12.0	0.0	0.0
19	19R	113.25	113.07	71.4	0.0025	0.013	12.0	0.0	0.0
20	20R	114.41	114.16	100.0	0.0025	0.013	12.0	0.0	0.0
21	21R	114.53	114.41	49.2	0.0024	0.013	12.0	0.0	0.0
22	22R	117.96	114.07	194.4	0.0200	0.013	12.0	0.0	0.0

Pipe Listing (all nodes)

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SBUH method, Split Pervious/Imperv. Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 2S: Basin 2	Runoff Area=1.490 ac 56.85% Impervious Runoff Depth>3.89" Tc=5.0 min CN=88/98 Runoff=1.46 cfs 0.483 af
Subcatchment3 S: Basin 3 Roofs	Runoff Area=0.189 ac 100.00% Impervious Runoff Depth>4.36" Tc=5.0 min CN=0/98 Runoff=0.21 cfs 0.069 af
Subcatchment 3S: Basin 3	Runoff Area=1.425 ac 53.19% Impervious Runoff Depth>3.85" Tc=5.0 min CN=88/98 Runoff=1.38 cfs 0.458 af
Subcatchment 4S: Basin 4	Runoff Area=0.088 ac 89.77% Impervious Runoff Depth>4.23" Tc=5.0 min CN=86/98 Runoff=0.09 cfs 0.031 af
Subcatchment 5S: Basin 5	Runoff Area=1.435 ac 64.81% Impervious Runoff Depth>3.98" Tc=5.0 min CN=88/98 Runoff=1.43 cfs 0.476 af
Subcatchment 6S: Basin 6	Runoff Area=1.057 ac 40.40% Impervious Runoff Depth>3.78" Tc=5.0 min CN=89/98 Runoff=1.01 cfs 0.333 af
Subcatchment7S: Basin 7	Runoff Area=0.448 ac 41.29% Impervious Runoff Depth>3.84" Tc=5.0 min CN=90/98 Runoff=0.44 cfs 0.144 af
Subcatchment 8S: Basin 8	Runoff Area=0.299 ac 75.25% Impervious Runoff Depth>4.14" Tc=5.0 min CN=90/98 Runoff=0.31 cfs 0.103 af
Subcatchment9S: Basin 9	Runoff Area=0.305 ac 46.23% Impervious Runoff Depth>3.67" Tc=5.0 min CN=86/98 Runoff=0.28 cfs 0.093 af
Subcatchment 10S: Basin 10	Runoff Area=0.667 ac 38.83% Impervious Runoff Depth>3.58" Tc=5.0 min CN=86/98 Runoff=0.60 cfs 0.199 af
Subcatchment 11S: Basin 11	Runoff Area=1.141 ac 64.07% Impervious Runoff Depth>3.97" Tc=5.0 min CN=88/98 Runoff=1.14 cfs 0.378 af
Subcatchment 12SA: Basin 12A	Runoff Area=0.130 ac 53.85% Impervious Runoff Depth>3.77" Tc=5.0 min CN=86/98 Runoff=0.12 cfs 0.041 af
Subcatchment 12SB: Basin 12B	Runoff Area=0.260 ac 65.38% Impervious Runoff Depth>3.92" Tc=5.0 min CN=86/98 Runoff=0.25 cfs 0.085 af
Reach 1R: CB 1 TO CB 2 12.0" Round Pipe n=0.013	Avg. Flow Depth=0.60' Max Vel=2.98 fps Inflow=1.46 cfs 0.483 af L=32.0' S=0.0037 '/' Capacity=2.18 cfs Outflow=1.46 cfs 0.483 af
Reach 2R: CB 2 TO MH 1 12.0" Round Pipe n=0.013	Avg. Flow Depth=0.39' Max Vel=6.14 fps Inflow=1.72 cfs 0.568 af L=75.5' S=0.0233 '/' Capacity=5.44 cfs Outflow=1.71 cfs 0.568 af
Reach 3R: CB 3 TO MH 1 8.0" Round Pipe n=0.013	Avg. Flow Depth=0.16' Max Vel=4.99 fps Inflow=0.31 cfs 0.103 af L=40.9' S=0.0455 '/' Capacity=2.58 cfs Outflow=0.31 cfs 0.103 af

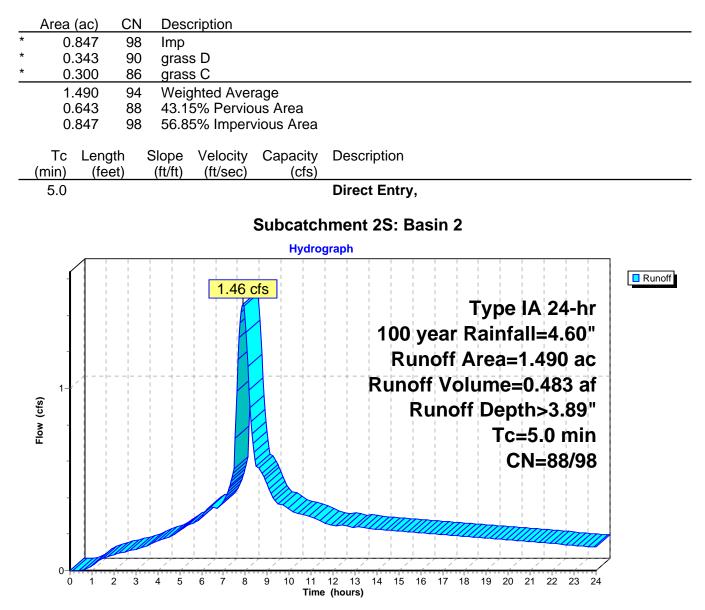
6962 Conveyance

Prepared by Hewlett-Packard Company Printed 5/13/2019 HydroCAD® 10.00-22 s/n 05095 © 2018 HydroCAD Software Solutions LLC Page 7
Reach 4R: MH 1 TO MH 2 Avg. Flow Depth=0.62' Max Vel=4.22 fps Inflow=2.15 cfs 0.712 af 12.0" Round Pipe n=0.013 L=90.8' S=0.0074 '/' Capacity=3.06 cfs Outflow=2.15 cfs 0.712 af
Reach 5R: CB 4 TO MH 2 Avg. Flow Depth=0.58' Max Vel=2.39 fps Inflow=1.14 cfs 0.378 af 12.0" Round Pipe n=0.013 L=137.5' S=0.0025 '/' Capacity=1.77 cfs Outflow=1.14 cfs 0.377 af
Reach 6R: MH 2 TO MH 6 Avg. Flow Depth=1.18' Max Vel=2.79 fps Inflow=4.17 cfs 1.382 af 18.0" Round Pipe n=0.013 L=152.6' S=0.0017 '/' Capacity=4.34 cfs Outflow=4.17 cfs 1.381 af
Reach 7R: CO 2 TO CO 3 Avg. Flow Depth=0.40' Max Vel=2.05 fps Inflow=0.60 cfs 0.199 af 12.0" Round Pipe n=0.013 L=100.0' S=0.0025 '/' Capacity=1.78 cfs Outflow=0.60 cfs 0.199 af
Reach 8R: CO 1 TO MH 6 Avg. Flow Depth=0.39' Max Vel=2.10 fps Inflow=0.60 cfs 0.199 af 12.0" Round Pipe n=0.013 L=30.0' S=0.0027 '/' Capacity=1.84 cfs Outflow=0.60 cfs 0.199 af
Reach 9R: CB 6 TO CB 7 Avg. Flow Depth=0.56' Max Vel=3.03 fps Inflow=1.38 cfs 0.458 af 12.0" Round Pipe n=0.013 L=32.0' S=0.0041 '/' Capacity=2.27 cfs Outflow=1.38 cfs 0.458 af
Reach 10R: CB 7 TO MH 3 Avg. Flow Depth=0.29' Max Vel=8.69 fps Inflow=1.68 cfs 0.557 af 12.0" Round Pipe n=0.013 L=57.9' S=0.0620 '/' Capacity=8.87 cfs Outflow=1.68 cfs 0.557 af
Reach 11R: CB 5 TO MH 3 Avg. Flow Depth=0.68' Max Vel=2.53 fps Inflow=1.43 cfs 0.476 af 12.0" Round Pipe n=0.013 L=207.3' S=0.0025 '/' Capacity=1.78 cfs Outflow=1.43 cfs 0.475 af
Reach 12R: MH 3 TO MH 4 Avg. Flow Depth=0.84' Max Vel=3.56 fps Inflow=3.11 cfs 1.033 af 15.0" Round Pipe n=0.013 L=147.4' S=0.0037 '/' Capacity=3.95 cfs Outflow=3.11 cfs 1.032 af
Reach 13R: MH 4 TO MH 6 Avg. Flow Depth=0.91' Max Vel=4.05 fps Inflow=4.56 cfs 1.508 af 18.0" Round Pipe n=0.013 L=194.6' S=0.0040 '/' Capacity=6.65 cfs Outflow=4.56 cfs 1.507 af
Reach 14R: MH 6 TO OUTFALL Avg. Flow Depth=1.31' Max Vel=5.36 fps Inflow=8.73 cfs 2.888 af 18.0" Round Pipe n=0.013 L=17.6' S=0.0062 '/' Capacity=8.30 cfs Outflow=8.73 cfs 2.887 af
Reach 15R: CO 6 TO CO 5 Avg. Flow Depth=0.54' Max Vel=2.36 fps Inflow=1.01 cfs 0.332 af 12.0" Round Pipe n=0.013 L=7.8' S=0.0026 '/' Capacity=1.80 cfs Outflow=1.01 cfs 0.332 af
Reach 16R: CO 5 TO CO 4 Avg. Flow Depth=0.54' Max Vel=2.35 fps Inflow=1.01 cfs 0.332 af 12.0" Round Pipe n=0.013 L=47.6' S=0.0025 '/' Capacity=1.79 cfs Outflow=1.01 cfs 0.332 af
Reach 17R: CO 4 TO MH 4 Avg. Flow Depth=0.54' Max Vel=2.34 fps Inflow=1.01 cfs 0.332 af 12.0" Round Pipe n=0.013 L=100.0' S=0.0025 '/' Capacity=1.78 cfs Outflow=1.01 cfs 0.332 af
Reach 18R: MH 7 TO OUTFALL Avg. Flow Depth=0.00' Max Vel=0.00 fps 12.0" Round Pipe n=0.013 L=117.4' S=0.0873 '/' Capacity=10.53 cfs Outflow=0.00 cfs 0.000 af
Reach 19R: CO 3 TO CO 4 Avg. Flow Depth=0.40' Max Vel=2.05 fps Inflow=0.60 cfs 0.199 af 12.0" Round Pipe n=0.013 L=71.4' S=0.0025 '/' Capacity=1.79 cfs Outflow=0.60 cfs 0.199 af
Reach 20R: CO 7 TO CO 6 Avg. Flow Depth=0.54' Max Vel=2.34 fps Inflow=1.01 cfs 0.333 af 12.0" Round Pipe n=0.013 L=100.0' S=0.0025 '/' Capacity=1.78 cfs Outflow=1.01 cfs 0.332 af
Reach 21R: CO 8 TO CO 7 12.0" Revend Pipe, p=0.013 L=40.2' S=0.0024.1// Capacity=1.76 efc. Outflow=1.01 efc. 0.333 af

 Reach 21R: CO 8 TO CO 7
 Avg. Flow Deptn=0.54
 Iviax vel=2.32 lps
 Innow=1.01 cls
 0.333 al

 12.0" Round Pipe
 n=0.013
 L=49.2'
 S=0.0024 '/'
 Capacity=1.76 cfs
 Outflow=1.01 cfs
 0.333 af

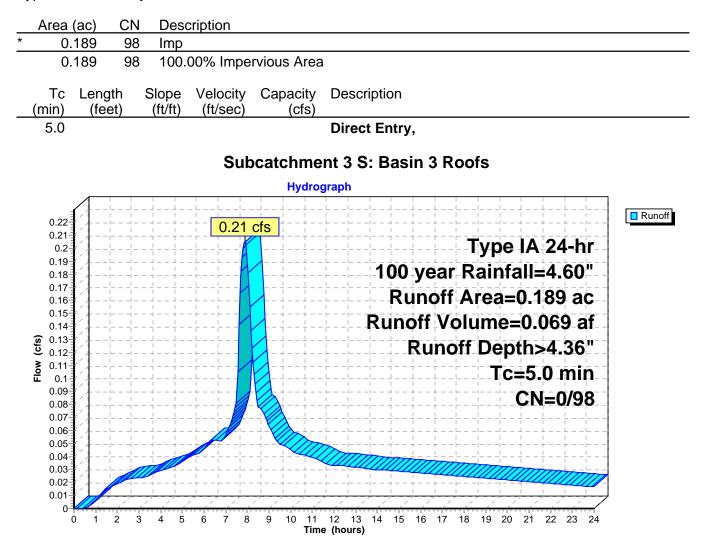
 Reach 22R: CO 9 TO MH 3
 Avg. Flow Depth=0.14'
 Max Vel=3.15 fps
 Inflow=0.21 cfs
 0.069 af


 12.0"
 Round Pipe
 n=0.013
 L=194.4'
 S=0.0200 '/'
 Capacity=5.04 cfs
 Outflow=0.21 cfs
 0.069 af

Total Runoff Area = 8.934 ac Runoff Volume = 2.892 af Average Runoff Depth = 3.88" 43.91% Pervious = 3.923 ac 56.09% Impervious = 5.011 ac

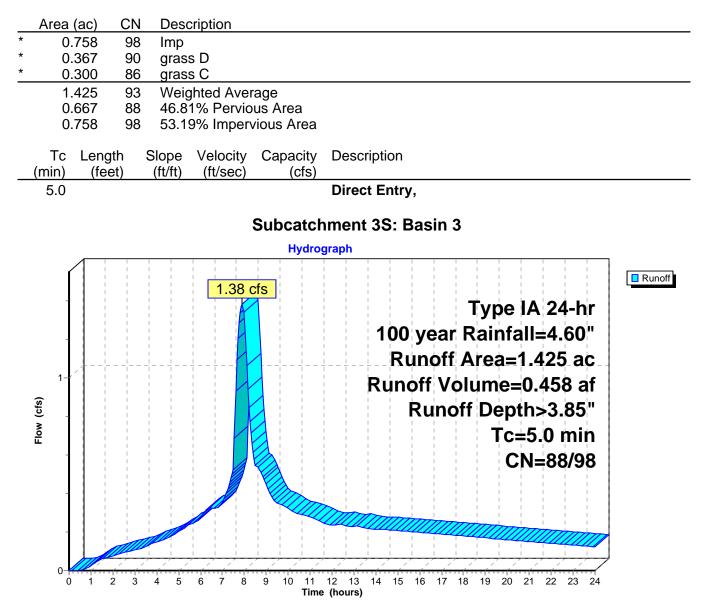
Summary for Subcatchment 2S: Basin 2

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.46 cfs @ 7.91 hrs, Volume= 0.483 af, Depth> 3.89"

Summary for Subcatchment 3 S: Basin 3 Roofs

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.21 cfs @ 7.90 hrs, Volume= 0.069 af, Depth> 4.36"

Summary for Subcatchment 3S: Basin 3

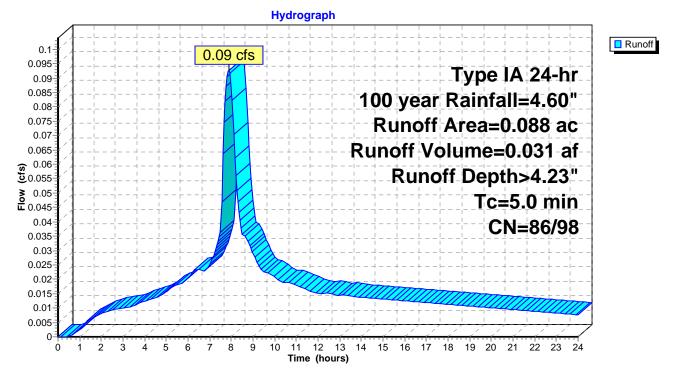
[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.38 cfs @ 7.91 hrs, Volume= 0.458 af, Depth> 3.85"

Summary for Subcatchment 4S: Basin 4

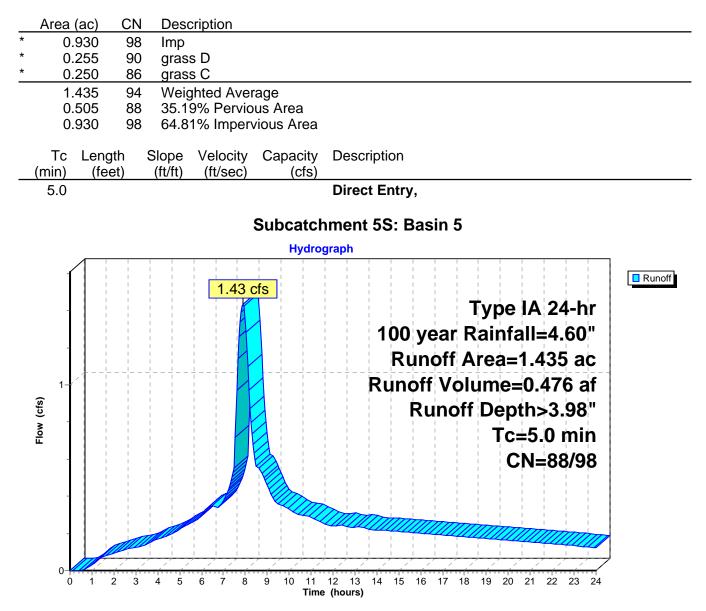
[49] Hint: Tc<2dt may require smaller dt

0.09 cfs @ 7.90 hrs, Volume= 0.031 af, Depth> 4.23" Runoff


Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 100 year Rainfall=4.60"

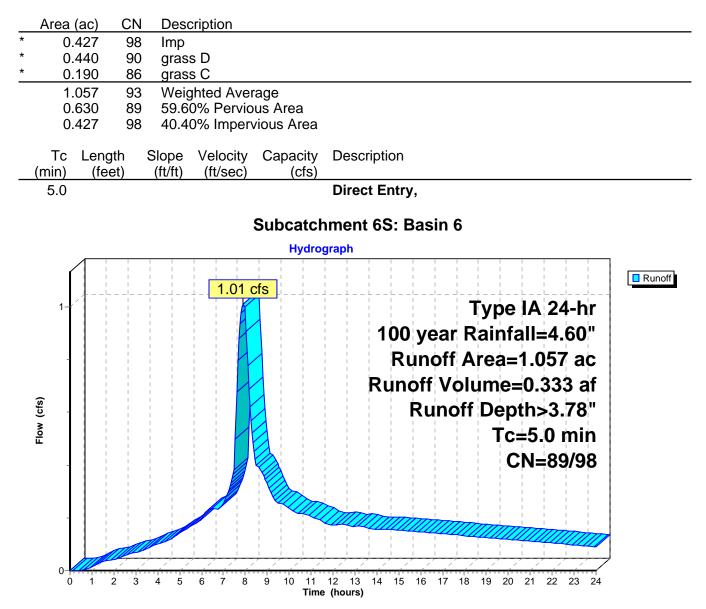
	Area (a	ac) Cl	N Des	cription		
*	0.07	79 9	8 Imp			
*	0.00	09 8	6 gras	is C		
	0.08	88 9	7 Wei	ghted Aver	age	
	0.00	09 8	6 10.2	3% Pervio	us Area	
	0.07	79 9	8 89.7	7% Imper	ious Area/	
	Tc L (min)	_ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	5.0	//	/	<i>//</i>		Direct Entry,

irect Entry,


Subcatchment 4S: Basin 4

Summary for Subcatchment 5S: Basin 5

[49] Hint: Tc<2dt may require smaller dt

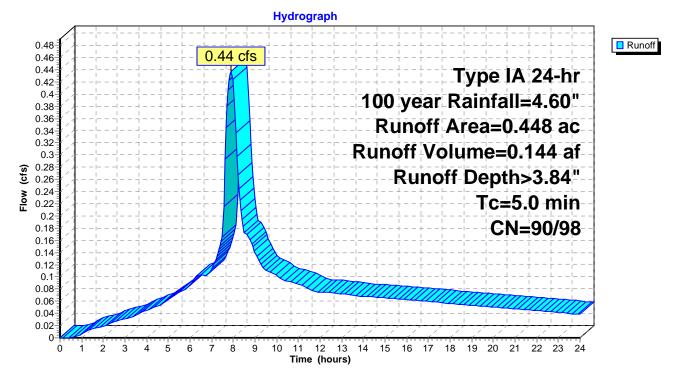

Runoff = 1.43 cfs @ 7.91 hrs, Volume= 0.476 af, Depth> 3.98"

Summary for Subcatchment 6S: Basin 6

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.01 cfs @ 7.92 hrs, Volume= 0.333 af, Depth> 3.78"

Summary for Subcatchment 7S: Basin 7


[49] Hint: Tc<2dt may require smaller dt

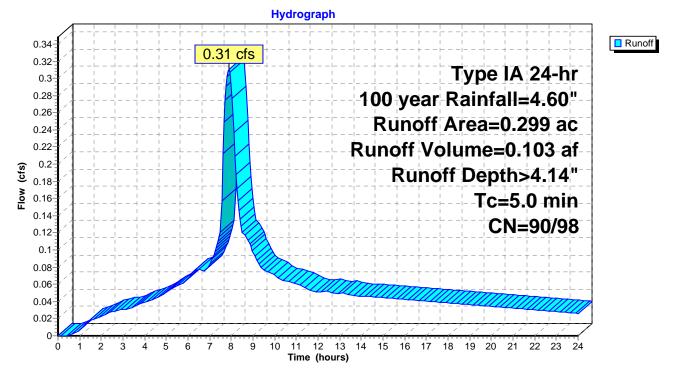
Runoff = 0.44 cfs @ 7.91 hrs, Volume= 0.144 af, Depth> 3.84"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 100 year Rainfall=4.60"

	Area	(ac)	CN	Desc	Description						
*	0.	185	98	Imp	Imp						
*	0.	263	90	gras	s D						
	0.	448	93	Weig	phted Aver	age					
	0.263 90 58.71% Pervious Area										
	0.185		98	41.2	9% Imperv	vious Area					
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	5.0						Direct Entry,				

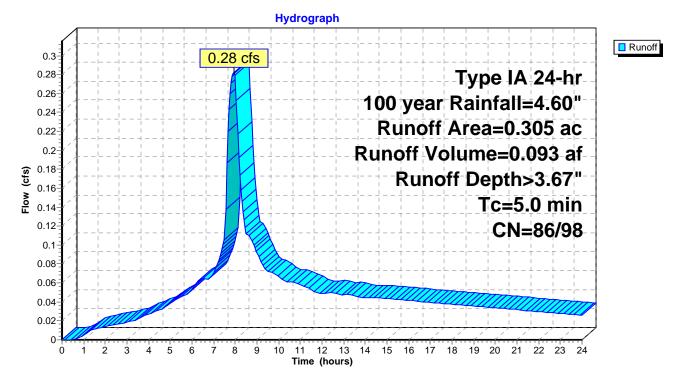
Subcatchment 7S: Basin 7

Summary for Subcatchment 8S: Basin 8


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.31 cfs @ 7.90 hrs, Volume= 0.103 af, Depth> 4.14"

	Area	(ac)	CN	Desc	Description						
*	0.	225	98	Imp	Imp						
*	0.	074	90	gras	s D						
	0.	299	96	Weig	phted Aver	age					
	0.074 90 24.75% Pervious Area										
	0.225		98	75.2	5% Imperv	vious Area					
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	5.0	(/	((12000)	(0.0)	Direct Entry,				

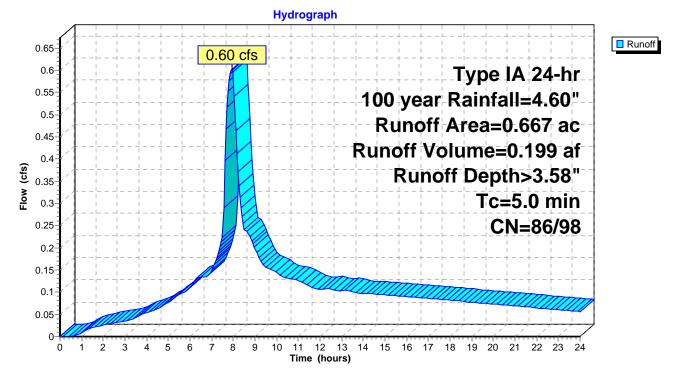

Summary for Subcatchment 9S: Basin 9

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.28 cfs @ 7.92 hrs, Volume= 0.093 af, Depth> 3.67"

	Area	(ac)	CN	Desc	cription						
*	0.	141	98	Imp	Imp						
*	0.	164	86	gras	s C						
	0.	305	92	Weig	hted Aver	age					
	0.164 86 53.77% Pervious Area										
	0.141		98	46.2	3% Imperv	vious Area					
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	5.0						Direct Entry,				

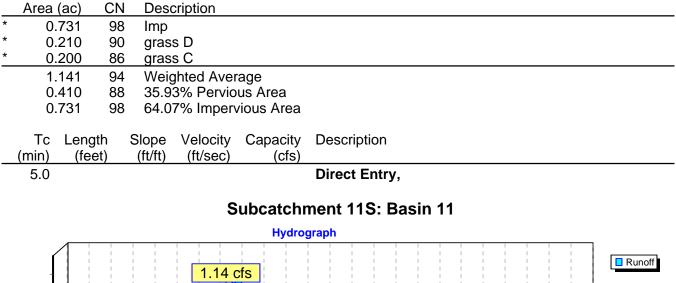
Summary for Subcatchment 10S: Basin 10

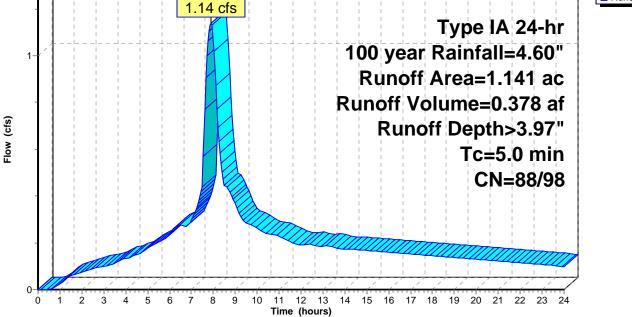

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.60 cfs @ 7.92 hrs, Volume= 0.199 af, Depth> 3.58"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 100 year Rainfall=4.60"

	Area	(ac)	CN	Desc	cription		
*	0.	259	98	Imp			
*	0.	374	86	gras	s C		
*	0.	034	90	gras	s D		
	0.	667	91	Weig	ghted Aver	age	
	0.408 86 61.17% Pervious Area				7% Pervio	us Area	
	0.259		98	38.8	3% Imperv	vious Area	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0						Direct Entry,


Subcatchment 10S: Basin 10

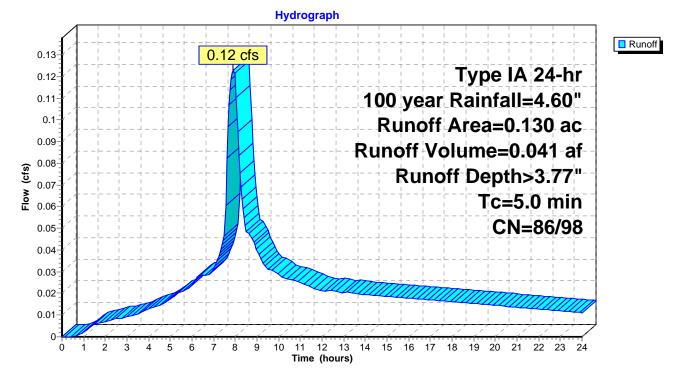


Summary for Subcatchment 11S: Basin 11

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.14 cfs @ 7.91 hrs, Volume= 0.378 af, Depth> 3.97"

Summary for Subcatchment 12SA: Basin 12A


[49] Hint: Tc<2dt may require smaller dt

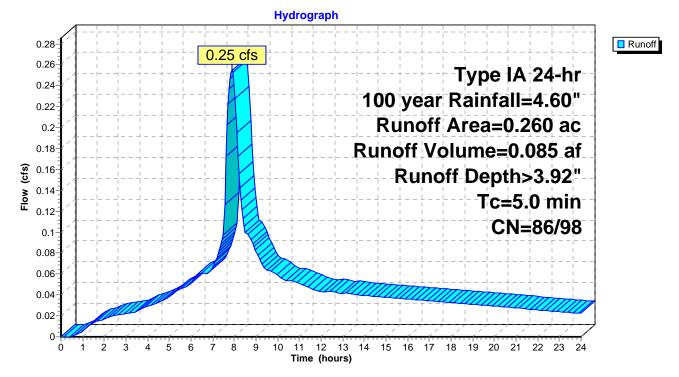
Runoff = 0.12 cfs @ 7.92 hrs, Volume= 0.041 af, Depth> 3.77"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 100 year Rainfall=4.60"

	Area	(ac)	CN	Desc	cription		
*	0.	070	98	Imp			
*	0.	060	86	gras	s C		
	0.	130	92	Weig	phted Aver	age	
	0.060 86 46.15% Pervious Area					us Area	
	0.070		98	53.8	5% Imperv	vious Area	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0	,100		(13,11)	(14,000)	(010)	Direct Entry,

Subcatchment 12SA: Basin 12A

Summary for Subcatchment 12SB: Basin 12B


[49] Hint: Tc<2dt may require smaller dt

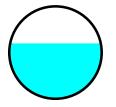
Runoff = 0.25 cfs @ 7.91 hrs, Volume= 0.085 af, Depth> 3.92"

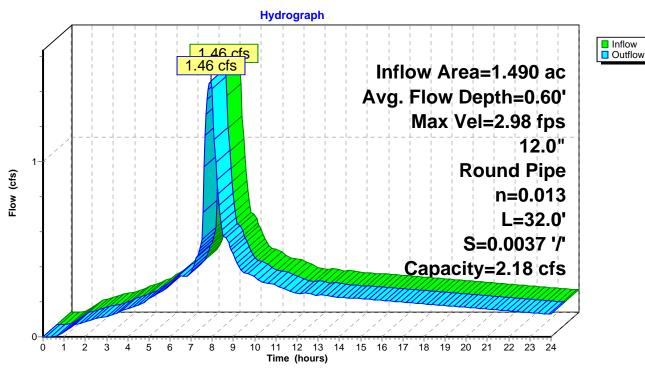
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 100 year Rainfall=4.60"

	Area	(ac)	CN	Desc	cription					
*	0.	170	98	Imp	Imp					
*	0.0	090	86	gras	S C					
	0.2	260	94	Weig	hted Aver	age				
	0.090 86 34.62% Pervious Area					us Area				
	0.170		98	65.3	8% Imperv	vious Area				
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
_	5.0						Direct Entry,			

Subcatchment 12SB: Basin 12B

Summary for Reach 1R: CB 1 TO CB 2


[52] Hint: Inlet/Outlet conditions not evaluated

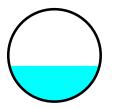

Inflow Area =1.490 ac, 56.85% Impervious, Inflow Depth > 3.89" for 100 year eventInflow =1.46 cfs @7.91 hrs, Volume=0.483 afOutflow =1.46 cfs @7.91 hrs, Volume=0.483 af, Atten= 0%, Lag= 0.2 min

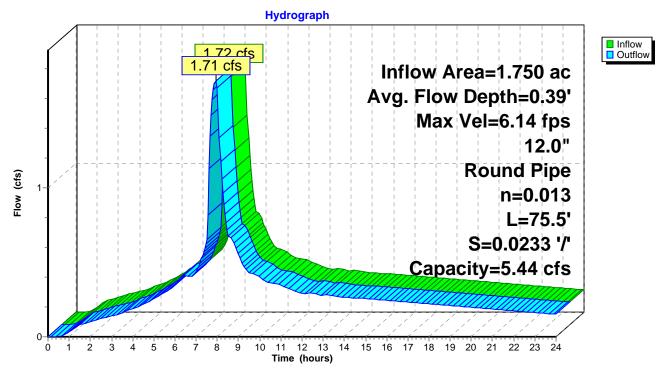
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.98 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.76 fps, Avg. Travel Time= 0.3 min

Peak Storage= 16 cf @ 7.91 hrs Average Depth at Peak Storage= 0.60' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.18 cfs

12.0" Round Pipe n= 0.013 Length= 32.0' Slope= 0.0037 '/' Inlet Invert= 115.57', Outlet Invert= 115.45'

Reach 1R: CB 1 TO CB 2


Summary for Reach 2R: CB 2 TO MH 1


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach 1R outlet invert by 0.39' @ 7.90 hrs

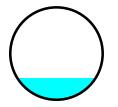
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 6.14 fps, Min. Travel Time= 0.2 min Avg. Velocity = 3.51 fps, Avg. Travel Time= 0.4 min

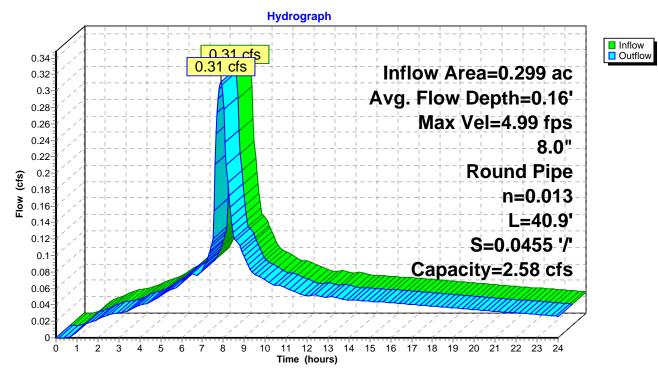
Peak Storage= 21 cf @ 7.92 hrs Average Depth at Peak Storage= 0.39' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.44 cfs

12.0" Round Pipe n= 0.013 Length= 75.5' Slope= 0.0233 '/' Inlet Invert= 115.45', Outlet Invert= 113.69'

Reach 2R: CB 2 TO MH 1

Summary for Reach 3R: CB 3 TO MH 1


[52] Hint: Inlet/Outlet conditions not evaluated

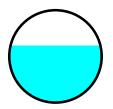

Inflow Area =0.299 ac, 75.25% Impervious, Inflow Depth > 4.14" for 100 year eventInflow =0.31 cfs @7.90 hrs, Volume=0.103 afOutflow =0.31 cfs @7.90 hrs, Volume=0.103 af, Atten= 0%, Lag= 0.1 min

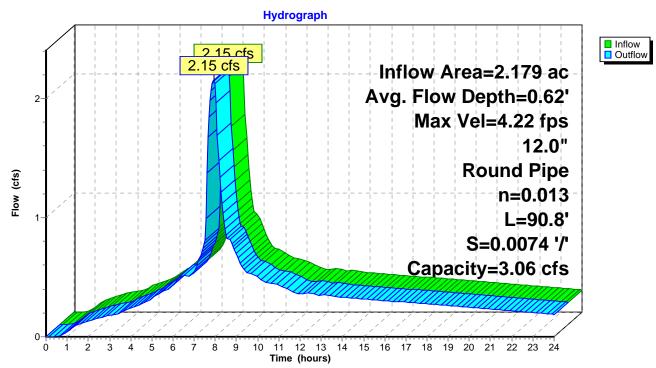
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 4.99 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.82 fps, Avg. Travel Time= 0.2 min

Peak Storage= 3 cf @ 7.90 hrs Average Depth at Peak Storage= 0.16' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.58 cfs

8.0" Round Pipe n= 0.013 Length= 40.9' Slope= 0.0455 '/' Inlet Invert= 117.00', Outlet Invert= 115.14'

Reach 3R: CB 3 TO MH 1


Summary for Reach 4R: MH 1 TO MH 2


[52] Hint: Inlet/Outlet conditions not evaluated[62] Hint: Exceeded Reach 2R OUTLET depth by 0.03' @ 7.90 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 4.22 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.50 fps, Avg. Travel Time= 0.6 min

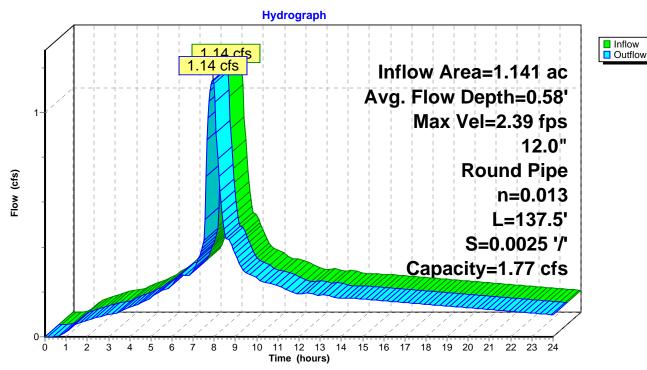
Peak Storage= 46 cf @ 7.92 hrs Average Depth at Peak Storage= 0.62' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.06 cfs

12.0" Round Pipe n= 0.013 Length= 90.8' Slope= 0.0074 '/' Inlet Invert= 113.49', Outlet Invert= 112.82'

Reach 4R: MH 1 TO MH 2

Summary for Reach 5R: CB 4 TO MH 2


[52] Hint: Inlet/Outlet conditions not evaluated


Inflow Area =1.141 ac, 64.07% Impervious, Inflow Depth > 3.97" for 100 year eventInflow =1.14 cfs @ 7.91 hrs, Volume=0.378 afOutflow =1.14 cfs @ 7.92 hrs, Volume=0.377 af, Atten= 0%, Lag= 0.7 min

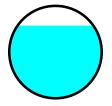
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.39 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.41 fps, Avg. Travel Time= 1.6 min

Peak Storage= 65 cf @ 7.92 hrs Average Depth at Peak Storage= 0.58' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.77 cfs

12.0" Round Pipe n= 0.013 Length= 137.5' Slope= 0.0025 '/' Inlet Invert= 112.96', Outlet Invert= 112.62'

Reach 5R: CB 4 TO MH 2

Summary for Reach 6R: MH 2 TO MH 6


[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach 4R OUTLET depth by 0.36' @ 7.95 hrs
[63] Warning: Exceeded Reach 5R INLET depth by 0.26' @ 7.95 hrs
[63] Warning: Exceeded Reach 8R INLET depth by 0.59' @ 7.95 hrs

Inflow Area =4.292 ac, 56.92% Impervious, Inflow Depth > 3.86" for 100 year eventInflow =4.17 cfs @ 7.92 hrs, Volume=1.382 afOutflow =4.17 cfs @ 7.94 hrs, Volume=1.381 af, Atten= 0%, Lag= 0.8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.79 fps, Min. Travel Time= 0.9 min Avg. Velocity = 1.72 fps, Avg. Travel Time= 1.5 min

Peak Storage= 228 cf @ 7.94 hrs Average Depth at Peak Storage= 1.18' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 4.34 cfs

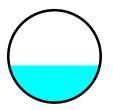
18.0" Round Pipe n= 0.013 Length= 152.6' Slope= 0.0017 '/' Inlet Invert= 112.62', Outlet Invert= 112.36'

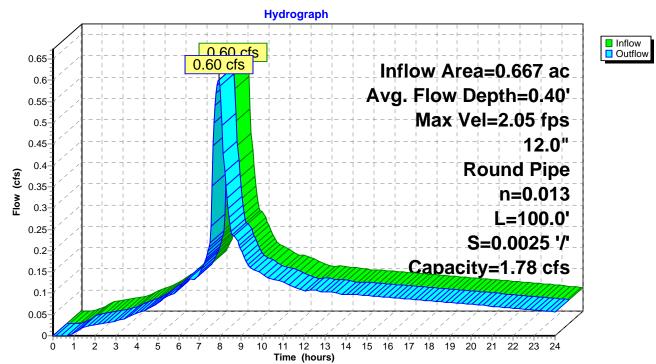
Hydrograph Inflow
Outflow 4 17 cfs 4.17 cfs Inflow Area=4.292 ac Avg. Flow Depth=1.18' 4 Max Vel=2.79 fps 18.0" 3-**Round Pipe** Flow (cfs) n=0.013 2 L=152.6' S=0.0017 '/' Capacity=4.34 cfs 1 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Ó 1

Time (hours)

Reach 6R: MH 2 TO MH 6

Summary for Reach 7R: CO 2 TO CO 3


[52] Hint: Inlet/Outlet conditions not evaluated[62] Hint: Exceeded Reach 19R OUTLET depth by 0.01' @ 8.10 hrs


Inflow Area =0.667 ac, 38.83% Impervious, Inflow Depth > 3.58" for 100 year eventInflow =0.60 cfs @7.93 hrs, Volume=0.199 afOutflow =0.60 cfs @7.94 hrs, Volume=0.199 af, Atten= 0%, Lag= 0.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.05 fps, Min. Travel Time= 0.8 min Avg. Velocity = 1.17 fps, Avg. Travel Time= 1.4 min

Peak Storage= 29 cf @ 7.94 hrs Average Depth at Peak Storage= 0.40' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.78 cfs

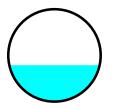
12.0" Round Pipe n= 0.013 Length= 100.0' Slope= 0.0025 '/' Inlet Invert= 113.07', Outlet Invert= 112.82'

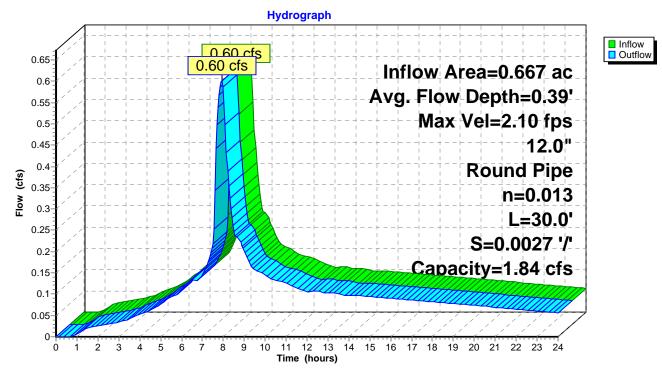
Reach 7R: CO 2 TO CO 3

Summary for Reach 8R: CO 1 TO MH 6

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach 7R outlet invert by 0.39' @ 7.95 hrs

 Inflow Area =
 0.667 ac, 38.83% Impervious, Inflow Depth > 3.58" for 100 year event


 Inflow =
 0.60 cfs @
 7.94 hrs, Volume=
 0.199 af


 Outflow =
 0.60 cfs @
 7.94 hrs, Volume=
 0.199 af, Atten= 0%, Lag= 0.2 min

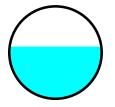
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.10 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.20 fps, Avg. Travel Time= 0.4 min

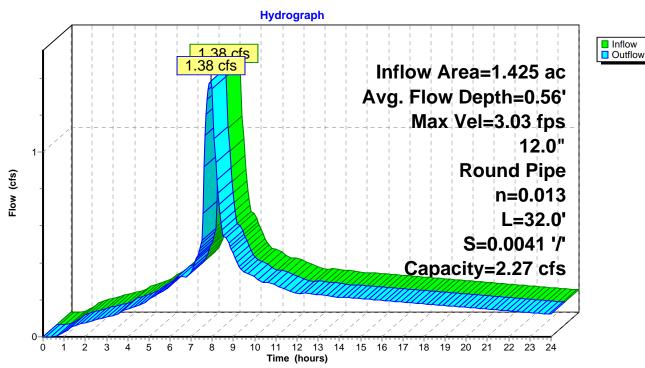
Peak Storage= 9 cf @ 7.94 hrs Average Depth at Peak Storage= 0.39' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.84 cfs

12.0" Round Pipe n= 0.013 Length= 30.0' Slope= 0.0027 '/' Inlet Invert= 112.82', Outlet Invert= 112.74'

Reach 8R: CO 1 TO MH 6

Summary for Reach 9R: CB 6 TO CB 7


[52] Hint: Inlet/Outlet conditions not evaluated


Inflow Area =1.425 ac, 53.19% Impervious, Inflow Depth > 3.85" for 100 year eventInflow =1.38 cfs @7.91 hrs, Volume=0.458 afOutflow =1.38 cfs @7.92 hrs, Volume=0.458 af, Atten= 0%, Lag= 0.2 min

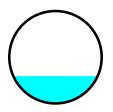
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 3.03 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.78 fps, Avg. Travel Time= 0.3 min

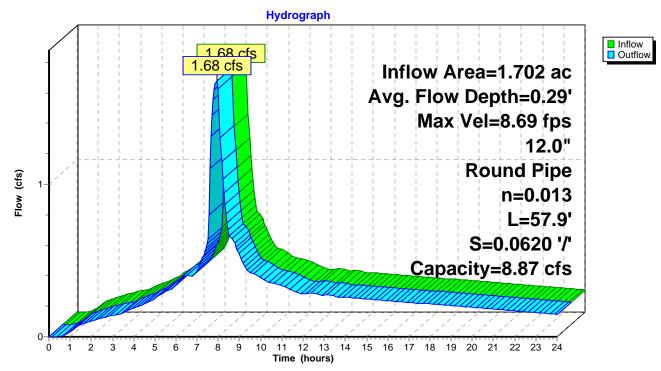
Peak Storage= 15 cf @ 7.92 hrs Average Depth at Peak Storage= 0.56' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.27 cfs

12.0" Round Pipe n= 0.013 Length= 32.0' Slope= 0.0041 '/' Inlet Invert= 117.53', Outlet Invert= 117.40'

Reach 9R: CB 6 TO CB 7

Summary for Reach 10R: CB 7 TO MH 3


[52] Hint: Inlet/Outlet conditions not evaluated
[63] Warning: Exceeded Reach 9R INLET depth by 0.33' @ 0.00 hrs
[63] Warning: Exceeded Reach 22R INLET depth by 0.06' @ 7.90 hrs


Inflow Area =1.702 ac, 60.28% Impervious, Inflow Depth > 3.93" for 100 year eventInflow =1.68 cfs @7.91 hrs, Volume=0.557 afOutflow =1.68 cfs @7.92 hrs, Volume=0.557 af, Atten= 0%, Lag= 0.1 min

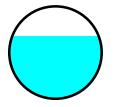
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 8.69 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.93 fps, Avg. Travel Time= 0.2 min

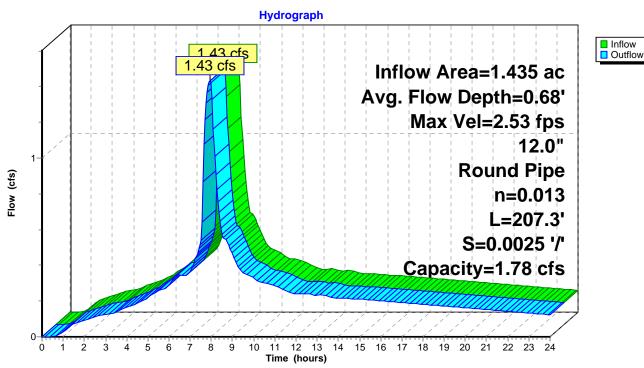
Peak Storage= 11 cf @ 7.92 hrs Average Depth at Peak Storage= 0.29' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 8.87 cfs

12.0" Round Pipe n= 0.013 Length= 57.9' Slope= 0.0620 '/' Inlet Invert= 117.86', Outlet Invert= 114.27'

Reach 10R: CB 7 TO MH 3

Summary for Reach 11R: CB 5 TO MH 3


[52] Hint: Inlet/Outlet conditions not evaluated

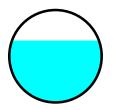

Inflow Area =1.435 ac, 64.81% Impervious, Inflow Depth > 3.98" for 100 year eventInflow =1.43 cfs @7.91 hrs, Volume=0.476 afOutflow =1.43 cfs @7.93 hrs, Volume=0.475 af, Atten= 0%, Lag= 1.1 min

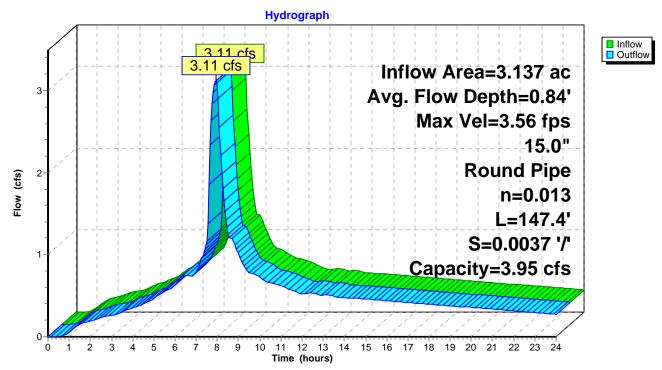
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.53 fps, Min. Travel Time= 1.4 min Avg. Velocity = 1.51 fps, Avg. Travel Time= 2.3 min

Peak Storage= 118 cf @ 7.93 hrs Average Depth at Peak Storage= 0.68' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.78 cfs

12.0" Round Pipe n= 0.013 Length= 207.3' Slope= 0.0025 '/' Inlet Invert= 114.59', Outlet Invert= 114.07'

Reach 11R: CB 5 TO MH 3


Summary for Reach 12R: MH 3 TO MH 4


[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach 10R OUTLET depth by 0.34' @ 7.95 hrs
[62] Hint: Exceeded Reach 11R OUTLET depth by 0.16' @ 7.95 hrs

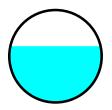
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 3.56 fps, Min. Travel Time= 0.7 min Avg. Velocity = 2.13 fps, Avg. Travel Time= 1.2 min

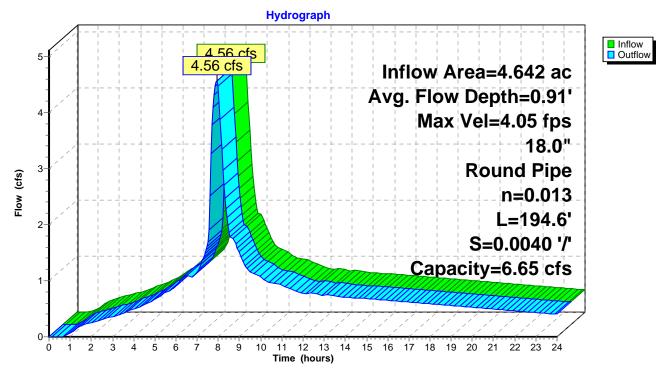
Peak Storage= 129 cf @ 7.93 hrs Average Depth at Peak Storage= 0.84' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 3.95 cfs

15.0" Round Pipe n= 0.013 Length= 147.4' Slope= 0.0037 '/' Inlet Invert= 114.07', Outlet Invert= 113.52'

Reach 12R: MH 3 TO MH 4

Summary for Reach 13R: MH 4 TO MH 6


[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach 12R OUTLET depth by 0.09' @ 8.10 hrs
[62] Hint: Exceeded Reach 17R OUTLET depth by 0.12' @ 7.95 hrs


Inflow Area =4.642 ac, 55.32% Impervious, Inflow Depth > 3.90" for 100 year eventInflow =4.56 cfs @7.93 hrs, Volume=1.508 afOutflow =4.56 cfs @7.94 hrs, Volume=1.507 af, Atten= 0%, Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 4.05 fps, Min. Travel Time= 0.8 min Avg. Velocity = 2.39 fps, Avg. Travel Time= 1.4 min

Peak Storage= 219 cf @ 7.94 hrs Average Depth at Peak Storage= 0.91' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 6.65 cfs

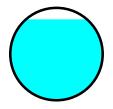
18.0" Round Pipe n= 0.013 Length= 194.6' Slope= 0.0040 '/' Inlet Invert= 113.52', Outlet Invert= 112.74'

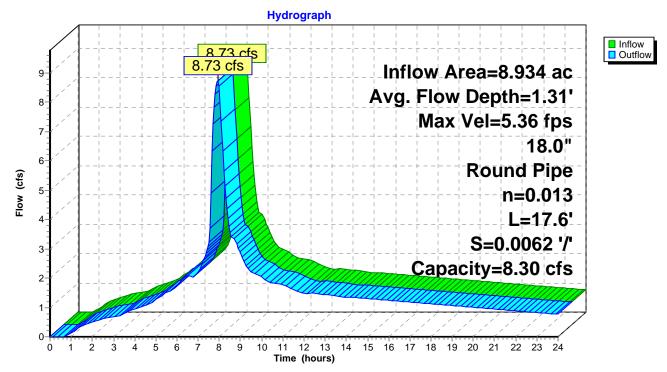
Reach 13R: MH 4 TO MH 6

Summary for Reach 14R: MH 6 TO OUTFALL

[52] Hint: Inlet/Outlet conditions not evaluated
[55] Hint: Peak inflow is 105% of Manning's capacity
[62] Hint: Exceeded Reach 6R OUTLET depth by 0.13' @ 7.95 hrs
[62] Hint: Exceeded Reach 13R OUTLET depth by 0.02' @ 7.95 hrs

 Inflow Area =
 8.934 ac, 56.09% Impervious, Inflow Depth > 3.88" for 100 year event


 Inflow =
 8.73 cfs @
 7.94 hrs, Volume=
 2.888 af

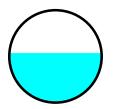

 Outflow =
 8.73 cfs @
 7.94 hrs, Volume=
 2.887 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 5.36 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.37 fps, Avg. Travel Time= 0.1 min

Peak Storage= 29 cf @ 7.94 hrs Average Depth at Peak Storage= 1.31' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 8.30 cfs

18.0" Round Pipe n= 0.013 Length= 17.6' Slope= 0.0062 '/' Inlet Invert= 112.36', Outlet Invert= 112.25'

Reach 14R: MH 6 TO OUTFALL


Summary for Reach 15R: CO 6 TO CO 5

[52] Hint: Inlet/Outlet conditions not evaluated[61] Hint: Exceeded Reach 20R outlet invert by 0.54' @ 7.95 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.36 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.37 fps, Avg. Travel Time= 0.1 min

Peak Storage= 3 cf @ 7.93 hrs Average Depth at Peak Storage= 0.54' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.80 cfs

12.0" Round Pipe n= 0.013 Length= 7.8' Slope= 0.0026 '/' Inlet Invert= 114.16', Outlet Invert= 114.14'

1

Flow (cfs)

0

ò 1 2 3 4 5 6 7 8 9 10

Hydrograph InflowOutflow 1.01.cfs 1.01 cfs Inflow Area=1.057 ac Avg. Flow Depth=0.54' Max Vel=2.36 fps 12.0" **Round Pipe** n=0.013 L=7.8' S=0.0026 '/' Capacity=1.80 cfs

Time (hours)

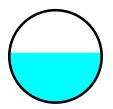
11 12 13 14 15 16 17 18 19 20 21 22 23 24

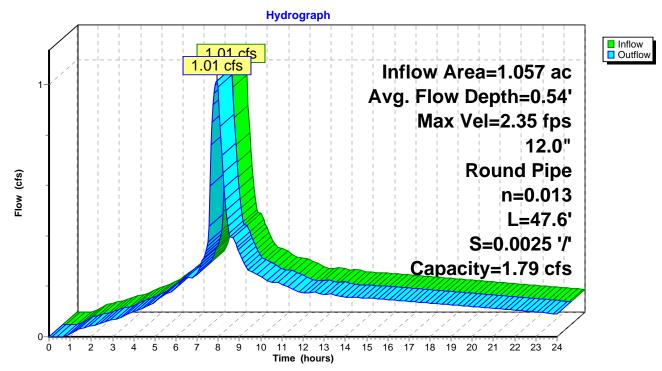
Reach 15R: CO 6 TO CO 5

Printed 5/13/2019

Page 46

Type IA 24-hr 100 year Rainfall=4.60"


Summary for Reach 16R: CO 5 TO CO 4

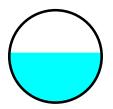

[52] Hint: Inlet/Outlet conditions not evaluated[62] Hint: Exceeded Reach 15R OUTLET depth by 0.01' @ 8.10 hrs

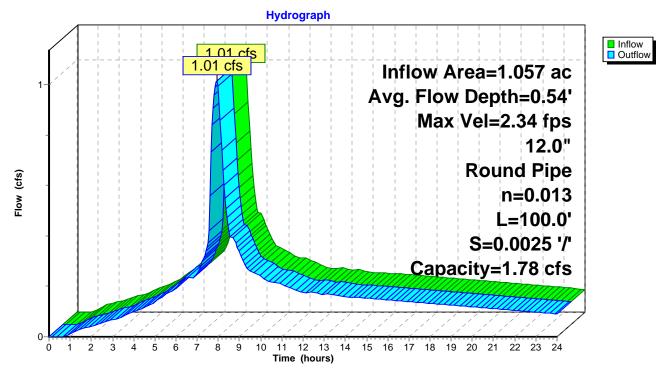
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.35 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.36 fps, Avg. Travel Time= 0.6 min

Peak Storage= 21 cf @ 7.93 hrs Average Depth at Peak Storage= 0.54' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.79 cfs

12.0" Round Pipe n= 0.013 Length= 47.6' Slope= 0.0025 '/' Inlet Invert= 114.14', Outlet Invert= 114.02'

Reach 16R: CO 5 TO CO 4


Summary for Reach 17R: CO 4 TO MH 4

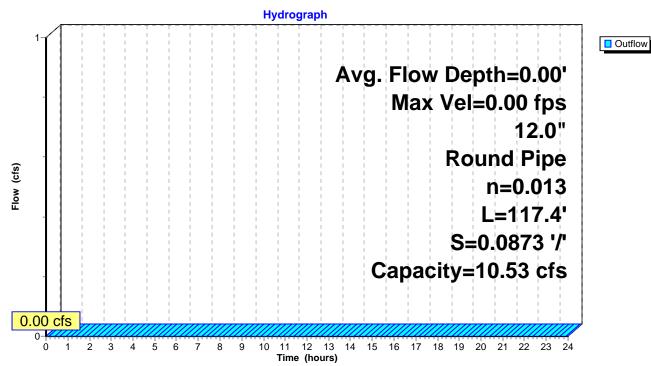

[52] Hint: Inlet/Outlet conditions not evaluated[62] Hint: Exceeded Reach 16R OUTLET depth by 0.01' @ 8.10 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.34 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.36 fps, Avg. Travel Time= 1.2 min

Peak Storage= 43 cf @ 7.94 hrs Average Depth at Peak Storage= 0.54' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.78 cfs

12.0" Round Pipe n= 0.013 Length= 100.0' Slope= 0.0025 '/' Inlet Invert= 114.02', Outlet Invert= 113.77'

Reach 17R: CO 4 TO MH 4


Summary for Reach 18R: MH 7 TO OUTFALL

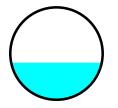
[43] Hint: Has no inflow (Outflow=Zero)

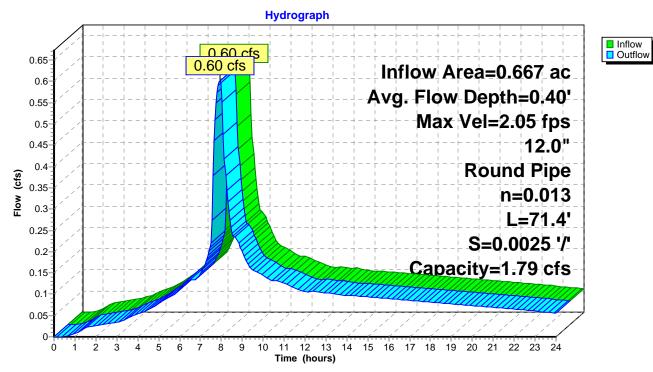
Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 10.53 cfs

12.0" Round Pipe n= 0.013 Length= 117.4' Slope= 0.0873 '/' Inlet Invert= 111.25', Outlet Invert= 101.00'

Reach 18R: MH 7 TO OUTFALL

Summary for Reach 19R: CO 3 TO CO 4


[52] Hint: Inlet/Outlet conditions not evaluated

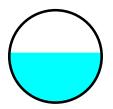

Inflow Area =0.667 ac, 38.83% Impervious, Inflow Depth > 3.58" for 100 year eventInflow =0.60 cfs @7.92 hrs, Volume=0.199 afOutflow =0.60 cfs @7.93 hrs, Volume=0.199 af, Atten= 0%, Lag= 0.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.05 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.17 fps, Avg. Travel Time= 1.0 min

Peak Storage= 21 cf @ 7.93 hrs Average Depth at Peak Storage= 0.40' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.79 cfs

12.0" Round Pipe n= 0.013 Length= 71.4' Slope= 0.0025 '/' Inlet Invert= 113.25', Outlet Invert= 113.07'

Reach 19R: CO 3 TO CO 4

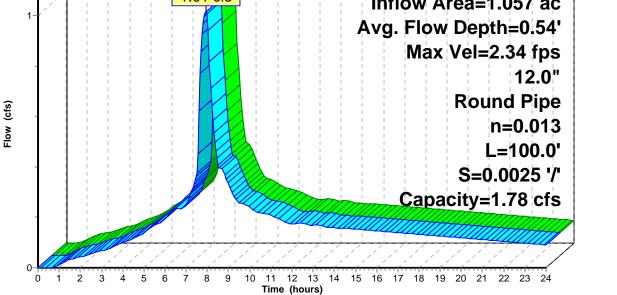

Summary for Reach 20R: CO 7 TO CO 6

[52] Hint: Inlet/Outlet conditions not evaluated[62] Hint: Exceeded Reach 21R OUTLET depth by 0.01' @ 8.10 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.34 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.36 fps, Avg. Travel Time= 1.2 min

Peak Storage= 43 cf @ 7.93 hrs Average Depth at Peak Storage= 0.54' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.78 cfs

12.0" Round Pipe n= 0.013 Length= 100.0' Slope= 0.0025 '/' Inlet Invert= 114.41', Outlet Invert= 114.16'

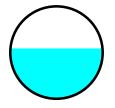


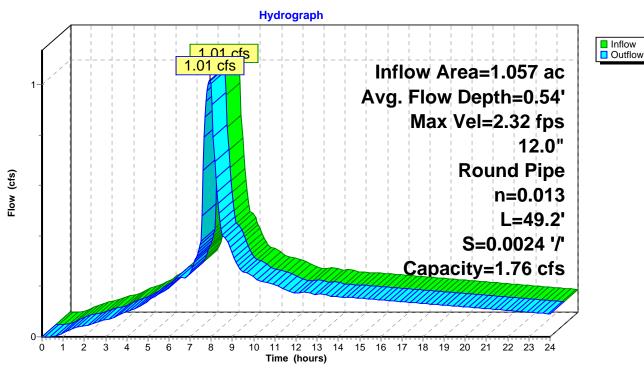
Hydrograph InflowOutflow 1.01.cfs 1.01 cfs Inflow Area=1.057 ac Avg. Flow Depth=0.54' Max Vel=2.34 fps 12.0" **Round Pipe** n=0.013 L=100.0' S=0.0025 '/'

Reach 20R: CO 7 TO CO 6

Printed 5/13/2019 Page 54

Summary for Reach 21R: CO 8 TO CO 7


[52] Hint: Inlet/Outlet conditions not evaluated


Inflow Area =1.057 ac, 40.40% Impervious, Inflow Depth > 3.78" for 100 year eventInflow =1.01 cfs @ 7.92 hrs, Volume=0.333 afOutflow =1.01 cfs @ 7.92 hrs, Volume=0.333 af, Atten= 0%, Lag= 0.4 min

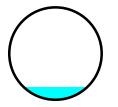
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.32 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.35 fps, Avg. Travel Time= 0.6 min

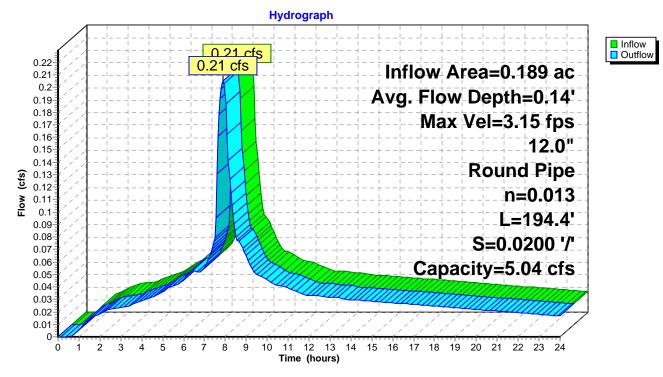
Peak Storage= 21 cf @ 7.92 hrs Average Depth at Peak Storage= 0.54' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.76 cfs

12.0" Round Pipe n= 0.013 Length= 49.2' Slope= 0.0024 '/' Inlet Invert= 114.53', Outlet Invert= 114.41'

Reach 21R: CO 8 TO CO 7

Summary for Reach 22R: CO 9 TO MH 3


[52] Hint: Inlet/Outlet conditions not evaluated


Inflow Area =0.189 ac, 100.00% Impervious, Inflow Depth > 4.36" for 100 year eventInflow =0.21 cfs @ 7.90 hrs, Volume=0.069 afOutflow =0.21 cfs @ 7.91 hrs, Volume=0.069 af, Atten= 0%, Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 3.15 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.78 fps, Avg. Travel Time= 1.8 min

Peak Storage= 13 cf @ 7.91 hrs Average Depth at Peak Storage= 0.14' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.04 cfs

12.0" Round Pipe n= 0.013 Length= 194.4' Slope= 0.0200 '/' Inlet Invert= 117.96', Outlet Invert= 114.07'

Reach 22R: CO 9 TO MH 3

APPENDIX G: BMP DETAILS

III-4.4 STANDARDS AND SPECIFICATIONS FOR DETENTION PONDS

III-4.4.1 BMP RD.05 Wet Pond (Conventional Pollutants)

Purpose and Definition

This BMP is designed to provide runoff treatment for conventional pollutants but not nutrients. It may also be designed to provide streambank erosion control. A wet pond is an open pond which treats runoff using a permanent pool of water ("dead storage"). As an option, a shallow marsh area can be created within the permanent pool volume to provide additional treatment (see BMP RD.06, Wet Pond for Nutrient Control). Streambank erosion control is provided in the "live storage" area above the permanent pool. Figure III-4.1 illustrates a typical wet pond BMP.

Planning Considerations

Wet ponds require careful planning in order to function correctly. Throughout the design process the designer should be committed to considering the potential impacts of the completed facility. Such impacts can be positive or negative and can be as broadly classified as social, economic, political, and environmental. Designers can often influence the positive or negative aspects of these impacts by their careful evaluation of decisions made in the design process. Generally speaking, the completed facility must provide for safety to people as well as protection of real property, water quality, and wildlife habitats.

Multiple Uses

Multi-purpose use of the facility and aesthetic enhancement of the general area should also be major considerations. Above all, the facility should function in such a manner as to be compatible with overall stormwater systems both upstream and downstream to promote a watershed approach to providing stormwater management as well as local flood control and erosion protection.

If the facility is planned as an artificial lake to enhance property values and promote the aesthetic value of the land, pretreatment in the form of landscape retention areas or perimeter swales should be incorporated into the stormwater management facility. If possible, catchbasins should be located in grassed areas. By incorporating this "treatment train" concept into the overall collection and conveyance system, the engineer can prolong the utility of these permanently wet installations and improve their appearance. Any amount of runoff waters, regardless how small, that is filtered or percolated along its way to the final detention area can remove oil and grease, metals, and sediment. In addition, this will reduce the annual nutrient load to prevent the wet detention lake from eutrophying.

Detention system site selection should consider both the natural topography of the area and property boundaries. Aesthetic and water quality considerations may also dictate locations. For example, ponds with wetland vegetation are more aesthetically pleasing than ponds without vegetation. Ponds containing wetland vegetation also provide better conditions for pollutant capture and treatment.

A storage facility is an integral part of the environment and therefore should serve as an aesthetic improvement to the area if possible. Use of good landscaping principles is encouraged. The planting and preservation of desirable trees and other vegetation should be an integral part of the storage facility design.

Water Quality Considerations

In planning new detention facilities, it should be kept in mind that the goal of improved water quality downstream may conflict with certain desired uses of the facility. It is only logical that if the basin is used to remove pollutants, the

water quality within the basin itself will be lowered, thus reducing the applicability for uses such as water supply, recreation, and aesthetics. In planning the facility the engineer or planner should have a good knowledge of sitespecific runoff constituents and an understanding of the possible effects on the quality of the stored water.

Basin Planning

The design of urban detention facilities should be coordinated with a basin plan for managing stormwater runoff. In a localized situation, an individual property owner can, of course, by his or her actions alone, provide effective assistance to the next owner downstream if no other areas contribute to that owner's problems. However, uncontrolled proliferation of impoundments within a watershed can severely alter natural flow conditions, causing compounded flow peaks or increased flow duration which can contribute to downstream degradation. In addition, upstream impacts due to future land use changes should be considered when designing the structure. Land use planning and regulation may be necessary to preserve the intended function of the impoundment. See Minimum Requirement #9 (Basin Planning) and the appendix in Volume I for a further discussion of basin planning.

Sediment and Debris

More often than not, detention ponds serve primarily as sedimentation basins during construction when erosion rates are particularly high. In and of itself, this situation does not present a problem. Unfortunately, these facilities are often installed without the benefit of the designer having evaluated the capacity of either the initial or the final (post-construction) design configuration to perform this type of function.

If a facility is to be used as the principal means to avoid having excessive levels of turbidity discharged from the site during construction, the engineer should evaluate the pond geometry in conjunction with the rate of outflow and grain size distribution of the soils and design the temporary sediment basin according to BMPs E3.35 or E3.40 in Volume II.

Heavy Metal Contamination

Studies have shown high accumulation rates of lead, zinc, and copper on and near heavily traveled highways and streets. Runoff from highways and streets can be expected to carry significant concentrations of these heavy metals. If a significant portion of the drainage area into a pond consists of highways, streets, or parking areas or other known sources of heavy metal contamination, there is a potential environmental health hazard. In such cases the multiple use functions of the pond should be limited and accessibility should be restricted. Additionally, liners may be required in order to prevent these types of pollutants from migrating into the underlying soil and ground water system.

This may require that sediment dredged out of the basins during maintenance cleaning be treated as a Dangerous Waste. Investigations of sediments removed from detention ponds to date have found that many pollutants are tightly bound with only a slight possibility of leaching. To be safe, sediments to be removed should be analyzed and elutriate tests performed to verify that the sediment can be safely disposed of by conventional methods (see Volume IV, Catchbasin Sediment Disposal Policy (to be written) which deals with disposal procedures).

Overflows

Detention facility design must take into consideration overflows and secondary overflow. Overflows include all facilities designed to bypass flows over or around the restrictor system. Overflow may result from higher intensity or longer duration storms than the design storm or result from plugged orifices or inadequate storage due to sediment buildup in the facility.

Secondary overflow occurs when the capacities of all conveyance facilities, and all overflow facilities are exceeded or are not functioning. In such instances, stormwater will often exit the conveyance system through catchbasin grates and flow down the corridor of least resistance. Careful consideration must be given to the impact of secondary overflows on public health, safety and welfare, property, and wildlife habitat. When secondary overflow occurs, design of secondary drainage facilities following careful analysis and planning can significantly reduce impacts. Street alignments and grades are the key components in developing secondary drainage design, and consideration should be given early in the planning stages to their use as secondary overflow facilities.

Site Constraints and Setbacks

Site constraints are any manmade restrictions such as property lines, easements, structures, etc. that impose constraints on development. Constraints may also be imposed from <u>natural</u> features such as requirements of the local government's Sensitive Areas Ordinance and Rules (if adopted). These should also be reviewed for specific application to the proposed development.

All facilities shall be a minimum of 20 feet from any structure, property line, and any vegetative buffer required by the local government, and 100 feet from any septic tank/drainfield (except wet vaults shall be a minimum of 20 feet).

All facilities shall be a minimum of 50 feet from any steep (greater than 15%) slope. A geotechnical report must address the potential impact of a wet pond on a steep slope.

Dam Safety

In urban or urbanizing areas, failure of an impoundment structure can cause significant property damage and even loss of life. Such structures should be designed only by professional engineers registered in the State of Washington who are qualified and experienced in impoundment design. Wherever they exist, local safety standards for impoundment design shall be followed. Where no such criteria exist, widely recognized design criteria such as those used by the USDA Soil Conservation Service, Ecology Dam Safety Standards, or U.S. Army Corps of Engineers are recommended.

Safety, Signage and Fencing

Ponds which are readily accessible to populated areas should incorporate all possible safety precautions. Steep side slopes (steeper than 3H:1V) at the perimeter shall be avoided and dangerous outlet facilities shall be protected by enclosure. Warning signs for deep water and potential health risks shall be used wherever appropriate. Signs should be placed so that at least one is clearly visible and legible from all adjacent streets, sidewalks or paths. A notice should be posted warning residents of potential waterborne disease that may be associated with body contact recreation such as swimming in these facilities.

If the pond surface exceeds 20,000 sq. feet, include a safety bench around the basin with a width of 5 feet, and with a depth not exceeding 1 foot during non-storm periods. Emergent vegetation such as cattails should be placed on the bench to inhibit entry by unauthorized people.

A fence is required at the maximum water surface elevation, or higher, when a pond slope is a wall. Local governments and Homeowners Associations may also require appropriate fencing as an additional safety requirement in any event. Design Criteria

Sizing Wet Ponds

Wet ponds designed for treatment of conventional pollutants utilize a permanent pool of water to provide treatment and are to be designed using the hydrologic analysis methods presented in Chapter III-1.

Permanent Pool Volume

The permanent pool volume shall be equal to the runoff volume of the 6-month, 24hour design storm. It is not necessary to vegetate the permanent pool, but establishment of a shallow marsh system can provide additional pollutant removal capabilities.

Surface Area-Pool Depth Relationships

The pond surface area is found by dividing the permanent pool volume by the depth, with a maximum depth of six (6) feet recommended. A minimum depth of three (3) feet is recommended so that resuspension of trapped pollutants is inhibited. Permanent pools deeper than six (6) feet could potentially contaminate ground water (should they intersect the existing ground water level). Also, deeper ponds can stratify and create anaerobic condition that can cause pollutants which are normally bound in the sediment (e.g., metals and phosphorus) to resolubilize; their release back to the water column can seriously affect the effectiveness of the BMP and also create nuisance conditions.

See Table III-4.2 for the surface area-pool depth relationship. Table III-4.3 illustrates typical surface area-to-drainage area ratios for this and other detention BMPs.

If the wet pond is also designed to provide streambank erosion control, then additional surface area and depth will be required for the "live storage" volume located above the permanent pool. There is no specific surface area-pool depth relationship for the "live storage" volume.

Ponds designed to provide streambank erosion control may be deeper than six feet as long as the permanent pool volume provided for runoff treatment does not exceed six feet.

Outlet Structure

The outlet structure must be designed to accomplish an extended detention time so that runoff can be released at the flow rates established by Minimum Requirement #5, Streambank Erosion Control (see Chapter I-2). Figure III-4.3 illustrates methods for extending detention time in wet ponds.

Pond Configuration and Geometry

Wet ponds shall be multi-celled with a least two cells, and preferably three. The cells should be approximately equal in size. The first cell should be three feet deep in order to effectively trap coarser sediments and reduce turbulence which can resuspend sediments. It should be easily accessible for maintenance purposes.

Long, narrow, and irregularly shaped ponds are preferred, as these configurations are less prone to short-circuiting and tend to maximize available treatment area. The length-to-width ratio should be at least 3:1 and preferably 5:1. Irregularly shaped ponds may perform more effectively and will have a more natural appearance.

III-4-13

The inlet and outlet should be at opposite ends of the pond where feasible. If this is not possible, then baffles can be installed to increase the flow path and water residence time (see BMP RD.10, Presettling Basin, for details).

Interior side slopes up to the maximum water surface shall be no steeper than 3H:1V. Exterior side slopes shall be no steeper than 2H:1V.

The pond bottom shall be level to facilitate sedimentation.

Pond walls may be retaining walls, provided that the design is prepared and stamped by a structural engineer registered in the State of Washington, that they are constructed of reinforced concrete per Section III-4.6.1, that a fence is provided along the top of the wall, and that at least 25 percent of the pond perimeter will be a vegetated soil slope of not greater than 3H:1V.

Other Design Considerations

Liner to Prevent Infiltration

Detention BMPs should have negligible infiltration rates through the bottom of the pond. Infiltration will impair the proper functioning of detention BMPs and can contaminate ground water. If infiltration is anticipated, then a detention facility must either not be used and an infiltration BMP used instead (see Chapter III-3) or a liner should be installed to prevent infiltration. If a liner is used, the specifications provided in Section III-3.7 (Filtration BMPs) can be used. When using a liner the following are recommended:

- A layer of (track) compacted top soil (minimum 18" thick shall be placed over the liner prior to seeding with an appropriate seed mixture (see BMP E1.35 in Chapter II-5).
- Other liners may be used provided the design engineer can supply support documentation that the material will provide the required performance.

Overflow and Emergency Spillway

If streambank erosion control is not required, a pond overflow system must provide controlled discharge of the 100-year, 24-hour design storm event for developed site conditions without overtopping any part of the pond embankment or exceeding the capacity of the emergency spillway. The design must provide controlled discharge directly into the downstream conveyance system. This assumes the pond will be full due to plugged control structure inflow pipe and/or plugged restrictor/orifices conditions.

Open Type 2 catchbasins can function as weirs when used as pond overflow structures to control overtopping. The overflow structure, as shown in Figure III-4.5, may be required in some circumstances to protect embankments from overtopping.

In addition to the above overflow requirements, an emergency overflow spillway (secondary overflow) must be provided to safely pass the 100-year, 24-hour design storm event (for developed site conditions and assuming the pond is full to the crest of the spillway) over the pond embankment in the event of control structure failure or for storm/runoff events exceeding design. The spillway must be located to direct overflows safely towards the downstream conveyance system and shall be located in existing soil wherever feasible. The emergency overflow spill shall be armored with riprap in conformance with Table III-2.4 and shall extend to the toe of each face of the berm embankment.

• Design of emergency overflow spillways requires the analysis of a broadcrested trapezoidal weir. The following weir section is required for the emergency overflow spillway, as per Figure III-4.4.

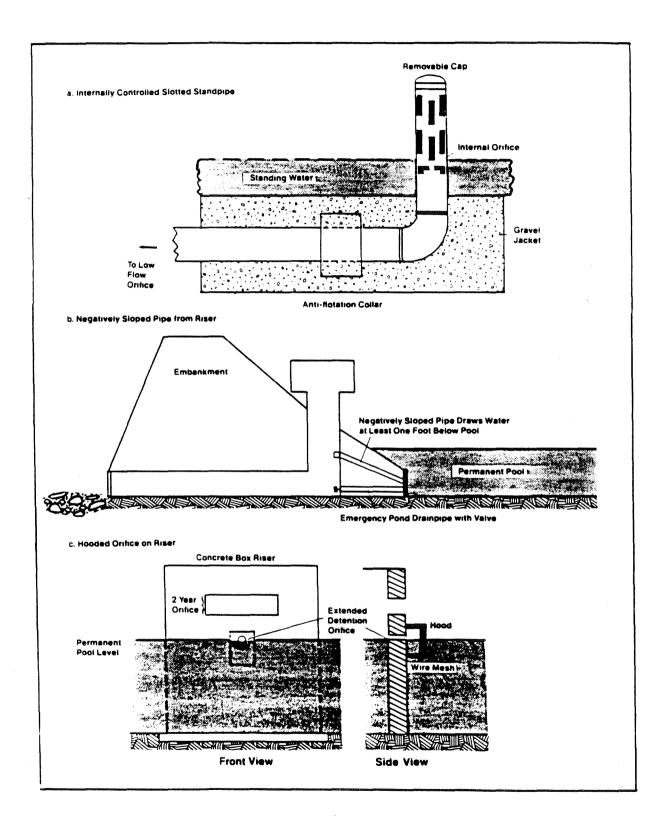
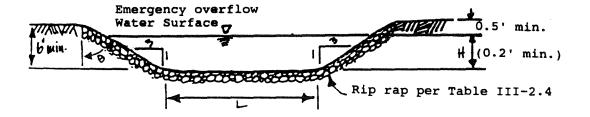



Figure III-4.2 Methods for Extending Detention Time in Wet Ponds

Figure III-4.3 Weir Section for Emergency Overflow Spillway

The emergency overflow spillway weir section can be designed to pass the 100year, 24-hour design storm event for developed conditions as follows:

For this weir, $Q_{100} = C (2g)^{1/2} [(2/3)LH^{3/2} + 8/15 Tan \Theta H^{5/2}]$

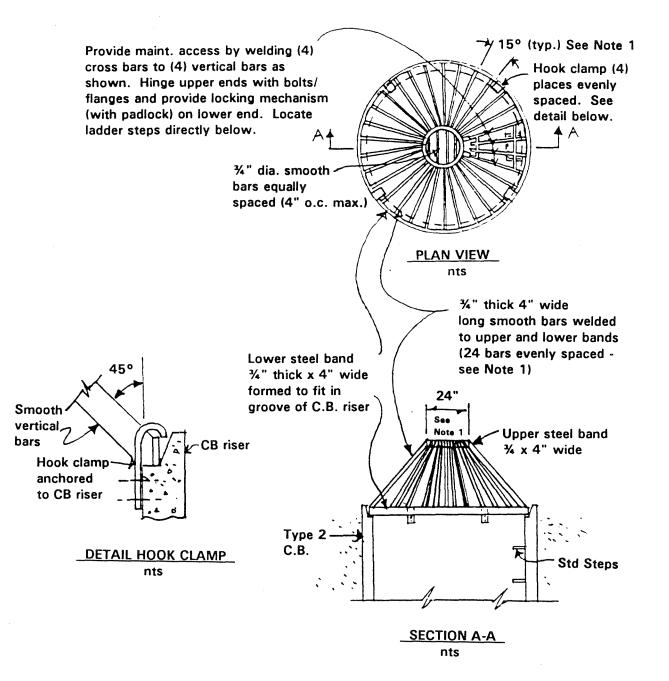
using: C = 0.6 (discharge coefficient); Tan Θ = 3 (for 3:1 slopes); Θ = 72°;

The equation becomes: $Q_{100} = 3.21 (LH^{3/2} + 2.4H^{5/2})$

To find width L, the equation is rearranged to use the computed Q_{100} (peak flow for the 100-year, 24-hour design storm) and trial values of H (0.2 feet minimum).

L = $(Q_{100}/(3.21H^{3/2})) - (2.4H^2);$ = 6 feet minimum

Berm Embankment/Slope Stabilization


Pond embankments higher than 6 feet shall require design by a geotechnical-civil engineer licensed in the State of Washington. The embankment shall have a minimum 15 foot top width where necessary for maintenance access; otherwise, top width may vary as recommended by the geotechnical-civil engineer.

The berm dividing the pond into cells shall have a 5 foot minimum top width, a top elevation set one foot lower than the design water surface, maximum 3:1 side slopes, and a quarry spall and gravel filter "window" between the cells (see Figure III-4.5).

For berm embankments of 6 feet or less than (including 1 foot freeboard), the minimum top width shall be 6 feet or as recommended by the geotechnical-civil engineer.

The toe of the exterior slope of pond berm embankment must be no closer than 5 feet from the tract or easement property line.

Figure III-4.4 Detention Pond Overflow Structure

Notes:

- 1. Dimensions are for installation on 54" dia. C.B. For different dia.C.B.'s adjust dimensions to maintain 45° angle on "vertical" bars and 7" O.C. max. spacing of bars around lower steel band.
- 2. Metal parts: corrosion resistant.
- 3. This debris barrier is also recommended for use on the inlet to roadway cross-culverts with high potential for debris collection (except on Class 2 streams).

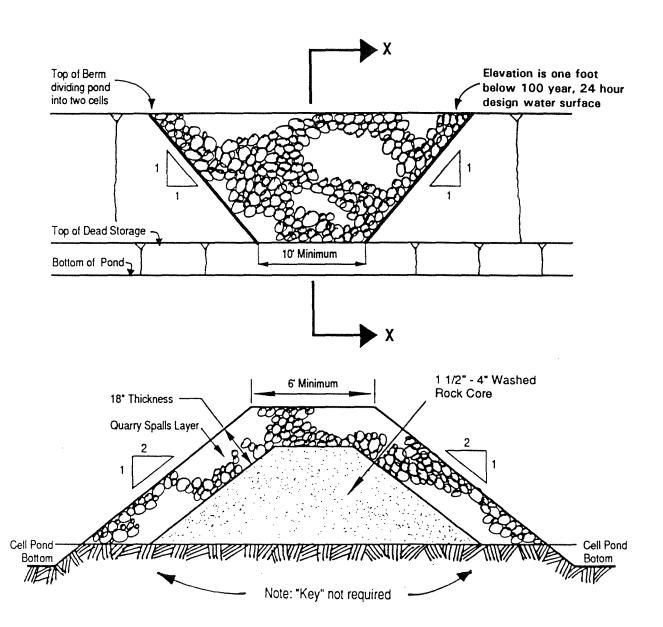


Figure III-4.5 Quarry Spall and Gravel Filter "Window"

Pond berm embankments must be constructed on native consolidated soil (or adequately compacted and stable fill soils analyzed by a geotechnical report) free of loose surface soil materials, roots and other organic debris.

Pond berm embankments must be constructed by excavating a "key" equal to 50 percent of the berm embankment cross-sectional height and width (except on highly compacted till soils where the "key" minimum depth can be reduced to 1 foot of excavation into the till).

The berm embankment shall be constructed on compacted soil (95 percent minimum dry density, standard proctor method per ASTM D1557), placed in 6-inch lifts, with the following soil characteristics per the United States Department of Agriculture's Textural Triangle: a minimum of 30 percent clay, a maximum of 60 percent sand, a maximum of 60 percent silt, with nominal gravel and cable content (Note, in general, excavated glacial till will be well-suited for berm embankment material).

Anti-seepage collars must be placed on outflow pipes in berm embankments impounding water greater than 8 feet in depth at the design water surface.

Exposed earth on the pond bottom and side slopes shall be sodded or seeded with the appropriate seed mixture as soon as is practicable (see Erosion and Sediment Control BMP E1.35 in Volume II). Establishment of protective vegetative cover shall be ensured with jute mesh or other protection and reseeded as necessary (see Erosion and Sediment Control BMPs E1.15 and E1.35 in Volume II).

Gravity Drain

A gravity drain for maintenance shall provide an outlet invert of one foot above the bottom of the facility and shall be sized to drain the facility in four hours or less.

Erosion and Sediment

Bank erosion is often a significant problem during the initial stages of development. Stabilization with sod down to the permanent pool and preventing undue sediment deposition is required for the planting to survive.

Erosion and sediment control BMPs must be used to retain sediment on-site during construction (see Erosion and Sediment Control in Volume II). BMPs must be shown on the design plans and the engineer must provide instructions for proper O&M. Permanently stabilize all areas above the normal water level of ponds to prevent erosion and sedimentation of plantings (see Chapter II-5).

Littoral Zone Planting

For treating conventional pollutants a wet pond does not require the establishment of vegetation in its shallow areas, or "littoral zones." However, a shallow marsh system can provide additional treatment of runoff and be aesthetically pleasing (see BMP RD.06, Wet Pond for Nutrient Control, for details). If littoral zone vegetation is planned it shall be planted according to the advice of a wetlands specialist. Nursery sources are recommended wherever possible. Small (2-4 inch) containers are encouraged to avoid transporting large amounts of potting soil to the pond. White roots and active basal budding indicate a healthy stock.

Most wetlands specialists prefer to have someone on-site during the construction phase to ensure that the littoral shelf is located and graded properly. Knowing exactly where the normal water level of the facility will reside after construction is absolutely essential to the success of this element of the system. Construction and Maintenance Criteria

Construction

Widely acceptable construction standards and specifications such as those developed by the USDA - Soil Conservation Service or the U.S. Army Corps of Engineers for embankment ponds and reservoirs should be followed to build the impoundment.

Chapter 17 of the SCS Engineering Field Manual provides guidance on construction methods for the various elements of a pond or reservoir. Specifications for the work should conform to methods and procedures for installing earthwork, concrete, reinforcing steel, pipe, water gates, metal work, woodwork, and masonry, that are applicable to the site and the purpose of the structure, and satisfy all requirements of the local government.

Maintenance

General

Maintenance is of primary importance if detention ponds are to continue to function as originally designed. A local government, a designated group such as a homeowners' association, or some individual shall accept the responsibility for maintaining the structures and the impoundment area. A specific maintenance plan shall be formulated outlining the schedule and scope of maintenance operations. Debris removal in detention basins can be achieved through the use of trash racks or other screening devices.

Design with maintenance in mind. Good maintenance will be crucial to successful use of the impoundment. Hence, provisions to facilitate maintenance operations must be built into the project when it is installed. Maintenance must be a basic consideration in design and in determination of first cost. See Table III-4.4 for specific maintenance requirements.

Any standing water removed during the maintenance operation must be disposed of to a sanitary sewer at an approved discharge location. Residuals must be disposed in accordance with current health department requirements of the local government.

Vegetation

If a shallow marsh is established, then periodic removal of dead vegetation will be necessary. The frequency of removal has not been established and Ecology requests comments on this issue. Since decomposing vegetation can release pollutants captured in the wet pond, especially nutrients, it may be necessary to harvest dead vegetation annually prior to the winter wet season. Otherwise the decaying vegetation can export pollutants out of the pond and also can cause nuisance conditions to occur. If harvesting is to be done in the wetland, a written harvesting procedure shall be prepared by a wetland scientist and will be submitted with the drainage design to the local government.

Sediment

Maintenance of sediment forebays and attention to sediment accumulation within the pond is extremely important. Sediment deposition should be continually monitored in the basin. Owners, operators, and maintenance authorities should be aware that significant concentrations of heavy metals (e.g., lead, zinc, and cadmium) as well as some organics such as pesticides, may be expected to accumulate at the bottom of these treatment facilities. Testing of sediment, especially near points of inflow, should be conducted regularly to determine the leaching potential and level of accumulation of hazardous material before disposal. For disposal procedures, refer to Volume IV - disposal requirements for catchbasin and pond sediments (to be written).

Access

Pond access tracts and roads are required when ponds do not abut public right-ofway. Road(s) shall provide access to the control structure and along side(s) of the pond as necessary for vehicular maintenance. For ponds with bottom widths of 15 feet or more, the access road shall extend to the pond bottom and an access pad provided to facilitate cleaning. For ponds less than 15 feet in width, an access road must extend along one side.

Roads and pads shall meet the following criteria:

- Maximum Grade: 15 percent to control structure, 20 percent into pond.
- Provide 40 foot minimum outside radius on the access road to the control structure and the turn around to the pond bottom.
- Fence gates shall be provided for access roads at "straight" sections of road.
- Access roads shall be 15 feet in width.
- Access pads shall be 15 feet in width and 25 feet in length.
- Manhole and catchbasin lids must be at either edge of an access road or pad and be at least 3 feet from a property line.

Access shall be limited by a double-posted gate if a fence is required or by bollards. Bollards shall consist of two fixed bollards on each side of the access road and two removable bollards equally located between the fixed bollards.

Access roads and pads shall be constructed by utilizing one of the following techniques:

- Construct an asphalt surface meeting the same standard as residential minor access streets, as required by the local government.
- Construct a gravel surface road by removing all unsuitable material, laying a geotextile fabric over the native soil, placing quarry spalls (2"-4") six inches thick then providing a two-inch thick crushed gravel surface.
- Construct a landscape block (24"x24"x 6") surface by removing all unsuitable material, laying a geotextile fabric over the native soil, placing landscape blocks, filling the honeycombs with soil particles, and planting grass.

Nuisance Conditions

The presence of wet ponds and marshes in established urban areas is perceived by many people to be undesirable. They are often thought of as mud holes where mosquitoes and other insects breed. If the wet pond has a shallow marsh established (more likely in the cases of BMP RD.06 and BMP RD.09), the pond can become a welcomed addition to an urban community. Constructed fresh water marshes can provide miniature wildlife refuges, and while insect populations are increased, insect predators also increase, often reducing the problem to a tolerable level. Advice from the University of Washington (Rick Sugg, personal communication) suggests that in the Puget Sound lowlands, the extra breeding habitat provided by any wetponds would not be significant. Nevertheless, local governments and homeowners associations may wish to temporarily drain wet ponds during late spring (May) and summer if there is sufficient concern. However, it is imperative that vegetation in shallow marsh areas not die off during draindown periods. Otherwise, the pollutant removal effectiveness of the wet pond can be severely impacted. In addition, the decaying vegetation can create nuisance conditions.

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is Performed	
I. Ponds - General	Trash and debris	Any trash or debris which exceeds 1 $ft^{3/1000} ft^{2}$ (equal to the volume of a standard size office garbage can). In general, there should be no evidence of dumping.	Trash and debris cleared from site.	
	Poisonous vegetation	Any poisonous vegetation which may constitute a hazard to maintenance personnel or the public, e.g. tansy, poison oak, stinging nettles, devils club.	No danger of poisonous vegetation where maintenance personnel or the public might normally be. Coordinate with the local county health dept.	
	Pollution	1 gallon or more of oil, gas or other contaminants or any amount found that could: 1) cause damage to plant, animal or marine life, 2) constitute a fire hazard, 3) be flushed downstream during storms or 4) contaminate ground water.	No contaminants present other than a surface film. Coordinate with the local county health dept.	
	Unmowed grass/ground cover	In residential areas, mowing is needed when the cover exceeds 18 inches in height. Otherwise, match facility cover with adjacent ground cover and terrain as long as there is no decrease in facility function.	When mowing is needed, grass or ground cover should be mowed down to 2 inches. A dense grass cover must be maintained on slopes, and in dry ponds on the bottom as well.	
	Rodent holes	Any evidence of rodent holes if facility is acting as a dam or berm, or any evidence of water piping through dam or berm via rodent holes.	Rodents destroyed and dam or berm repaired. Coordinate with the local county health dept.	
	Insects	When insects such as wasps or hornets interfere with maintenance activities.	Insects destroyed or removed from site. Coordinate with people who remove wasps for anti-venom production.	
	Tree growth	Tree growth does not allow maintenance access or interferes with maintenance activity. If trees are not interfering with access, leave trees alone.	Trees do not hinder maintenance activities. Selectively cultivate trees such as alders for firewood.	
Side Slopes of Pond	Erosion	Eroded damage >2 inches deep where cause of damage is still present or where there is potential for continued erosion.	Slopes should be stabilized with appropriate erosion control BMPs e.g. seeding, plastic covers, riprap.	
Storage Area, Forebay	Sediment	Accumulated sediment that exceeds 10% of the designed forebay depth, or every three years.	Sediment cleaned out to designed pond shape and depth; reseeded if necessary to control erosion.	
Pond Dikes	Settling	Any part of dike which has settled 4 inches lower than the design elevation.	Dike should be built back to the design elevation.	
Emergency Overflow, Spillway	Rock missing	Only 1 layer of rock above native soil in an area ≥ 5 ft ² or any exposure of native soil.	Replace rock to design standards.	
II. Debris Barriers - General	Trash and debris	Trash or debris that is plugging $\geq 20\%$ of the openings in the barrier.	Barrier clear to receive capacity flow.	

Table III-4.4 Specific Maintenance Requirements for Detention Ponds

STORMWATER MANAGEMENT MANUAL FOR THE PUGET SOUND BASIN

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is Performed	
Metal	Damaged/missing bars	Bars are bent out of shape ≥ 3 inches.	Bars in place with no bend \geq 3/4 [•] .	
		Bars or entire barrier is missing.	Bars in place according to design.	
		Bars are loose and rust is causing 50% deterioration to any part of the barrier.	Repair or replace barrier to standards.	
III. Fencing - General	Missing or broken parts	Any defect in the fence that permits easy entrance to the facility.	Parts in place to provide adequate security.	
		Parts broken or missing.	Broken or missing parts replaced	
	Erosion	Erosion \ge 4 inches deep and 12 - 18 inches wide permitting an opening under the fence.	No opening under the fence \geq inches in depth.	
Wire Fences	Damaged parts	Posts out of plumb more than 6 inches.	Posts plumb within 1½ inches.	
		Top rails bent more than 6 inches.	Top rail free of bends ≥ 1 inc	
		Any part of fence (including posts, top rails and fabric) \geq 1 foot out of design alignment.	Fence is aligned and meets design standards.	
		Missing or loose tension wire.	Tension wire in place & holdir fabric.	
		Missing or loose barbed wire sagging more than 2½ inches between posts.	Barbed wire in place with < 3 inch sag between posts.	
		Extension arm missing, broken or bent out of shape more than 1½ inches.	Extension arm in place with no bends larger than 3/4 inch.	
	Deteriorated paint or protective coating	Part(s) that have a rusting or scaling condition which has affected structural adequacy.	Structurally adequate posts or parts with a uniform protective coating.	
RV C .	Openings in fabric	Openings in fabric are such that an 8 inch diameter ball could fit through.	No openings in fence.	
IV. Gates - General	Damaged or missing members	Missing gate or locking device.	Gates and locking devices in place.	
		Broken or missing hinges such that gate cannot be easily opened and closed by maintenance personnel.	Hinges intact & lubed, gate working freely.	
		Gate is out of plumb ≥ 6 inches and ≥ 1 foot out of design alignment.	Gate is aligned & vertical.	
		Missing stretcher bar, stretcher bands and ties.	Stretcher bar, bands & ties in place.	
() A 15 - 1		See "Fencing" standard, above.	See "Fencing" standard, above	
V. Access Roads, Easements -				
General	Trash and debris	Exceeds 1 $ft^3/1000$ ft^2 or the amount that would fill a standard size garbage can.	Trash & debris cleared from si	
	Blocked roadway	Debris which could damage vehicle tires.	Roadway free of such debris.	
		Obstructions which reduce clearance above road surface to < 14 feet.	Roadway overhead clear to 14 feet high.	

STORMWATER MANAGEMENT MANUAL FOR THE PUGET SOUND BASIN

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is Performed		
V. Access Roads, Easements, continued	Blocked roadway, continued	Any obstructions restricting access to a 10 - 12 foot width for a distance of ≥ 12 feet or any point restricting access to a < 10 foot width.	Obstruction moved to allow at least a 12 foot access route.		
	Settlement, potholes, mushy spots, ruts	When any surface exceeds 6 inches in depth and 6 ft ² in area. In general, any surface defect which prevents or hinders maintenance access.	Road surface uniformly smooth with no evidence of potholes, settlement, mushy spots or ruts.		
	Vegetation in surface	Weeds growing in the road surface that are ≥ 6 inches tall and < 6 inches apart within a 400 ft ² area.	Road surface free of weeds taller than 2 inches.		
	Erosion damage	Erosion within 1 foot of the roadway ≥ 8 inches wide & 6 inches deep.	Shoulder free of erosion & matching the surrounding road.		
	Weeds and brush	Weeds and brush exceed 18 inches in height or hinder maintenance access.	Weeds and brush cut to 2 inches in height or cleared in such a way as to allow maintenance access.		

APPENDIX H: CURVE NUMBERS

Table III-1.3 SCS Western Washington Runoff Curve Numbers (Published by SCS in 1982) Runoff curve numbers for selected agricultural, suburban and urban

land use for Type IA rainfall distribution, 24-hour storm duration.							
LAND USE DESCRIPTION			CURVE NUMBERS BY HYDROLOGIC SOIL GROUP A B C D				
Cultivated land(1):	winter condition		86	91	94	95	
Mountain open areas:	low growing brush	n & grasslands	74	82	89	92	
Meadow or pasture:				78	85	89	
Wood or forest land:	undisturbed		42	64	76	81	
Wood or forest land:	young second grow	wth or brush	55	72	81	86	
Orchard:	with cover crop		81	88	92	94	
Open spaces, lawns, parks, golf courses, cemeteries, landscaping.							
Good condition:	grass cover on ≿7 area	75% of the	68	80	86	90	
Fair condition:	grass cover on 50 the area	0-75% of	77	85	90	92	
Gravel roads & parking lots:			76	85	89	91	
Dirt roads & parking lots:			72	82	87	89	
Impervious surfaces, pavement, roofs etc.			98	98	98	98	
Open water bodies:	lakes, wetlands,	ponds etc.	100	100	100	100	
Single family residentia	Single family residential(2):						
Single family residential(2): Dwelling Unit/Gross Acre %Impervious(3) 1.0 DU/GA 15 1.5 DU/GA 20 2.0 DU/GA 25 2.5 DU/GA 30 3.0 DU/GA 34 3.5 DU/GA 42 4.5 DU/GA 42 4.5 DU/GA 48 5.5 DU/GA 50 6.0 DU/GA 52 6.5 DU/GA 54 7.0 DU/GA 56 PUD's, condos, apartments, %impervious commercial businesses & must be				Separate curve number shall be selected for pervious & impervious portions of the site or basin			
commercial businesses & industrial areas		must be computed					

land use for Type 1A rainfall distribution, 24-hour storm duration.

(2) (3)

condition for these curve numbers.

For a more detailed description of agricultural land use curve numbers refer (1) to National Engineering Handbook, Sec. 4, Hydrology, Chapter 9, August 1972. Assumes roof and driveway runoff is directed into street/storm system. The remaining pervious areas (lawn) are considered to be in good

APPENDIX I: NEW DEVELOPMENT FLOW CHART

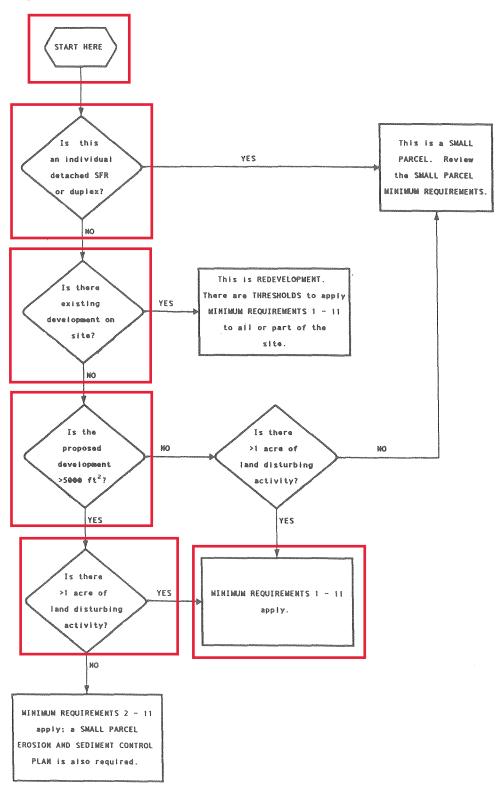
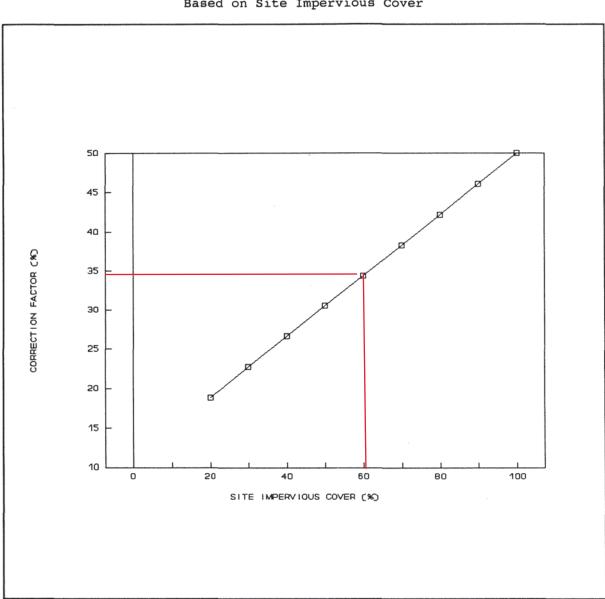
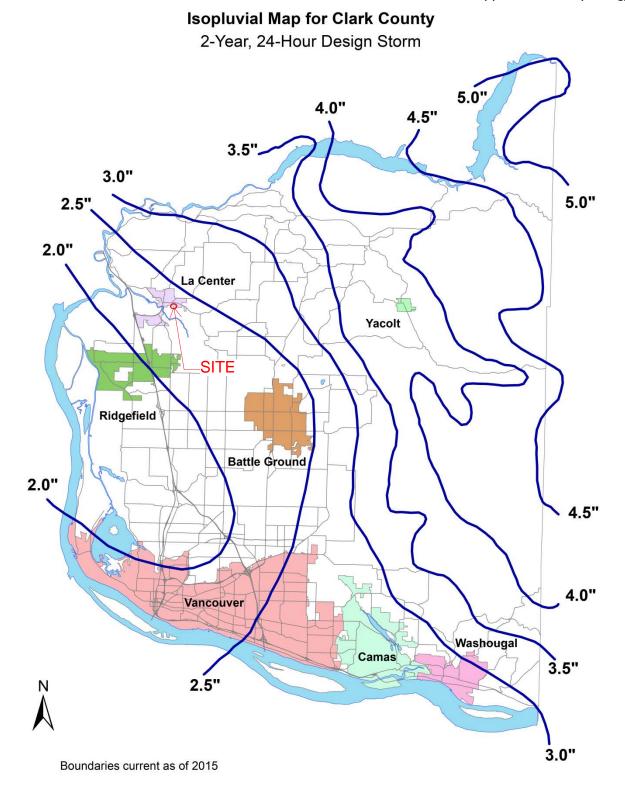
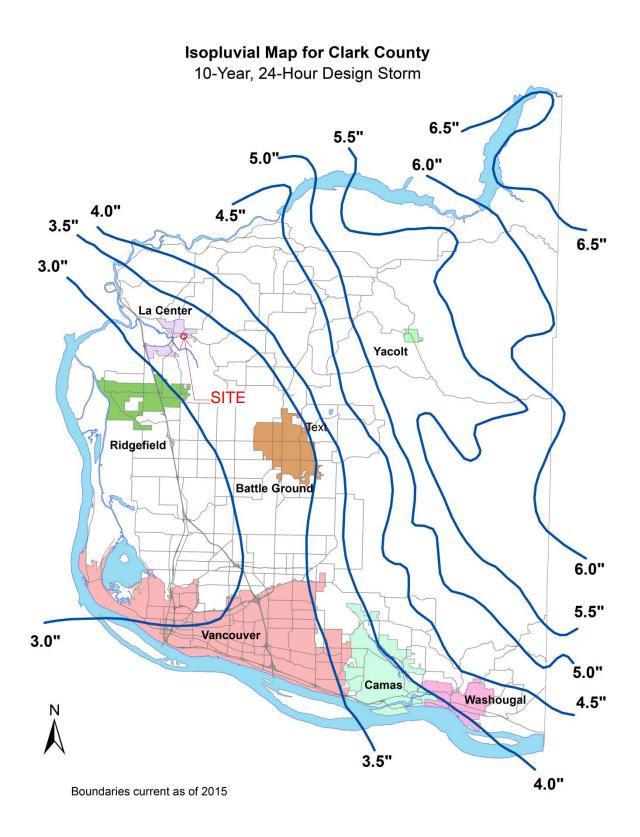
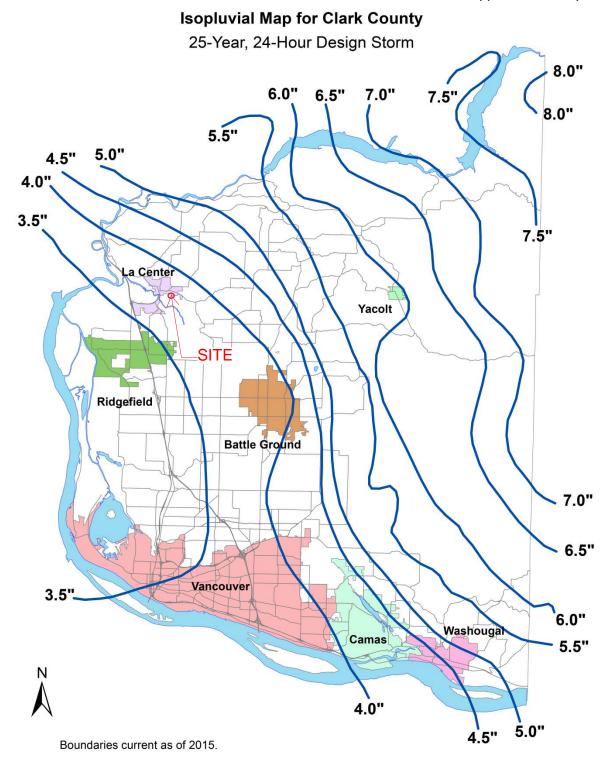


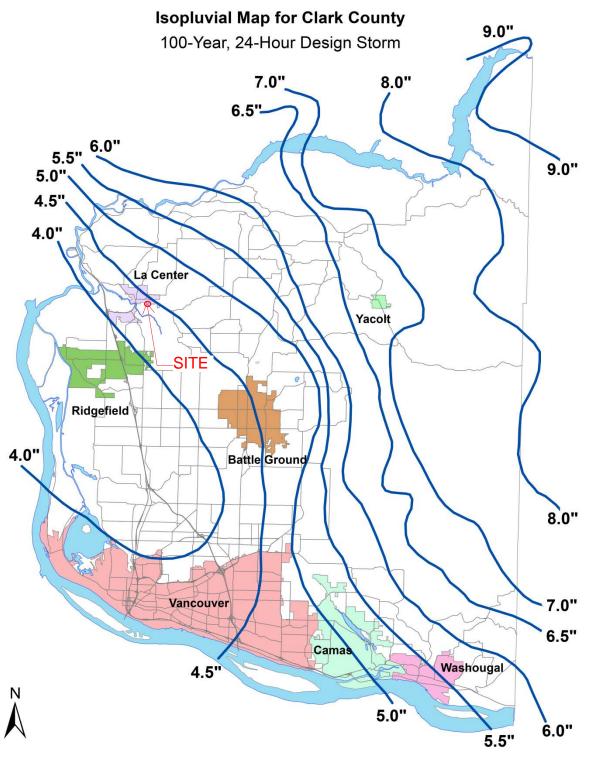
Figure I-2.1 Flowchart Demonstrating Minimum Requirements

APPENDIX J: VOLUME CORRECTION FACTOR


FIGURE III-1.1

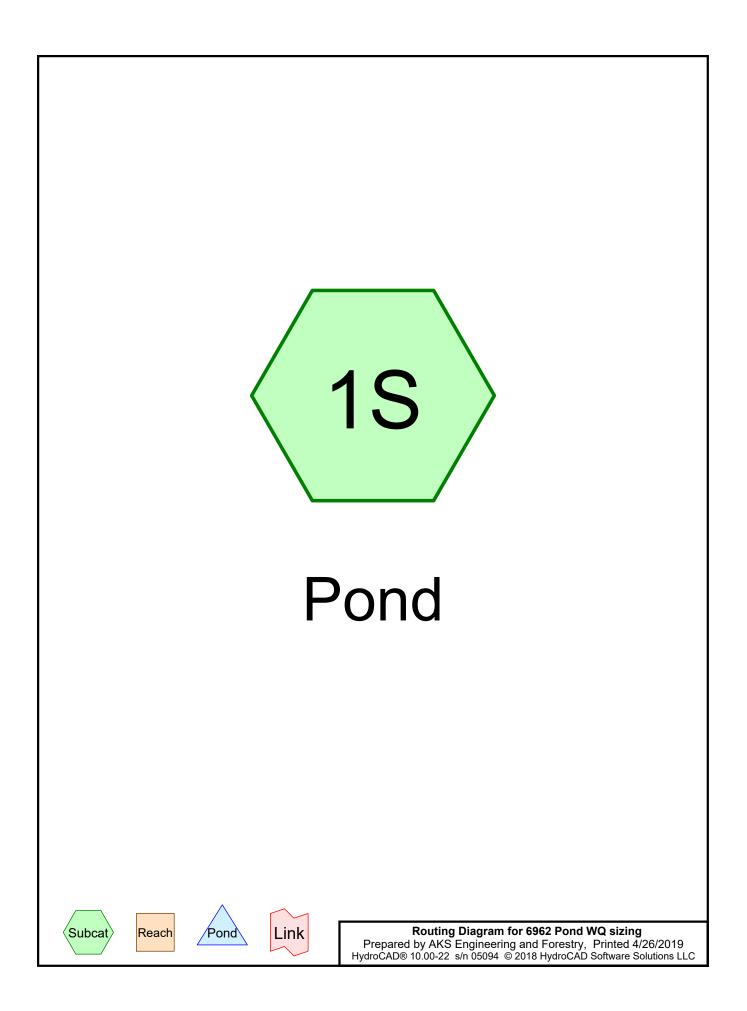

Volume Correction Factor to be Applied to Streambank Erosion Control BMPs Based on Site Impervious Cover



APPENDIX K: ISOPLUVIAL MAPS

Boundaries current as of 2015.

APPENDIX L: WET POND CALCULATIONS


Stormwater Wetpond Calculations

Volume of Water Quality Storm Event V= 0.832 ac-ft from HydroCAD

Wetpond Volume V= 36241.92 cubic feet

First cell volume V _s =	17853.24 cubic feet
Second cell volume V _s =	18442.17 cubic feet
Actual Wetpond Volume V _s =	36295.41 cubic feet

		SA=Surface Area (as percent of total surface area)
Actual Wetpond Surface		
Area (0'-2' Pool Depth)		
A _s =	4730.14 square feet	48.62
Actual Wetpond Surface Area (2'-6' Pool Depth) A _s = Total surface Area= Average depth =		51.38 depth
Average depth =	4.06 fe	eet
Maximum average depth=	4.8 fe	eet

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
3.300	86	grass C (1S)
1.070	90	grass D (1S)
0.400	100	pond (1S)
1.580	98	road and Sidewalk (1S)
3.360	98	roof and driveway (1S)
9.710	93	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
9.710	Other	1S
9.710		TOTAL AREA

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	0.000	0.000	3.300	3.300	grass C	1S
0.000	0.000	0.000	0.000	1.070	1.070	grass D	1S
0.000	0.000	0.000	0.000	0.400	0.400	pond	1S
0.000	0.000	0.000	0.000	1.580	1.580	road and Sidewalk	1S
0.000	0.000	0.000	0.000	3.360	3.360	roof and driveway	1S
0.000	0.000	0.000	0.000	9.710	9.710	TOTAL AREA	

Ground Covers (all nodes)

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SBUH method, Split Pervious/Imperv. Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Pond

Runoff Area=9.710 ac 54.99% Impervious Runoff Depth>1.03" Tc=5.0 min CN=87/98 Runoff=2.42 cfs 0.832 af

Total Runoff Area = 9.710 ac Runoff Volume = 0.832 af Average Runoff Depth = 1.03" 45.01% Pervious = 4.370 ac 54.99% Impervious = 5.340 ac

Summary for Subcatchment 1S: Pond

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.42 cfs @ 7.94 hrs, Volume= 0.832 af, Depth> 1.03"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 6 mon Rainfall=1.60"

* 1.580 98 road and Sidewalk * 3.360 98 roof and driveway * 1.070 90 grass D * 3.300 86 grass C * 0.400 100 pond 9.710 93 Weighted Average 4.370 87 45.01% Pervious Area 5.340 98 54.99% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) Direct Entry,	
 * 1.070 90 grass D * 3.300 86 grass C * 0.400 100 pond 9.710 93 Weighted Average 4.370 87 45.01% Pervious Area 5.340 98 54.99% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 	
* 3.300 86 grass C * 0.400 100 pond 9.710 93 Weighted Average 4.370 87 45.01% Pervious Area 5.340 98 54.99% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
* 0.400 100 pond 9.710 93 Weighted Average 4.370 87 45.01% Pervious Area 5.340 98 54.99% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
9.710 93 Weighted Average 4.370 87 45.01% Pervious Area 5.340 98 54.99% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
4.370 87 45.01% Pervious Area 5.340 98 54.99% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
5.340 98 54.99% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
(min) (feet) (ft/ft) (ft/sec) (cfs)	
5.0 Direct Entry,	
Subcatchment 1S: Pond	
Hydrograph	
(g) Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg	Runoff
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours)	

Emergency Overflow Spillway

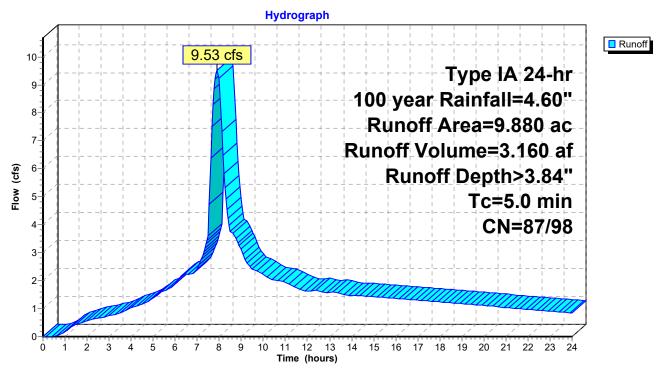
Volumetric Flow Rate from the 100-year, 24 Hour StormQ100=9.53 cfs from HydroCADHeight of water over weir H=0.5 ft

Width of Weir Section L= $(Q_{100}/(3.21H^{(3/2)})-2.4H)$ L= 7.20

Summary for Subcatchment 1S: Pond

[49] Hint: Tc<2dt may require smaller dt

5.0


Runoff = 9.53 cfs @ 7.91 hrs, Volume= 3.160 af, Depth> 3.84"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 100 year Rainfall=4.60"

	Area (ac)	CN	Description
*	1.210	98	road
*	0.370	98	sidewalk
*	3.360	98	roof and driveway
*	1.070	90	grass D
*	3.300	86	grass C
*	0.170	98	trail
*	0.400	100	pond
	9.880	93	Weighted Average
	4.370	87	44.23% Pervious Area
	5.510	98	55.77% Impervious Area
	Tc Leng (min) (fe		Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)

Direct Entry,

Subcatchment 1S: Pond

APPENDIX M: INLET CAPACITY CALCULATIONS

Project Description		
Solve For	Spread	
Input Data		
Discharge	1.02 cfs	
Gutter Width	0.00 ft	
Gutter Cross Slope	0.000 ft/ft	
Road Cross Slope	0.020 ft/ft	
Grate Width	1.83 ft	
Grate Length	2.2 ft	
Local Depression	0.0 in	
Local Depression Width	0.0 in	
Grate Type	P-30 mm (P-1 -7/8")	
Clogging	50.0 %	
Results		
Spread	11.1 ft	
Depth	2.7 in	
Gutter Depression	0.0 in	
Total Depression	0.0 in	
Open Grate Area	1.2 ft ²	
Active Grate Weir Length	4.0 ft	

Project Description		
Solve For	Spread	
Input Data		
Discharge	0.18 cfs	
Gutter Width	0.00 ft	
Gutter Cross Slope	0.000 ft/ft	
Road Cross Slope	0.020 ft/ft	
Grate Width	1.83 ft	
Grate Length	2.2 ft	
Local Depression	0.0 in	
Local Depression Width	0.0 in	
Grate Type	P-30 mm (P-1 -7/8")	
Clogging	50.0 %	
Results		
Spread	4.4 ft	
Depth	1.1 in	
Gutter Depression	0.0 in	
Total Depression	0.0 in	
Open Grate Area	1.2 ft ²	
Active Grate Weir Length	4.0 ft	

Project Description		
Solve For	Efficiency	
Input Data		
Discharge	0.22 cfs	
Slope	0.020 ft/ft	
Gutter Width	0.00 ft	
Gutter Cross Slope	0.000 ft/ft	
Road Cross Slope	0.020 ft/ft	
Roughness Coefficient	0.013	
Grate Width	1.83 ft	
Grate Length	2.2 ft	
Grate Type	P-30 mm (P-1 -7/8")	
Clogging	50.0 %	
Grate Flow Option	Exclude None	
Results		
Efficiency	88.78 %	
Intercepted Flow	0.20 cfs	
Bypass Flow	0.02 cfs	
Spread	3.3 ft	
Depth	0.8 in	
Flow Area	0.1 ft ²	
Gutter Depression	0.0 in	
Total Depression	0.0 in	
Velocity	2.00 ft/s	
Splash Over Velocity	4.69 ft/s	
Frontal Flow Factor	1.000	
Side Flow Factor	0.046	
Grate Flow Ratio	0.882	
Active Grate Length	1.1 ft	

Worksheet for Grate Inlet On Grade - 3

Project Description		
Solve For	Spread	
Input Data		
Discharge	0.80 cfs	
Gutter Width	0.00 ft	
Gutter Cross Slope	0.000 ft/ft	
Road Cross Slope	0.020 ft/ft	
Grate Width	1.83 ft	
Grate Length	2.2 ft	
Local Depression	0.0 in	
Local Depression Width	0.0 in	
Grate Type	P-30 mm (P-1 -7/8")	
Clogging	50.0 %	
Results		
Spread	9.6 ft	
Depth	2.3 in	
Gutter Depression	0.0 in	
Total Depression	0.0 in	
Open Grate Area	1.2 ft ²	
Active Grate Weir Length	4.0 ft	

Project Description		
Solve For	Spread	
Input Data		
Discharge	1.06 cfs	
Gutter Width	0.00 ft	
Gutter Cross Slope	0.000 ft/ft	
Road Cross Slope	0.020 ft/ft	
Grate Width	1.83 ft	
Grate Length	2.2 ft	
Local Depression	0.0 in	
Local Depression Width	0.0 in	
Grate Type	P-30 mm (P-1 -7/8")	
Clogging	50.0 %	
Results		
Spread	11.3 ft	
Depth	2.7 in	
Gutter Depression	0.0 in	
Total Depression	0.0 in	
Open Grate Area	1.2 ft ²	
Active Grate Weir Length	4.0 ft	

Project Description		
Solve For	Spread	
Input Data		
Discharge	1.07 cfs	
Gutter Width	0.00 ft	
Gutter Cross Slope	0.000 ft/ft	
Road Cross Slope	0.020 ft/ft	
Grate Width	1.83 ft	
Grate Length	2.2 ft	
Local Depression	0.0 in	
Local Depression Width	0.0 in	
Grate Type	P-30 mm (P-1 -7/8")	
Clogging	50.0 %	
Results		
Spread	11.3 ft	
Depth	2.7 in	
Gutter Depression	0.0 in	
Total Depression	0.0 in	
Open Grate Area	1.2 ft ²	
Active Grate Weir Length	4.0 ft	

Project Description		
Solve For	Spread	
Input Data		
Discharge	0.07 cfs	
Gutter Width	0.00 ft	
Gutter Cross Slope	0.000 ft/ft	
Road Cross Slope	0.020 ft/ft	
Grate Width	1.83 ft	
Grate Length	2.2 ft	
Local Depression	0.0 in	
Local Depression Width	0.0 in	
Grate Type	P-30 mm (P-1 -7/8")	
Clogging	50.0 %	
Results		
Spread	3.0 ft	
Depth	0.7 in	
Gutter Depression	0.0 in	
Total Depression	0.0 in	
Open Grate Area	1.2 ft ²	
Active Grate Weir Length	4.0 ft	

APPENDIX N: TEMPORARY SEDIMENT POND CALCS

Temporary Sediment Pond Calculations

Surface area at top of riser pipe SA=

1250*Q₁₀

SA= 8137.5 square feet

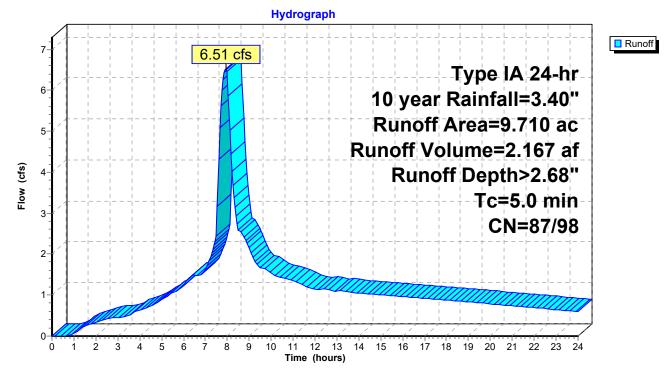
principal spillway peak flow from 10 year runoff event

Q₁₀= 6.51 cfs

Summary for Subcatchment 1S: Pond

[49] Hint: Tc<2dt may require smaller dt

Runoff = 6.51 cfs @ 7.92 hrs, Volume= 2.167 af, Depth> 2.68"

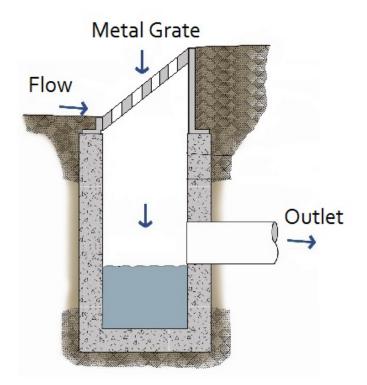

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 year Rainfall=3.40"

	Area (ac)	CN	Description		
*	1.580	98	road and Sid	ewalk	
*	3.360	98	roof and driv	eway	
*	1.070	90	grass D		
*	3.300	86	grass C		
*	0.400	100	pond		
	9.710	93	Weighted Av	erage	
	4.370	87	45.01% Perv	ious Area	
	5.340	98	54.99% Impe	rvious Area	
	Tc Leng		Slope Velocit		Description
	(min) (fe	et)	(ft/ft) (ft/sec) (cfs)	

Direct Entry,

Subcatchment 1S: Pond

APPENDIX O: OPERATIONS AND MAINTENANCE MANUAL


Field Inlet

A field inlet is a concrete structure fitted with a slotted grate to collect stormwater runoff and route it through underground pipes.

Field inlets typically provide a storage volume (sump) below the outlet pipe to allow sediments and debris to settle out of the stormwater runoff. Some field inlets are fitted with a spill control device (inverted elbow on outlet pipe) intended to contain large quantities of grease or oils.

Facility objects that are typically associated with a field inlet include:

- access road or easement
- control structure/flow restrictor
- biofiltration swale
- detention pond
- infiltration trench

Key Operations and Maintenance Considerations

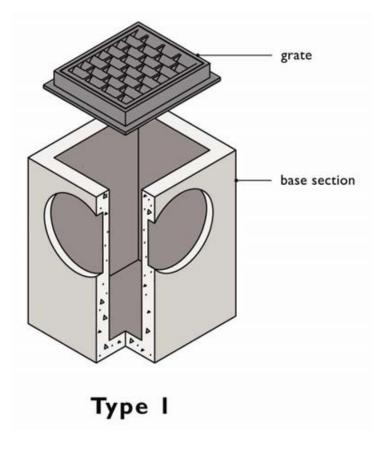
• The most common tool for cleaning field inlets is a truck with a tank and vacuum hose (Vactor® truck) to remove sediment and debris from the sump.

• A field inlet may be an enclosed space where harmful chemicals and vapors can accumulate. Therefore, if the inspection and maintenance requires entering a field inlet, it should be conducted by an individual trained and certified to work in hazardous confined spaces.

Field Inlet				
Drainage System Feature	Potential Defect	Conditions When Maintenance Is Needed	Minimum Performance Standard	
			Note: table spans multiple pages.	
General	Trash and Debris	Trash or debris which is located immediately in front of the catch basin opening or is blocking inletting capacity of the field inlet by more than 10%.	No trash or debris located immediately in front of field inlet or on grate opening.	
		Trash or debris (in the field inlet) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe.	No trash or debris in the field inlet.	
		Trash or debris in any inlet or outlet pipe blocking more than 1/3 of its height.	Inlet and outlet pipes free of trash or debris.	
		Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane).	No dead animals or vegetation present within the field inlet.	
	Sediment	Sediment (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the field inlet.	
	Structure Damage to Frame and/or Top Slab	Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch. (Intent is to make sure no material is running into basin).	Top slab is free of holes and cracks.	
		Frame not sitting flush on top slab, i.e., separation of more than 3/4 inch of the frame from the top slab. Frame not securely attached.	Frame is sitting flush on the riser rings or top slab and firmly attached.	
	Fractures or Cracks in Basin Walls/ Bottom	Maintenance person judges that structure is unsound.	Basin replaced or repaired to design standards.	
		Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering field inlet through cracks.	Pipe is regrouted and secure at basin wall.	

Field Inlet			
Drainage System Feature	Potential Defect	Conditions When Maintenance Is Needed	Minimum Performance Standard
		•	Note: table spans multiple pages.
	Settlement/ Misalignment	If failure of basin has created a safety, function, or design problem.	Basin replaced or repaired to design standards.
	Vegetation Inhibiting	Vegetation growing across and blocking more than 10% of the basin opening.	No vegetation blocking opening to basin.
	System	Vegetation growing in inlet/outlet pipe joints that is more than six inches tall and less than six inches apart.	No vegetation or root growth present.
	Contaminants and Pollution	 Any evidence of oil, gasoline, contaminants or other pollutants. Sheen, obvious oil or other contaminants present. Identify and remove source, AND Report to Clark County Clean Water Program. 	No contaminants or pollutants present.
Metal Grates	Grate Not in Place	Cover is missing or only partially in place. Any open field inlet requires maintenance.	Field inlet cover is closed.
	Grate Opening Unsafe	Grate with opening wider than 3 inches.	Grate opening meets design standards.
	Trash and Debris	Trash and debris that is blocking more than 20% of grate surface inletting capacity.	Grate free of trash and debris.
	Damaged or Missing	Grate missing or broken member(s) of the grate.	Grate is in place and meets design standards.

Catch Basin


A catch basin is an underground concrete structure typically fitted with a slotted grate to collect stormwater runoff and route it through underground pipes. Catch basins can also be used as a junction in a pipe system and may have a solid lid. There are two types.

A Type 1 catch basin is a rectangular box with approximate dimensions of 3'x2'x5'. Type 1 catch basins are utilized when the connected conveyance pipes are less than 18 inches in diameter and the depth from the gate to the bottom of the pipe is less than 5 feet.

A Type 2 catch basin, also commonly referred to as a storm manhole, is listed separately under "Manhole" in this book.

Catch basins typically provide a storage volume (sump) below the outlet pipe to allow sediments and debris to settle out of the stormwater runoff. Some catch basins are also fitted with a spill control device (inverted elbow on outlet pipe) intended to contain large quantities of grease or debris.

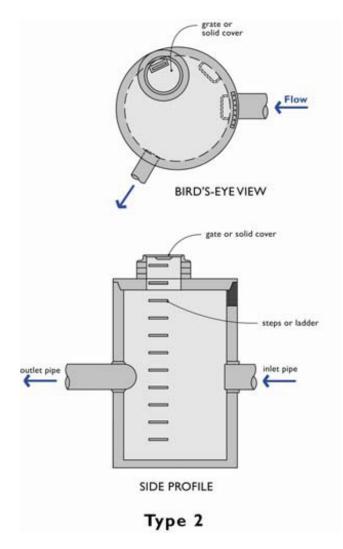
Catch basins are frequently associated with all stormwater facilities.

Key Operations and Maintenance Considerations

- The most common tool for cleaning catch basins is an industrial vacuum truck with a tank and vacuum hose (e.g. Vactor® truck) to remove sediment and debris from the sump.
- A catch basin may be an enclosed space where harmful chemicals and vapors can accumulate. Therefore, if the inspection and maintenance requires entering a catch basin, it should be conducted by an individual trained and certified to work in hazardous confined spaces.

Drainage System Feature	Potential Defect	Conditions When Maintenance Is Needed	Minimum Performance Standard
			Note: table spans multiple pages.
General	Trash and Debris	Trash or debris which is located immediately in front of the catch basin opening or is blocking inletting capacity of the basin by more than 10%.	No trash or debris located immediately in front of catch basin or on grate opening.
		Trash or debris (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe.	No trash or debris in the catch basin.
		Trash or debris in any inlet or outlet pipe blocking more than 1/3 of its height.	Inlet and outlet pipes free of trash or debris.
		Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane).	No dead animals or vegetation present within the catch basin.
	Sediment	Sediment (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the catch basin.
	Structure Damage to Frame and/or Top Slab	Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch. (Intent is to make sure no material is running into basin.)	Top slab is free of holes and cracks.
		Frame not sitting flush on top slab, i.e., separation of more than 3/4 inch of the frame from the top slab. Frame not securely attached.	Frame is sitting flush on the riser rings or top slab and firmly attached.
	Fractures or Cracks in	Maintenance person judges that structure is unsound.	Basin replaced or repaired to design standards.

	Basin Walls/ Bottom	Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	Pipe is regrouted and secure at basin wall.
	Settlement/ Misalignment	If failure of basin has created a safety, function, or design problem.	Basin replaced or repaired to design standards.
	Vegetation Inhibiting	Vegetation growing across and blocking more than 10% of the basin opening.	No vegetation blocking opening to basin.
	System	Vegetation growing in inlet/outlet pipe joints that is more than six inches tall and less than six inches apart.	No vegetation or root growth present.
	Contaminants and Pollution	Any evidence of oil, gasoline, contaminants or other pollutants. Sheen, obvious oil or other contaminants present.	No contaminants or pollutants present.
		 Identify and remove source, AND Report to Clark County Clean Water Program. 	
Catch Basin Cover	Cover Not in Place	Cover is missing or only partially in place. Any open catch basin requires maintenance.	Catch basin cover is closed.
	Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread.	Mechanism opens with proper tools.
	Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure (Intent is to keep cover from sealing off access to maintenance).	Cover can be removed by one maintenance person.
Metal Grates (If Applicable)	Grate Opening Unsafe	Grate with opening wider than 7/8 inch.	Grate opening meets design standards.
	Trash and Debris	Trash and debris that is blocking more than 20% of grate surface inletting capacity.	Grate free of trash and debris.
	Damaged or Missing	Grate missing or broken member(s) of the grate.	Grate is in place and meets design standards.
Oil/Debris Trap (If Applicable)	Dislodged	Oil or debris trap is misaligned with or dislodged from the outlet pipe.	Trap is connected to and aligned with outlet pipe.


Manhole

A manhole is an underground concrete structure typically fitted with a slotted grate to collect stormwater runoff and route it through underground pipes. Manholes can also be used as a junction in a pipe system and may have a solid lid. A manhole is also known as a Type 2 catch basin.

Manholes are round concrete structures ranging in diameter from 4 feet to 8 feet. They are used when the connecting conveyance pipe is 18 inches or greater or the depth from grate to pipe bottom exceeds 5 feet. Manholes typically have steps mounted on the side of the structure to allow access.

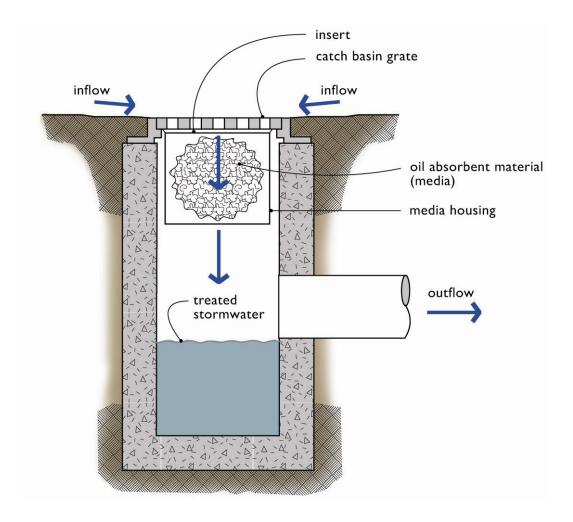
Manholes typically provide a storage volume (sump) below the outlet pipe to allow sediments and debris to settle out of the stormwater runoff. Some manholes are also fitted with a spill control device (inverted elbow on outlet pipe) intended to contain large quantities of grease or oils.

Manholes are often associated with other stormwater facilities.

Key Operations and Maintenance Considerations

- The most common tool for cleaning manholes is a truck with a tank and vacuum hose (Vactor® truck) to remove sediment and debris from the sump.
- A manhole may be an enclosed space where harmful chemicals and vapors can accumulate. Therefore, if the inspection and maintenance requires entering a manhole, it should be conducted by an individual trained and certified to work in hazardous confined spaces.

Manhole				
Drainage	Potential	Conditions When Maintenance Is	Minimum Performance Standard	
System Feature	Defect	Needed		
		1	Note: table spans multiple pages	
General	Trash and Debris	Trash or debris which is located immediately in front of the opening or is blocking inletting capacity of the basin by more than 10%.	No trash or debris located immediately in front of manhole or on grate opening	
		Trash or debris (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe.	No trash or debris in the basin.	
		Trash or debris in any inlet or outlet pipe blocking more than 1/3 of its height.	Inlet and outlet pipes free of trash or debris.	
		Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane).	No dead animals or vegetation present within the catch basin.	
	Sediment	Sediment (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the basin.	
	Structure Damage to Frame and/or Top Slab	Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch. (Intent is to make sure no material is running into manhole.)	Top slab is free of holes and cracks.	
		Frame not sitting flush on top slab, i.e., separation of more than 3/4 inch of the frame from the top slab. Frame not securely attached.	Frame is sitting flush on the riser rings or top slab and firmly attached.	
	Fractures or Cracks in Basin Walls/ Bottom	Maintenance person judges that structure is unsound.	Basin replaced or repaired to design standards.	
		Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering manhole through cracks.	Pipe is regrouted and secure at basin wall.	


	Settlement/ Misalignment	If failure of manhole has created a safety, function, or design problem.	Manhole replaced or repaired to design standards.
	Vegetation Inhibiting	Vegetation growing across and blocking more than 10% of the opening.	No vegetation blocking opening to manhole.
	System	Vegetation growing in inlet/outlet pipe joints that is more than six inches tall and less than six inches apart.	No vegetation or root growth present.
	Contaminants and Pollution	Any evidence of oil, gasoline, contaminants or other pollutants. Sheen, obvious oil or other contaminants present.	No contaminants or pollutants present.
		 Identify and remove source, AND Report to Clark County Clean Water Program. 	
Manhole Cover	Cover Not in Place	Cover is missing or only partially in place. Any open manhole is a safety hazard and requires immediate maintenance.	Manhole cover is closed.
	Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread.	Mechanism opens with proper tools.
	Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure (Intent is to keep cover from sealing off access to maintenance).	Cover can be removed by one maintenance person.
Ladder	Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, not securely attached to manhole wall, misalignment, rust, cracks, or sharp edges.	Ladder meets design standards and allows maintenance person safe access.
Metal Grates (If Applicable)	Grate Opening Unsafe	Grate with opening wider than 7/8 inch.	Grate opening meets design standards.
	Trash and Debris	Trash and debris that is blocking more than 20% of grate surface inletting capacity.	Grate free of trash and debris.
	Damaged or Missing	Grate missing or broken member(s) of the grate.	Grate is in place and meets design standards.

Catch Basin Insert

Catch basin inserts are used to trap sediment and oil entering catch basins. Most involve some type of filter media and oil-absorbent pads. Filters avoid flooding by overflowing when they become clogged or when there are high storm flows.

Catch basin inserts typically consist of the following components:

- A structure (screened box, brackets, etc.) which contains a pollutant removal medium
- A means of suspending the structure in a catch basin
- A filter medium such as sand, carbon, fabric, etc.
- A primary inlet and outlet for the stormwater
- A secondary outlet for bypassing flows that exceed design flow

- Catch basin inserts are proprietary; refer to the manufacturer's instructions for inspection and maintenance.
- Some catch basin inserts do not require specialized tools and can be removed and replaced by hand.
- See Catch Basins for additional considerations.

Catch Basin I	Catch Basin Insert				
Drainage System Feature	Potential Defect	Conditions When Maintenance Is Needed	Minimum Performance Standard		
General	Sediment Accumulation	When sediment forms a cap over the insert media of the insert and/or unit.	No sediment cap on the insert media and its unit.		
	Trash and Debris Accumulation	Trash and debris accumulates on insert unit creating a blockage/restriction.	Trash and debris removed from insert unit. Runoff freely flows into catch basin.		
	Media Insert Not Removing Oil	Effluent water from media insert has a visible sheen.	Effluent water from media insert is free of oils and has no visible sheen.		
	Media Insert Water Saturated	Catch basin insert is saturated with water and no longer has the capacity to absorb.	Media insert has been replaced.		
	Media Insert Oil Saturated	Media oil saturated due to petroleum spill that drains into catch basin.	Media insert has been replaced.		
	Media Insert Use Beyond Normal Product Life	Media has been used beyond the typical average life of media insert product.	Media removed and replaced at regular intervals (frequency depending on insert product).		

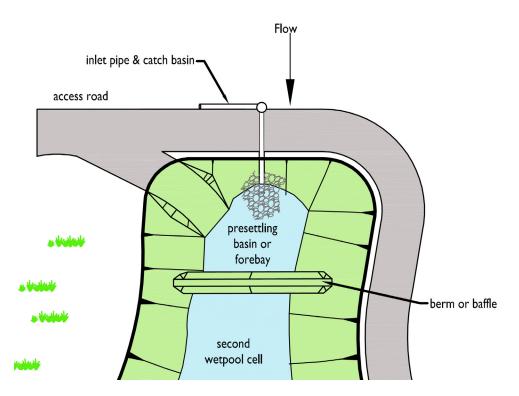
Stormwater Conveyance Pipe

Storm sewer pipes convey stormwater. Inlet and outlet stormwater pipes convey stormwater in, through, and out of stormwater facilities.

Pipes are built from many materials and are sometimes perforated to allow stormwater to infiltrate into the ground. Pipes are cleaned to remove sediment or blockages when problems are identified. Stormwater pipes must be clear of obstructions and breaks to prevent localized flooding. All stormwater pipes should be in proper working order and free of the possible defects listed below.

Key Operations and Maintenance Considerations

• The most common tool for cleaning stormwater conveyance pipes is a truck with a tank, vacuum hose, and a jet hose (Vactor® truck) to flush sediment and debris from the pipes.


Stormwa	Stormwater Conveyance Pipe				
Drainage System Feature	Potential Defect	Conditions When Maintenance Is Needed	Minimum Performance Standard		
General	Contaminants and Pollution	 Any evidence of oil, gasoline, contaminants or other pollutants. Sheen, obvious oil or other contaminants present. Identify and remove source, AND Report to Clark County Clean Water Program. 	No contaminants or pollutants present.		
	Drainage Slow	Decreased capacity that indicates slow drainage. Does not meet facility design infiltration rate. The Water Quality Design Storm Volume does not infiltrate within 48 hours (if perforated pipe). Water remains in the pipe for greater than 24 hours after the end of most moderate rainfall events.	Perforated drain pipe has been cleaned and drainage rates are per design specifications. (Do not allow removed sediment and water to discharge back into the storm sewer.)		
	Obstructions, Including Roots	Root enters or deforms pipe, reducing flow.	Roots have been removed from pipe (using mechanical methods; do not put root- dissolving chemicals in storm sewer pipes). If necessary, vegetation over the line removed.		
	Pipe Dented or Broken	Inlet/outlet piping damaged or broken and in need of repair.	Pipe repaired and/or replaced per design standards.		
	Pipe Rusted or Deteriorated	Any part of the piping that is crushed or deformed more than 20% or any other failure to the piping.	Pipe repaired and/or replaced per design standards.		
	Sediment & Debris	Sediment depth is greater than 20% of pipe diameter.	Pipe has been cleaned and is free of sediment/ debris. (Upstream debris traps installed where applicable.)		
	Debris Barrier or Trash Rack Missing	Stormwater pipes > than 18 inches need debris barrier.	Debris barrier present on all stormwater pipes 18 inches and greater.		

Presettling Basin (Forebay or Pretreatment)

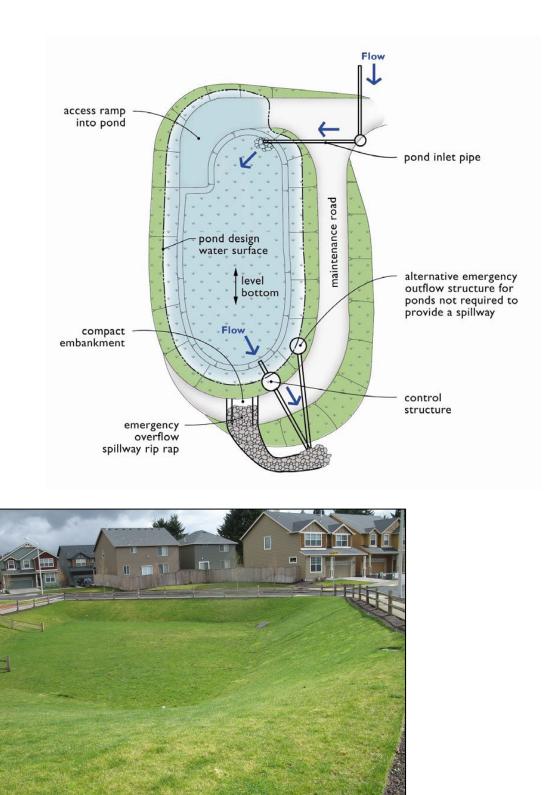
A presettling basin is a closed or open basin, preceding another treatment or flow control facility, which retains a permanent pool of water (wetpool) year round or during the wet season. The presettling basin allows solids and sediments to settle out of stormwater before water moves to the subsequent basin for infiltrations or further treatment.

Facility objects associated with a presettling basin may include:

- access road or easement
- inlet
- catch basin
- berm or baffle
- control structure/flow restrictor

- Slope areas that have become bare should be revegetated and eroded areas should be regraded prior to being revegetated.
- Sediment must be disposed in accordance with current local health department requirements and the Minimum Functional Standards for Solid Waste Handling. For additional guidance see <u>Book</u> <u>3, Appendix 3-E</u>, Recommendations for Management of Street Waste.

 Any standing water removed during the maintenance operation must be properly disposed of. The preferred disposal option is discharge to a sanitary sewer at an approved location. Other disposal options include discharge back into the wetpool facility or the storm sewer system if certain conditions are met. For additional guidance see <u>Book 3, Appendix 3-E</u>, Recommendations for Management of Street Waste.


Presettlin	Potential	Conditions When Maintenance Is Needed	Minimum Performance Standard
Drainage System Feature	Defect	Conditions when Maintenance is Needed	Minimum Performance Standard
General	Water level	First cell is empty, doesn't hold water.	First cell lined to maintain at least 4 feet of water. Although the second cell may drain, the first cell must remain full to control turbulence of the incoming flow and reduce sediment resuspension.
	Trash and Debris	Accumulation that exceeds 1 CF per 1000-SF of pond area.	Trash and debris removed from pond.
	Sediment Accumulation in Pond Bottom	Cattail or other emergent, rooted vegetation covers 50% of the basin surface area AND there is clear indication that stormwater inflow or	Remove vegetation and sediment in the Presettling Cell as necessary so that: Remaining vegetation covers no more than
	Bollom	facility effectiveness is being impeded.	25% of the basin surface area; Inflow not impeded;.
			Generally retain vegetation at wetland or wet pond boundary.
	Oil Sheen on Water	 Any evidence of oil, gasoline, contaminants or other pollutants. Sheen, obvious oil or other contaminants present. Identify and remove source, AND Report to Clark County Clean Water Program. 	Oil not present on pond surface. Oil has been removed from water using oil- absorbent pads or Vactor® truck. Source of oil located and corrected. If chronic low levels of oil persist, plant wetland plants such as Juncus effusus (soft rush) which can uptake small concentrations of oil.
	Erosion	Erosion of the basin's side slopes and/or scouring of the pond bottom that exceeds 6- inches, or where continued erosion is prevalent.	Slopes stabilized using proper erosion control measures and repair methods.
	Settlement of Pond Dike/Berm	Any part of these components that has settled 4-inches or lower than the design elevation, or inspector determines dike/berm is unsound.	Dike/berm is repaired to design specifications.
	Internal Berm	Berm dividing cells should be level.	Berm surface is leveled so that water flows evenly over entire length of berm.

Detention Pond

A stormwater detention pond is an open basin built by excavating below existing ground or by constructing above-ground berms (embankments). The detention pond temporarily stores stormwater runoff during rain events and slowly releases it through an outlet (control structure). Detention ponds are typically designed to completely drain within 24 hours after the completion of a storm event. Styles vary greatly from well-manicured to natural appearing. Generally, more natural-appearing vegetation is preferred for reduced maintenance and enhanced wildlife habitat.

Facility objects that are typically associated with a detention pond include:

- access road or easement
- fence, gate, and water quality sign
- typical bioswale
- wet bioswale
- media filter cartridge
- control structure/flow restrictor
- energy dissipaters
- conveyance stormwater pipe

Example of a Manicured Detention Pond

Key Operations and Maintenance Considerations

- Maintenance is of primary importance if detention ponds are to continue to function well.
- Sediment should be removed when the standards in the defect table are exceeded. Sediments must be disposed in accordance with current local health department requirements and the Minimum Functional Standards for Solid Waste Handling. For additional guidance see <u>Book 3</u>, <u>Appendix 3-E</u>, Recommendations for Management of Street Waste.
- Handle sediments removed during the maintenance operation in a manner consistent with <u>Book</u> <u>3, Appendix 3-E</u>, Recommendations for Management of Street Waste.
- If a shallow marsh has established, then contact Clark County Department of Environmental Services for advice.
- Maintenance of sediment forebays and attention to sediment accumulation within the pond is extremely important. Continually monitor sediment deposition in the basin. Owners, operators, and maintenance authorities should be aware that significant concentrations of metals (e.g., lead, zinc, and cadmium) as well as some organics such as pesticides, may be expected to accumulate at the bottom of these types of facilities. Regularly conduct testing sediment, especially near points of inflow, to determine the leaching potential and level of accumulation of potentially hazardous material before disposal.
- Slope areas that have become bare should be revegetated and eroded areas should be regraded prior to being revegetated.
- A common tool for cleaning detention ponds is a small bulldozer or excavator to remove builtup sediment and debris from the bottom of the pond during the dry season.

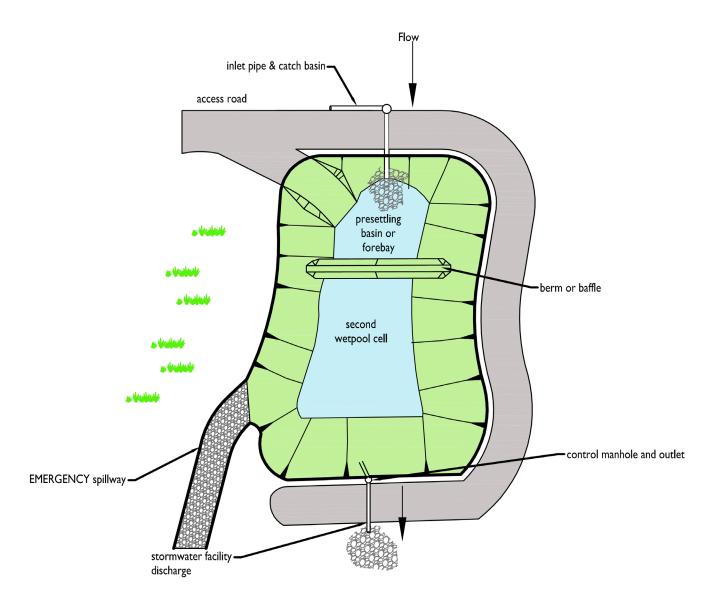
Plant Material

Table 1: Stormwater Tract "Low Grow" Seed Mix* for Detention Pond

Stormwater Tract "Low Grow" Seed M	ix*			
Botanical Name	Common Name	<u>% By Weight</u>		
Festuca arundinacea var.	Dwarf tall fescue	40%		
Lolium perenne var. barclay	Dwarf perennial rye** 'Barclay'	30%		
Festuca rubra	Red fescue	25%		
Agrostis tenius	Colonial bentgrass	5%		
Selected plants shall not include any plants from the State of Washington Noxious Weed List. Refer to <u>clark.wa.gov/weed/</u> for a current list of noxious weeds.				
*Adapted from Ecology 2012, v.III, Ch 3.2.				
** If wildflowers are used and sowing is done before Labor Day, the amount of dwarf perennial rye can be reduced proportionately to the amount of wildflower seed used.				

Drainage System	Potential	Conditions When Maintenance Is	Minimum Performance Standard
Feature	Defect	Needed	
			Note: table spans multiple pages
General	Trash and Debris	Any trash and debris which exceed 1 cubic foot per 1,000 square feet. In general, there should be no visual evidence of dumping.	Site is free of trash and debris.
		If less than threshold all trash and debris will be removed as part of next scheduled maintenance.	
	Poisonous Plants and Noxious Weeds	Any poisonous plants or nuisance vegetation which may constitute a hazard to maintenance personnel or the public.	No danger of poisonous vegetation where maintenance personnel or the public might normally be.
		Any evidence of noxious weeds as defined by State or local regulations.	Eradication of Class A weeds as required by State law. Control of Class B weeds designated by Clark County Weed Board. Control of other listed weeds as directed by local policies.
		(Coordinate with Clark County Environmental Services Department, Vegetation Management Program.)	Apply requirements of adopted IPM policy for the use of herbicides.
	Tree Growth and Hazard Trees Vegetation	Tree-growth does not allow maintenance access or interferes with maintenance activity (i.e., slope mowing, silt removal, vaccuming, or equipment movements). If trees are not interfering with access or maintenance, do not remove.	Trees do not hinder maintenance activities Harvested trees should be recycled into mulch or other beneficial uses (e.g., alders for firewood). Vegetation
		Dead, diseased, or dying trees are identified.	Remove hazard trees.
		(Use a certified Arborist to determine health of tree or removal requirements.)	
	Contaminants and Pollution	Any evidence of oil, gasoline, contaminants or other pollutants. (Coordinate removal/cleanup with local water quality response agency.)	No contaminants or pollutants present.
	Rodent Holes	Any evidence of rodent holes if facility is acting as a dam or berm, or any evidence of water piping through dam or berm via rodent holes.	Rodents destroyed and dam or berm repaired. (Coordinate with Clark County Maintenance and Operations department; coordinate with Ecology Dam Safety Office if pond exceeds 10 acre-feet.)
	Beaver Dams	Dam results in change or function of the facility.	Facility is returned to design function. (Coordinate trapping of beavers and removal of dams with appropriate permitting agencies.)

Drainage System	Potential	Conditions When Maintenance Is	Minimum Performance Standard	
Feature	Defect	Needed		
		1	Note: table spans multiple pages	
	Insects	When insects such as wasps and hornets	Insects destroyed or removed from site.	
		interfere with maintenance activities.	Apply insecticides in compliance with adopted Clark County Operations and Maintenance policies.	
Side Slopes of Pond	Erosion	Eroded damage over 2 inches deep where cause of damage is still present or where there is potential for continued erosion.	Slopes have been stabilized using appropriate erosion control measure(s); e.g., rock reinforcement, planting of grass, compaction.	
		Any erosion observed on a compacted berm embankment.	If erosion is occurring on compacted berms a licensed civil engineer should be consulted to resolve source of erosion.	
Storage Area	Sediment	Accumulated sediment that exceeds 10% of the designed pond depth unless otherwise specified or affects inletting or outletting condition of the facility.	Sediment cleaned out to designed pond shape and depth; pond reseeded if necessary to control erosion.	
	Liner (lf Applicable)	Liner is visible and has more than three 1/4-inch holes in it.	Liner repaired or replaced. Liner is fully covered.	
Pond Berms (Dikes)	Settlements	Any part of berm which has settled 4 inches lower than the design elevation.	Dike is built back to the design elevation.	
		If settlement is apparent, measure berm to determine amount of settlement.		
		Settling can be an indication of more severe problems with the berm or outlet works. A licensed civil engineer should be consulted to determine the source of the settlement.		
	Piping	Discernible water flow through pond berm. Ongoing erosion with potential for erosion to continue.	Piping eliminated. Erosion potential resolved.	
		(Recommend a Geotechnical engineer be called in to inspect and evaluate condition and recommend repair of condition.		
Emergency Overflow/ Spillway and Berms Over 4 Feet in Height	Tree Growth	Tree growth on emergency spillways creates blockage problems and may cause failure of the berm due to uncontrolled overtopping. Tree growth on berms over 4 feet in height may lead to piping through the berm which could lead to failure of the berm.	Trees removed. If root system is small (base less than 4 inches) the root system may be left in place. Otherwise the roots should be removed and the berm restored. A licensed civil engineer should be consulted for proper berm/spillway restoration.	


Detention Pond				
Drainage System Feature	Potential Defect	Conditions When Maintenance Is Needed	Minimum Performance Standard	
			Note: table spans multiple pages.	
	Piping	Discernible water flow through pond berm. Ongoing erosion with potential for erosion to continue. (Recommend a Geotechnical engineer be called in to inspect and evaluate condition	Piping eliminated. Erosion potential resolved.	
		and recommend repair of condition.)		
Emergency Overflow/ Spillway	Rock Missing	Only one layer of rock exists above native soil in area five square feet or larger, or any exposure of native soil at the top of flow path of spillway. (Rip-rap on inside slopes need not be replaced.)	Rocks and pad depth are restored to design standards.	
	Erosion	Eroded damage over 2 inches deep where cause of damage is still present or where there is potential for continued erosion. Any erosion observed on a compacted berm embankment.	Slopes have been stabilized using appropriate erosion control measure(s); e.g., rock reinforcement, planting of grass, compaction. If erosion is occurring on compacted berms a licensed civil engineer should be consulted to resolve source of erosion.	

Wetpond

A wetpond is an open basin that retains a permanent pool of water (wetpool) year round or only during the wet season. The volume of the wetpond allows sediment and other pollutants to settle out of the runoff. Wetland vegetation is typically planted within the wetpond to provide additional treatment through nutrient (i.e. nitrogen) removal. Detention quantity control can be provided with additional temporary storage volume above the permanent pool elevation.

Facility objects that are typically associated with a wetpond include:

- access road or easement
- fence, gate, and water quality sign
- detention pond
- control structure/flow restrictor
- energy dissipaters
- debris barrier (e.g. trash rack)
- conveyance stormwater pipe

- Maintenance is of primary importance if wetponds are to continue to function well.
- Site vegetation should be trimmed as necessary to keep the pond free of leaves and to maintain the aesthetic appearance of the site. Slope areas that have become bare should be revegetated and eroded areas should be regraded prior to being revegetated.
- Sediment should be removed when the standards in the defect table are exceeded. Sediments
 must be disposed in accordance with current local health department requirements and the
 Minimum Functional Standards for Solid Waste Handling. For additional guidance see <u>Book 3</u>,
 <u>Appendix 3-E</u>, Recommendations for Management of Street Waste.
- Any standing water removed during the maintenance operation must be properly disposed of. The preferred disposal option is discharge to a sanitary sewer at an approved location. Other disposal options include discharge back into the wetpool facility or the storm sewer system if

certain conditions are met. For additional guidance see <u>Book 3, Appendix 3-E</u>, Recommendations for Management of Street Waste.

- If a shallow marsh has established, then contact Clark County Department of Environmental Services for advice.
- Common tools for cleaning wetponds are small bulldozers and excavators to remove built-up sediment and debris from the bottom of the pond.

Plant Material

Inundation to 1 Foot		Table contir	nues on next page
Botanical Name	Common Name	Notes	Max. Depth
Agrostis exarata ⁽¹⁾	Spike bent grass	Prairie to coast	to 2 feet
Carex stipata	Sawbeak sedge	Wet ground	
Eleocharis palustris	Spike rush	Margins of ponds, wet meadows	to 2 feet
Glyceria occidentalis	Western mannagrass	Marshes, pond margins	to 2 feet
Juncus tenuis	Slender rush	Wet soils, wetland margins	
Oenanthe sarmentosa	Water parsley	Shallow water along stream and pond margins; needs saturated soils all summer	
Scirpus atrocinctus (formerly S. cyperinus)	Woolgrass	Tolerates shallow water; tall clumps	
Scirpus microcarpus	Small-fruited bulrush	Wet ground to 18 inches dep	th 18 inches
Sagittaria latifolia	Arrowhead		
Inundation 1 to 2 feet			
Botanical Name	Common Name	Notes	<u>Max. Depth</u>
Agrostis exarata ⁽¹⁾	Spike bent grass	Prairie to coast	
Eleocharis palustris	Spike rush	Margins of ponds, wet meadows	
Glyceria occidentalis	Western mannagrass	Marshes, pond margins	
Juncus effusus	Soft rush	Wet meadows, pastures, wetland margins	
Scirpus microcarpus	Small-fruited bulrush	Wet ground to 18 inches dep	th 18 inches
Sparganium emmersum	Bur reed	Shallow standing water, saturated soils	
Inundation 1 to 3 feet			
Botanical Name	Common Name	<u>Notes</u>	<u>Max. Depth</u>
Carex obnupta	Slough sedge	Wet ground or standing wate	er 1.5 to 3 feet

Table 2: Emergent Wetland Plant Species Acceptable for Wetponds

Beckmania syzigachne ⁽¹⁾	Western sloughgrass	Wet prairie to pond margins	
Scirpus acutus ⁽²⁾	Hardstem bulrush	Single tall stems, not clumping	to 3 feet
Scirpus validus ⁽²⁾	Softstem bulrush		
Inundation Greater Than 3	3 feet		
Botanical Name	Common Name	Notes	<u>Max. Depth</u>
Nuphar polysepalum	Spatterdock	Deep water	3 to 7.5 feet
Acceptable Seed Mix for V	Vet Ponds / Wet Pool	S	
<u>Species</u>	Common Name	<u>% by Weight</u>	
Scirpus acutus	Hardstem	9%	
	bulrush		
Juncus effusus	Soft rush	9%	
Carex stipata	Awl sedge	29.5%	
Glyceria occidentalis	Western mannagrass	25%	
Eleocharis palustris	Creeping spike rush	15%	
Eleocharis ovata	Ovoid spike rush	9%	
Carex abnupta	Slough sedge	3.5%	
Selected plants shall not in Refer to <u>clark.wa.gov/wee</u>		the State of Washington Noxious noxious weeds.	Weed List.

⁽¹⁾Non-native species. Native species are preferred.

⁽²⁾ *Scirpus* tubers must be planted shallower for establishment, and protected from foraging waterfowl until established. Emerging aerial stems should project above water surface to allow oxygen transport to the roots.

Primary sources: Municipality of Metropolitan Seattle, Water Pollution Control Aspects of Aquatic Plants, 1990. Hortus Northwest, Wetland Plants for Western Oregon, Issue 2, 1991. Hitchcock and Cronquist, Flora of the Pacific Northwest, 1973.

Wetpon	Wetpond				
Drainage System Feature	Potential Defect	Conditions When Maintenance Is Needed	Minimum Performance Standard		
General	Water level	First cell is empty, doesn't hold water.	First cell lined to maintain at least 4 feet of water. Although the second cell may drain, the first cell must remain full to control turbulence of the incoming flow and reduce sediment re-suspension.		
	Trash and Debris	Accumulation that exceeds 1 CF per 1000- SF of pond area.	Trash and debris removed from pond.		
	Inlet/Outlet Pipe	Inlet/Outlet pipe clogged with sediment and/or debris.	Material has been removed and there is no clogging or blockage in the inlet and outlet area.		
	Sediment Accumulation in Pond Bottom	Sediment accumulations in pond bottom that exceeds the depth of sediment zone plus 6-inches, usually in the first cell.	Sediment level in pond bottom is within the depth of specified sediment zone.		
	Oil Sheen on Water	Prevalent and visible oil sheen.	Oil not present on pond surface. Oil has been removed from water using oil- absorbent pads or Vactor® truck. Source of oil located and corrected. If chronic low levels of oil persist, plant wetland plants such as <i>Juncus effusus</i> (soft rush) which can uptake small concentrations of oil.		
	Erosion	Erosion of the pond's side slopes and/or scouring of the pond bottom, which exceeds 6-inches, or where continued erosion is prevalent.	Slopes stabilized using proper erosion control measures and repair methods.		
	Settlement of Pond Dike/Berm	Any part of these components that has settled 4-inches or lower than the design elevation, or inspector determines dike/berm is unsound.	Dike/berm is repaired to design specifications.		
	Internal Berm	Berm dividing cells should be level.	Berm surface is leveled so that water flows evenly over entire length of berm.		
	Overflow Spillway	Rock is missing and soil is exposed at top of spillway or outside slope.	Rocks replaced to design specifications.		

Vegetation

Many stormwater facilities use vegetation as part of the functional design. Vegetation must be maintained to contribute to the function of the facility and to prevent damage to structural elements of the facility (e.g. earthen berms). Another reason to maintain vegetation is aesthetics.

Vegetation maintenance can include trimming, plant replacement, weeding, and pest control. Vegetation maintenance in native vegetation retention areas carries specific requirements.

Objectives for vegetation management in stormwater facilities:

- Maintain healthy plant communities
- Reduce or eliminate sources of pollution related to vegetation care
- Cover bare soil areas with plants
- Control Class A and Class B noxious weeds; control unlisted invasive plants where needed to achieve management objectives
- Tolerance for natural appearance and weeds that do not interfere with facility functions

- The vegetation management focus is establishing and maintaining healthy low-maintenance native plantings and sustaining the design function of vegetated filters such as biofiltration swales. This includes controlling invasive plants where appropriate, and planting cover on bare soils.
- Use plants appropriate to the facility type, as listed in this manual. In Clark County street Rights of Way, ensure plants used are approved for ROW use by Clark County Public Works.
- In some cases, the original plantings may not be appropriate for the actual condition at a facility. One example is a frequently flooded swale that cannot support normal turf. In cases like this, replace turf with appropriate wetland plants if the underlying drainage problem cannot be fixed.
- Consider the use of soil amendments such as compost before using fertilizer.
- Limit mulch use to covering bare soil while establishing plantings.
- When a chemical control method is chosen, carefully follow the manufacturer's label directions for use. When deciding on and using a chemical control, consider stormwater facilities and drainage systems as leading to water bodies and apply chemicals per the label directions for use over or near water.
- Allow a 5-foot buffer from mature established plantings to fence lines and access roads.
- Within a maintenance easement, select plants that allow for future access and maintenance.

- Trees or shrubs that block access roads may be trimmed (or removed if within the access road) when access is required for maintenance by heavy equipment.
- Trees that pose a risk to stormwater structures due to root growth may be removed and replaced by smaller shrubs.

Use Only Appropriate Plants

Use plants that will thrive in the growing conditions of each facility. Growing conditions are affected by moisture, soil conditions, and light. Plants native to western Washington are preferred. Plant lists for biofiltration swales, bioretention systems, rain gardens, and other facility types are given in the respective BMP maintenance sheets.

Native Vegetation Retention Areas

BMP T5.40 - Preserving Native Vegetation is one of the site design Best Management Practices that may be followed during site development. If this BMP has been used for a site, avoid removing vegetation and trees from the natural growth retention area, except for approved timber harvest activities, the removal of dangerous and diseased trees, and control and removal of noxious weeds. Replace areas cleared of dangerous trees or of noxious weeds with approved native plantings.

Vegetation and Pest Management in Stormwater Facilities

Generally, vegetation should be maintained to blend into surrounding areas. Stormwater facilities can provide habitat for aquatic life and birds. Promoting natural vegetation where feasible improves habitat. Swales often blend into intensively managed landscapes. Pond perimeters can include natural vegetation.

The use of fertilizer is often not compatible with the task of pollutant removal or the direct connection of stormwater facilities to streams and groundwater.

Features of stormwater facility vegetation:

- There is a mix of native and non-native plants
- Generally not used by the public
- Include areas managed to promote design function, such as turf in swales
- Managed landscapes may be nearby
- May be used by fish and wildlife

Integrated Pest Management

Landscape management decisions for controlling unwanted vegetation, diseases, and pests in stormwater facilities should follow Integrated Pest Management principles.

An IPM program might consist of the following steps:

Step 1: Correctly identify problem pests and understand their life cycle.

IPM starts with an understanding of the soil, water, natural resources, and human impacts on site. Identify and research the pest species, including basic physiology and best timing for control. Many pests are a problem during certain seasons or can only be treated in specific phases of the life cycle. Local pest identification help can be obtained from Clark County Weed Board and WSU Extension Master Gardeners, or through online resources such as Washington State Noxious Weed Control Board and Washington Invasive Species Council.

Step 2: Establish tolerance thresholds for pests.

Every landscape has a population of some pest insects, weeds, and diseases. Once the pest has been identified and studied, determine if low levels of the pest are tolerable. Small numbers of certain pests may not be harmful. If this is the case, simply continue to monitor the pest population.

In other cases, the pest may require control. Examples include a pest population that is rapidly increasing in numbers, or an invasive weed that requires control according to state law. Early detection, rapid response (EDRR) plays an important role in the control of pests that are known to be a severe problem in other regions but not yet occurring in ours. In this instance, the tolerance threshold is zero; a quick response to eliminate a future ongoing pest problem is the safest and least expensive control.

Step 3: If pests exceed tolerance thresholds, choose a safe and effective control method.

IPM identifies physical, cultural, biological, and chemical control methods tailored specifically for the pest of concern and the site. Research the available options and choose a control method that is effective. Preferred control methods are economical, low risk to people, and mindful of environmental processes.

Physical control works on a pest directly: digging, hand-pulling, mowing, tilling, trapping, etc.

Cultural control changes the pest's environment: landscape fabric, mulch, soil amendments, altering the irrigation method or duration, crop rotation, crop covers, etc.

Biological control uses natural enemies: beneficial insects, managed grazing, bird boxes and perches, etc.

Chemical control is the use of pesticides: insect bait stations, synthetic and organic foliar herbicides, microbial-based insecticides, oils, soaps, etc.

These control methods should be looked at as tools in a toolbox; IPM selects the right tools for the job at hand. Both short-term control and long-term management is best achieved by using more

than one tool. Often, implementing cultural control methods reduces the amount of physical and chemical control needed.

Step 4: Monitor and evaluate.

Observe and record the results of the control treatment. Evaluate the effectiveness. If necessary, modify maintenance practices to support a healthy landscape and prevent recurrence of the pest.

IPM emphasizes that pest control is not a one-time proposition; the pest control process should be viewed as a cycle that rotates through planning, control, and evaluation. As pest issues change over time, the IPM plan adapts.

- Proper planning and management decisions begin the IPM process. All control methods are considered during the information-gathering and planning process. Often a combination of methods is best.
- Cultural methods of vegetation and pest control are preferred.
- Mechanical means of vegetation and pest control are next in line of preference, and are utilized where appropriate.
- Biological methods of vegetation and pest control are considered before chemical means, where they are appropriate.
- Botanical and synthetic pesticides are used in an appropriate manner when other control methods are deemed ineffective or not cost-efficient.