©lancaster mobley

Vineyard Vista Subdivision

Transportation Impact

Study
La Center, Washington
Date:
December 11, 2023

Prepared for:
Mason Wolfe
Wolfe Project Management LLC

Prepared by:
Daniel Stumpf, PE

Table of Contents

Executive Summary 4
Project Description 5
Introduction 5
Location Description 5
Vicinity Streets 6
Study Intersections 7
Site Trips 9
Trip Generation 9
Trip Distribution 9
Traffic Volumes 12
Existing Conditions 12
Background Conditions 12
Volume Growth 12
In-Process Data 12
Buildout Conditions 13
Safety Analysis 17
Crash History Review 17
Sight Distance Evaluation 18
Methodology 18
Field Measurements 19
Site Access at NE North Fork Avenue 19
Site Access at E $24^{\text {th }}$ Circle 19
Analysis Summary 19
Warrant Analysis 20
Left-Turn Lane Warrants 20
Preliminary Traffic Signal Warrants 20
Operational Analysis 21
Intersection Capacity Analysis 21
Performance Standards 21
Delay \& Capacity Analysis 21
Conclusions 23

Appendices

Appendix A - Site Plan
Site Plan
Appendix B - Trip Generation and Distribution
Trip Generation
Appendix C - Traffic Volumes
Traffic Counts
In-Process Data
Appendix D - Safety Analysis
Crash History Data
Left-turn Lane Warrant Analysis
Traffic Signal Warrant Analysis
Appendix E - Operation Analysis
Level of Service Descriptions
Capacity Reports

List of Figures

Figure 1: Aerial Photo of Site Vicinity (Image from Google Earth) 6
Figure 2: Vicinity Map 8
Figure 3: Trip Distribution and Assignment 11
Figure 4: Year 2023 Existing Conditions 14
Figure 5: Year 2026 Background Conditions 15
Figure 6: Year 2026 Buildout Conditions 16

List of Tables

Table 1: Vicinity Roadway Descriptions 6
Table 2: Study Intersection Descriptions 7
Table 3: Trip Generation Summary 9
Table 4: Crash Type Summary 17
Table 5: Crash Severity and Rate Summary 18
Table 6: Intersection Capacity Analysis Summary 22

Executive Summary

1. The proposed Vineyard Vista Subdivision will include the construction of a residential subdivision located on two properties addressed at 2103/2025 NE North Fork Avenue in La Center, Washington. The project will include the construction of an 84-unit residential subdivision. Access to the site will be provided via a proposed public street connection (i.e. NE 26th Street) to NE North Fork Avenue and a second proposed public street connection (i.e. NE James Avenue) to NE $24^{\text {th }}$ Circle.
2. The trip generation calculations show that the proposed development is projected to generate an additional 59 morning peak hour trips, 79 evening peak hour trips, and 792 average weekday trips.
3. No significant trends or crash patterns were identified at any of the study intersections that are indicative of safety concerns. Accordingly, no safety mitigation is recommended per the crash data analysis.
4. Provided any obstructing on-site foliage/fences near the site accesses along NE North Fork Avenue and E $24^{\text {th }}$ Circle are removed or properly maintained following redevelopment of the site, adequate intersection sight distances can be made available at the proposed site accesses to allow for safe and efficient operation of each intersection. No other mitigation is necessary or recommended with regard to sight distance at the proposed access intersections.
5. Left-turn lane warrants are not projected to be met at any of the applicable study intersections along NE North Fork Avenue or Aspen Avenue. Accordingly, no new left-turn lanes are necessary or recommended at any of the study intersections as part of the proposed Vineyard Vista Subdivision project.
6. Traffic signal warrants are not projected to be met at any of the applicable study intersections, including the intersection of NW Paradise Park Road at NW La Center Road, under year 2026 conditions with the proposed development constructed. Note signal warrants were found to be met at the intersection of NW Timmen Road at NW La Center Road in the Valley View Subdivision Transportation Impact Study, dated September 2022, and installation of a roundabout is expected to occur regardless of whether or not the Vineyard Vista Subdivision project is constructed. Accordingly, no new traffic signals are necessary or recommended as part of the proposed development application.
7. All study intersections are currently operating acceptably per La Center standards and are projected to continue operating acceptably through the 2026 buildout year of the site. Accordingly, no operational mitigation is necessary or recommended at these study intersections.

Project Description

Introduction

The proposed Vineyard Vista Subdivision will include the construction of a residential subdivision located on two properties addressed at 2103/2025 NE North Fork Avenue in La Center, Washington. The project will include the construction of an 84 -unit residential subdivision. Access to the site will be provided via a proposed public street connection (i.e. NE 26th Street) to NE North Fork Avenue and a second proposed public street connection (i.e. NE James Avenue) to NE $24^{\text {th }}$ Circle.

Based on correspondence with La Center staff, the report conducts safety and capacity/level of service analyses at the following intersections:

1. Site Access at NE North Fork Avenue
2. $\mathrm{E} 18^{\text {th }}$ Street at Aspen Avenue
3. $W 10^{\text {th }}$ Street/E Southview Heights Drive at Aspen Avenue
4. W/E $4^{\text {th }}$ Street at Aspen Avenue

Additionally, a limited analysis of the following intersections will be conducted:
A. NW Paradise Park Road at NW La Center Road
a. Conduct a trip distribution/assignment analysis.
b. Conduct a preliminary review of traffic signal warrants based on traffic volumes.
B. NW Timmen Road at NW La Center Road
a. Conduct a trip distribution/assignment analysis.

The purpose of this study is to determine whether the transportation system within the vicinity of the site is capable of safely and efficiently supporting the existing and proposed uses, and to determine any mitigation that may be necessary to do so. Detailed information on traffic counts, trip generation calculations, safety analyses, and level of service calculations is included in the appendix to this report.

Location Description

The project site is located north of E $24^{\text {th }}$ Circle and east of NE North Fork Avenue in La Center, Washington. The subject site is located near the north edge of City limits with a residential subdivision to the south, undeveloped/forested land to the north and east, and low-density single-family houses to the west.

The site consists of two assessor parcels (parcels 258898000 and 258903000) which encompass an approximate total of 28.75 acres. A single-family detached house, a 2,168 square foot winery building, and several ancillary structures are currently built on-site. Following redevelopment of the site, the existing house and winery building will be maintained and some of the other ancillary structures will be removed. The site is currently served by two driveways along NE North Fork Avenue.

Figure 1 presents an aerial image of the nearby vicinity with the project site outlined in yellow.

Figure 1: Aerial Photo of Site Vicinity (Image from Google Earth)

Vicinity Streets

The proposed development is expected to impact several roadways near the project site. Table 1 provides a description of each vicinity roadway.

Table 1: Vicinity Roadway Descriptions

Street Name	Juriscliction	Functional Classification	Speed (MPH)	On-Street Parking	 Sidewalks	Bicycle Lanes
NW La Center Road	La Center	Principal Arterial	$25 / 35 /$ 50	Not Permitted	Partial Both Sides	Partial Both Sides
NW Paradise Park Road	La Center	Major Collector	35	Not Permitted	Partial Both Sides	Partial Both Sides
NW Timmen Road	La Center	Minor Arterial	40	Not Permitted	None	None
NE North Fork Avenue	La Center	Major Collector	$25 / 50$	Not Permitted	Portial	None Side

Table Notes:
Functional classification based on La Center Transportation Capital Facilities Plan Classification Map.

Table 1: Vicinity Roadway Descriptions (Continued)

Street Name	Jurisdiction	Functional Classification	Speed (MPH)	On-Street Parking	 Sidewalks	Bicycle Lanes
E 18th Street	La Center	Local Street	25	Permitted	Both Sides	None
W 10th Street	La Center	Minor Collector	25	Not Permitted	Both Sides	None
E Southview Heights Drive	La Center	Local Street	25	Permitted	Both Sides	None
E/W 4th Street	La Center	Minor Arterial	25	Partially Permitted	Partial Both Sides	Partial Both Sides

Table Notes:
Functional classification based on La Center Transportation Capital Facilities Plan Classification Map.

Study Intersections

Based on correspondence with City of La Center staff, an analysis of five existing, nearby intersections of significance is conducted in this report. A summarized description of these study intersections is provided in Table 2.

Table 2: Study Intersection Descriptions

Number	Intersection	Geometry	Traffic Control	Phasing/Stopped Approaches
2	E 18th Street at Aspen Avenue	Three-Legged	Stop- Controlled	WB Stop-Controlled Approach
3	W 10th St/E Southview Heights Dr at Aspen Ave	Four-Legged	Stop- Controlled	All-Way Stop-Controlled
4	W/E 4th Street at Aspen Avenue	Three-Legged	Stop- Controlled	SB Stop-Controlled Approach
A	NW Paradise Park Road at NW La Center Road	Four-Legged	Stop- Controlled	NB/SB Stop-Controlled Approaches, EB Right-turn Yield Controlled
B	NW Timmen Road at NW La Center Road	Three-Legged	Stop- Controlled	NWB Stop-Controlled Approach

A vicinity map showing the project site, vicinity streets, and study intersection configurations are shown in Figure 2.

Site Trips

Trip Generation

The proposed development will include the construction of an 84 -unit residential subdivision. To estimate the number of trips that are currently and will be generated by the proposed use, trip rates from the Trip Generation Manual' were used. Data from land use code 210, Single-Family Detached Housing, was used to estimate site trip generation based on the number of dwelling units.

The trip generation calculations show that the proposed development is projected to generate an additional 59 morning peak hour trips, 79 evening peak hour trips, and 792 average weekday trips. The trip generation estimates are summarized in Table 3. Detailed trip generation calculations are included as an attachment to this memorandum.

Table 3: Trip Generation Summary

ITE Code		Size/Rate	Morning Peak Hour			Evenin	Pea	Hour	Weekday Total	
		Enter	Exit	Total	Enter	Exit	Total			
Single-Family Detached Housing	210		84 units	15	44	59	50	29	79	792

Trip Distribution

The trip distribution of the proposed development was referenced from the assumed distributions utilized in both the Stephens Hillside Farm Subdivision Transportation Impact Study (TIS), dated January 30, 2018, and the Valley View Subdivision TIS, dated September 20, 2022. The directional distribution percentages of trips to/from the project site were estimated based on the locations of likely trip destinations, locations of major transportation facilities in the site vicinity, and travel patterns at study area intersections.

The following trip distribution is projected:

- Approximately 70 percent of site trips will travel to/from the Interstate 5 interchange via NW La Center Road.
- Approximately 10 percent of site trips will travel to/from the west along NW Pacific Highway, west of W $10^{\text {th }}$ Street.
- Approximately 5 percent of site trips will travel to/from the north along NE Highland Avenue, north of E $4^{\text {th }}$ Street.
- Approximately 5 percent of site trips will travel to/from the east along NE Lockwood Creek Road, east of NE Highland Avenue.

[^0]- Approximately 5 percent of site trips will travel to/from the south along NW Timmen Road, south of NW La Center Road.
- Approximately 5 percent of site trips will travel to/from locales within the immediate vicinity, specifically La Center Elementary School.

The proposed subdivision will be served by two access points: one along NE North Fork Avenue and the other along E $24^{\text {th }}$ Circle. Based on the site location, estimated trip distribution, and the expected layout of site internal streets, site trips are anticipated to utilize accesses accordingly:

- Approximately 60 percent of trips will utilize the access along NE North Fork Avenue.
- Approximately 40 percent of trips will utilize the E $24^{\text {th }}$ Circle access.

Per the Valley View Subdivision Transportation Impact Study (TIS), dated September 2022, the intersection of NW Timmen Road at NW La Center Road was projected to operate at LOS F under year 2024 conditions and traffic signal warrants were projected to be met. According to the City of La Center's Transportation Capital Facilities Plan, dated July 25, 2018, and based on correspondence with City staff, the intersection will be reconstructed as a roundabout, noting the intersection improvement project is Traffic Impact Fee (TIF) eligible. Once reconstructed as a roundabout, the 2022 TIS indicated the intersection will operate at level of service B with average control delays of approximately $12-14$ seconds during the morning and evening peak hours under 2024 conditions. This being the case and based on correspondence with City staff, only a trip assignment analysis of the intersection was determined as necessary to report the impacts of the proposed development.

The trip distribution and assignment for the site trips generated during the morning and evening peak hours are shown in Figure 3.

Traffic Volumes

Existing Conditions

Traffic counts were conducted at the study intersections on Thursday, April 11, 2023, from 7:00 AM to 9:00 AM and from 4:00 PM to 6:00 PM. Data was used from each intersection's respective morning and evening peak hours. To estimate major-street traffic volumes at the site access intersection with NE North Fork Avenue, volumes were balanced with the intersection of E $18^{\text {th }}$ Street at Aspen Avenue.

Figure 4 shows the year 2023 existing traffic volumes at the study intersections during the morning and evening peak hours.

Background Conditions

Volume Growth

To provide analysis of the impact of the proposed development on the nearby transportation facilities, an estimate of future traffic volumes is required. In order to approximate the future year 2026 traffic volumes at the study intersections, a compounded growth rate of two percent per year for an assumed buildout condition of three years was applied to the year 2023 existing traffic volumes.

In-Process Data

In addition to the traffic volume growth described above, there are several in-process developments that are currently approved/proposed for construction within the site vicinity that are expected to impact nearby study intersections. The in-process developments include the following:

- Asa's View Subdivision - 0 percent constructed.
- Highland Terrace Subdivision (aka Riverside Estates) - Approximately 80 percent of houses constructed, 100 percent of apartment units constructed.
- Lockwood Meadows Subdivision - 0 percent constructed.
- Stephen Hillside Farm Subdivision - 0 percent constructed.
- Valley View Subdivision - 0 percent constructed.

The in-process developments are not currently/fully contributing trips to the transportation system but may potentially be by the assumed 2026 buildout year of the site. Additional trips corresponding to each in-process development were added to the existing year traffic volumes in addition to the three years of traffic growth at each of the applicable study intersections. To maintain a conservative analysis of operation at the study intersections, all in-process developments were assumed to be constructed by year 2026. Figure A in the technical appendix shows the in-process development trips at the study intersections during the morning and evening peak hours.

Figure 5 shows the projected year 2026 background traffic volumes at the study intersections during the morning and evening peak hours.

Page 12 of 23

Buildout Conditions

The net new peak hour trips calculated to be generated by the proposed development, as described earlier within the Site Trips section, were added to the projected year 2026 background traffic volumes to obtain the expected 2026 site buildout volumes.

Figure 6 show the year 2026 buildout traffic volumes at the study intersections during the morning and evening peak hours.

Safety Analysis

Crash History Review

Using data obtained from the Washington Department of Transportation (WSDOT) Crash Data and Reporting Branch, a review of the most recent available five years of crash history (January 2017 to December 2021) at the study intersections was performed. The crash data was evaluated based on the number of crashes, the type of collisions, the severity of the collisions, and the resulting crash rate for the intersection.

Crash rates provide the ability to compare safety risks at different intersections by accounting for both the number of crashes that have occurred during the study period and the number of vehicles that typically travel through the intersection. Crash rates were calculated using the common assumption that traffic counted during the evening peak hour represents approximately 10 percent of the annual average daily traffic (AADT) at the intersection. Crash rates in excess of 1.00 crashes per million entering vehicles (CMEV) may be indicative of design deficiencies and therefore require a need for further investigation and possible mitigation.

With regard to crash severity, WSDOT classifies crashes in the following categories:

- No Apparent Injury (NA);
- Possible Injury (P);
- Suspected Minor Injury (SM);
- Suspected Serious Injury (SS); and
- Fatality or Fatal Injury.

Table 4 provides a summary of crash types while Table 5 summarizes crash severities and rates for each of the applicable study intersections. Crash data is included in the technical appendix to this report.

Table 4: Crash Type Summary

Number	Intersection	Crash Type							Total
		Rear End	Turn	Angle	Fixed Object	Side swipe	Ped/ Bike	Other	
2	E 18th Street at Aspen Avenue	0	0	0	0	0	0	0	0
3	W 10th St/E Southview Heights Dr at Aspen Ave	0	0	1	0	0	0	0	1
4	W/E 4th Street at Aspen Avenue	0	0	0	0	0	0	0	0

Table 5: Crash Severity and Rate Summary

Number	Intersection	Crash Severity					Total Crashes	AADT	Crash Rate
		NA	P	SM	SS	Fatal			
2	E 18th Street at Aspen Avenue	0	0	0	0	0	0	1,190	0.00
3	W 10th St/E Southview Heights Dr at Aspen Ave	1	0	0	0	0	1	3,040	0.18
4	W/E 4th Street at Aspen Avenue	0	0	0	0	0	0	10,600	0.00

Table Notes: BOLDED text indicates a crash rate in excess of 1.00 CMEV.
Based on a review of available crash data, no significant trends or crash patterns were identified at any of the study intersections that are indicative of safety concerns. Accordingly, no safety mitigation is recommended per the crash data analysis.

Sight Distance Evaluation

Methodology

Intersection sight distances were measured for the proposed site access intersection approaches along NE North Fork Avenue and E $24^{\text {th }}$ Circle and evaluated in accordance with the standards established in A Policy of Geometric Design of Highways and Streets ${ }^{2}$. According to AASHTO, the driver's eye is assumed to be approximately 15 feet (14.5 feet specifically) from the near edge of the nearest travel lane (or traveled way) of the intersecting street and at a height of 3.5 feet above the minor-street approach pavement. The vehicle driver's eye-height along the major-street approach is assumed to be 3.5 feet above the cross-street pavement.

Per the AASHTO manual, intersection sight distance is an operation measure intended to provide sufficient line of sight along the major-street so that a driver could turn from the minor-street approach without impeding traffic flow. Conversely, stopping sight distance is considered the minimum requirement to ensure safe operation of an intersection. This is the distance that allows an oncoming driver to see a hazard on the roadway, react, and come to a complete stop, if necessary, to avoid a collision.

[^1]
Field Measurements

Based on posted speeds of 25 mph along the applicable segments of NE North Fork Avenue and E $24^{\text {th }}$ Circle, the minimum recommended intersection sight distances include the following:

- Site Access at NE North Fork Avenue
- 280 feet to the north for left turning site egress vehicles.
- 240 feet to the south for right turning site egress vehicles.
- \quad Site Access at E $24^{\text {th }}$ Circle
- 280 feet to the west for left-turning site egress vehicles.
- 240 feet to the east for right-turning site egress vehicles.

Site Access at NE North Fork Avenue

Due to on-site foliage near the access, sight distances were measured approximately 13 feet behind the edge of the roadway rather than the standard 15 feet behind the edge of the traveled way. However, no other obstructions were noted either on-site or along the roadway which would reduce sight distances to less than those measured in the field if measurements had been conducted at the standard 15-foot distance.

Provided any obstructing on-site foliage near the access is removed or properly maintained following redevelopment of the site, sight distance to the north was measured to be in excess of 300 feet while sight distance to the south was measured to be approximately 250 feet. Therefore, adequate intersection sight distances to the north and south of the proposed site access can be made available to allow for safe and efficient operation along NE North Fork Avenue.

Site Access at E $24^{\text {th }}$ Circle

Due to an on-site fence near the access, sight distances were measured near the edge of the roadway rather than the standard 15 feet behind the edge of the traveled way. However, no other obstructions were noted either on-site or along the roadway which would reduce sight distances to less than those measured in the field if measurements had been conducted at the standard 15-foot distance.

Provided the obstructing portions of the fence near the access are removed following redevelopment of the site, sight distances to the east and west were measured to be in excess of 300 feet. Therefore, adequate intersection sight distances at the proposed site access can be made available to allow for safe and efficient operation along E $24^{\text {th }}$ Circle.

Analysis Summary

Provided any obstructing on-site foliage/fences near the site accesses along NE North Fork Avenue and E $24^{\text {th }}$ Circle are removed or properly maintained following redevelopment of the site, adequate intersection sight distances can be made available at the proposed site accesses to allow for safe and efficient operation of each intersection. No other mitigation is necessary or recommended with regard to sight distance at the proposed access intersections.

Warrant Analysis

Left-turn lane and preliminary traffic signal warrants were examined for the study intersections where such treatments would be applicable.

Left-Turn Lane Warrants

A left-turn refuge lane is primarily a safety consideration for the major-street, removing left-turning vehicles from the through traffic stream. The left-turn lane warrants used were developed from the National Cooperative Highway Research Project's (NCHRP) Report 457. Turn lane warrants were evaluated based on the number of advancing and opposing vehicles as well as the number of turning vehicles, the travel speed, and the number of through lanes.

Warrants were evaluated at study intersections where left-turn lanes are not currently provided or planned for installation. Left-turn lane warrants are not projected to be met at any of the applicable study intersections along NE North Fork Avenue or Aspen Avenue. Accordingly, no new left-turn lanes are necessary or recommended at any of the study intersections as part of the proposed Vineyard Vista Subdivision project.

Preliminary Traffic Signal Warrants

Preliminary traffic signal warrants were examined for the unsignalized study intersections where a traffic signal is currently not planned to determine whether the installation of a new traffic signal will be warranted at the intersections by the 2026 site buildout year. Based on the preliminary analysis following a review of Warrant 1 in the Manual on Uniform Traffic Control Devices, or MUTCD, traffic signal warrants are not projected to be met at any of the applicable study intersections, including the intersection of NW Paradise Park Road at NW La Center Road, under year 2026 background conditions without the proposed development constructed.

Note signal warrants were found to be met at the intersection of NW Timmen Road at NW La Center Road in the Valley View Subdivision Transportation Impact Study, dated September 2022, and installation of a roundabout is expected to occur regardless of whether or not the Vineyard Vista Subdivision project is constructed. Accordingly, no new traffic signals are necessary or recommended as part of the proposed development application.

Operational Analysis

Intersection Capacity Analysis

A capacity and delay analysis were conducted for each of the study intersections per the unsignalized intersection analysis methodologies in the Highway Capacity Manual (HCM) ${ }^{3}$. Intersections are generally evaluated based on the average control delay experienced by vehicles and are assigned a grade according to their operation. The level of service (LOS) of an intersection can range from LOS A, which indicates very little or no delay experienced by vehicles, to LOS F, which indicates a high degree of congestion and delay. The volume-to-capacity (v / c) ratio is a measure that compares the traffic volumes (demand) against the available capacity of an intersection.

Performance Standards

Per the La Center Transportation Capital Facilities Plan (2018), the following minimum operation standards apply at intersections under City jurisdiction:

- \quad Signalized intersections, as a whole, are required to operate at LOS D or better with a v/c ratio of 0.95 or less during the highest one-hour period of an average weekday.
- Unsignalized intersections are required to operate at LOS E or better for all movements during the highest one-hour period of an average weekday.

Delay \& Capacity Analysis

Methodologies described in the WSDOT Synchro \& SimTraffic Protocol - August 2018, were utilized in the preparation of the intersection capacity analysis. Of specific consideration, peak hour factors (PHF) were applied in accordance with these standards as follows:

- For the 2023 existing traffic conditions, PHFs of at least 0.80 were used unless the recorded count data indicated a PHF greater than 0.80
- For the 2026 future traffic conditions, PHFs were increased to 0.92 if the recorded PHFs from the 2023 count data were less than 0.90. For intersection PHFs recorded as equal to or greater than 0.90 , these PHFs were increased to 1.00 .

The LOS, delay, and v/c results of the capacity analysis are shown in Table 6 for the morning and evening peak hours. Detailed calculations as well as tables showing the relationship between delay and LOS are included in the appendix to this report.

[^2]Table 6: Intersection Capacity Analysis Summary

Analysis Scenario	AM Peak Hour			PM Peak Hour		
	LOS	Delay (s)	v/c	LOS	Delay (s)	v/c

1. Site Access at NE North Fork Avenue

2026 Buildout Conditions	A	9	0.03	A	9	0.02
2. E 18th Street at Aspen Avenue						
2023 Existing Conditions	A	9	0.06	A	9	0.02
2026 Background Conditions	A	9	0.06	A	10	0.03
2026 Buildout Conditions	A	10	0.09	B	10	0.05
3. W 10th Street/E Southview Heights Drive at Aspen Avenue						
2023 Existing Conditions	A	8	0.20	A	8	0.21
2026 Background Conditions	A	8	0.24	A	8	0.26
2026 Buildout Conditions	A	9	0.29	A	9	0.32
4. W/E 4th Street at Aspen Avenue						
2023 Existing Conditions	C	23	0.31	D	28	0.15
2026 Background Conditions	D	25	0.33	E	39	0.20
2026 Buildout Conditions	D	27	0.40	E	49	0.28

Table Notes: BOLDED text indicates intersection operation above jurisdictional standards.
Based on the results of the operational analysis, all study intersections are currently operating acceptably per La Center standards and are projected to continue operating acceptably through the 2026 buildout year of the site. Accordingly, no operational mitigation is necessary or recommended at these study intersections.

Conclusions

No significant trends or crash patterns were identified at any of the study intersections that are indicative of safety concerns. Accordingly, no safety mitigation is recommended per the crash data analysis.

Provided any obstructing on-site foliage/fences near the site accesses along NE North Fork Avenue and E $24^{\text {th }}$ Circle are removed or properly maintained following redevelopment of the site, adequate intersection sight distances can be made available at the proposed site accesses to allow for safe and efficient operation of each intersection. No other mitigation is necessary or recommended with regard to sight distance at the proposed access intersections.

Left-turn lane warrants are not projected to be met at any of the applicable study intersections along NE North Fork Avenue or Aspen Avenue. Accordingly, no new left-turn lanes are necessary or recommended at any of the study intersections as part of the proposed Vineyard Vista Subdivision project.

Traffic signal warrants are not projected to be met at any of the applicable study intersections, including the intersection of NW Paradise Park Road at NW La Center Road, under year 2026 conditions with the proposed development constructed. Note signal warrants were found to be met at the intersection of NW Timmen Road at NW La Center Road in the Valley View Subdivision Transportation Impact Study, dated September 2022, and installation of a roundabout is expected to occur regardless of whether or not the Vineyard Vista Subdivision project is constructed. Accordingly, no new traffic signals are necessary or recommended as part of the proposed development application.

All study intersections are currently operating acceptably per La Center standards and are projected to continue operating acceptably through the 2026 buildout year of the site. Accordingly, no operational mitigation is necessary or recommended at these study intersections.

Appendix A - Site Plan

Site Plan

14. The only proposed aladscaping are reaurred street trees insalled at reauired Iocations and trees plane

. buld ing pemit:

22. There are eno exsting or ropopsed easementis

31. ALL envirommentan cartitala a reasas are shoum on this platat.

Peman

Appendix B - Trip Generation and Distribution

Trip Generation

TRIP GENERATION CALCULATIONS
Source: Trip Generation Manual, 11th Edition
Proposed Conditions

Land Use: Single-Family Detached Housing
Land Use Code: 210
Land Use Subcategory: All Sites
Setting/Location General Urban/Suburban
Variable: Dwelling Units
Trip Type: Vehicle
Variable Quantity: 84

AM PEAK HOUR

Trip Rate: 0.7

	Enter	Exit	Total
Directional Split	25%	75%	
Trip Ends	15	44	59

WEEKDAY

Trip Rate: 9.43

	Enter	Exit	Total
Directional Split	50%	50%	
Trip Ends	396	396	792

PM PEAK HOUR

Trip Rate: 0.94

	Enter	Exit	Total
Directional Split	63%	37%	
Trip Ends	50	29	79

SATURDAY

Trip Rate: 9.48

	Enter	Exit	Total
Directional Split	50%	50%	
Trip Ends	398	398	796

Appendix C - Traffic Volumes

Traffic Counts

In-Process Data

Comments:

Comments:

Comments:

Comments:

Comments:

Appendix D - Safety Analysis

Crash History Data
Left-turn Lane Warrant Analysis
Traffic Signal Warrant Analysis

OFFICER REPORTED CRASHES THAT OCCURRED at OR in the vicinity of MULTIPLE INTERSECTIONS IN THE CITY OF LA CENTER

 CITY STREETS4th St @ Aspen Ave - No Reported Crashes
10th St / Southview Heights Dr @ Aspen Ave

8th Ave @ Aspen Ave / North Fork Ave - No Reported Crashe

Crashes Unrelated to Study Intersection

01/01/2017-12/31/2021 See 2nd tab below for road info
Under 23 U.S. Code 148 and 23 U.S. Code $\$ 407$, safety data, reports, surveys, schedules, lists compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential crash sites, hazardous roadway conditions, or railway-highway crossings are not subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data.

JURISDICTION	COUNTY	CITY	PRIMARY TRAFFICWAY	$\left\lvert\, \begin{gathered} \text { BLOCK } \\ \text { NUMBER } \end{gathered}\right.$	INTERSECTING TRAFFICWAY	DIST FROM REF POINT	$\left\|\begin{array}{c} \mathrm{MI} \\ \text { or } \\ \mathrm{FT} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { COMP } \\ \text { DIR } \\ \text { FROM } \\ \text { REF } \\ \text { POINT } \end{gathered}\right.$	REFERENCE POINT NAME	MILEPOST		SR ONLY HISTORY/ SUSPENSE	REPORT NUMBER	DATE	TIME	MOST SEVERE injury TYPE		$\begin{array}{c\|c\|c} \# & \# \\ F & V \\ A & E \\ T & H \end{array}$		VEHICLE 1 TYPE	VEHICLE 2 TYPE	JUNCTION RELATIONSHIP	WEATHER	ROADWAY SURFACE CONDITION
City Street	Clark	La Center	E SOUTHVIEW HEIGHTS DR	0	ASPEN AVE							No	E809821	06/18/2018	23:15	No Apparent Injury		02	00	Pickup,Panel Truck or Vanette under $10,000 \mathrm{lb}$	Passenger Car	At Intersection and Related	Clear or Partly Cloudy	Dry

OFFICER REPORTED CRASHES THAT OCCURRED at OR in the vicinity of MULTIPLE INTERSECTIONS IN THE CITY OF LA CENTER

CITY STREETS

4th St @ Aspen Ave - No Reported Crashes
th St / Southview Heights Dr @ Aspen Ave
18th Ave @ Aspen Ave / North Fork Ave - No Reported Crashe

Crashes Unrelated to Study Intersection

01/01/2017-12/31/2021 See 2nd tab below for road info
Under 23 U.S. Code $\$ 148$ and 23 U.S. Code § 407, safety data, reports, surveys, schedules, lists compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential crash sites, hazardous roadway conditions, or railway-highway crossings are not subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data.

LIGHTING CONDITION	FIRST COLLISION TYPE / OBJECT STRUCK	VEHICLE 1 ACTION	VEHICLE 2 ACTION	VEHICLE 1 COMPASS DIRECTION FROM	VEHICLE 1 COMPASS DIRECTION TO	VEHICLE 2 COMPASS DIRECTION FROM	VEHICLE 2 COMPASS DIRECTION TO	MV DRIVER CONTRIBUTING CIRCUMSTANCE 1 (UNIT 1)	MV DRIVER CONTRIBUTING CIRCUMSTANCE 2 (UNIT 1)	MV DRIVER CONTRIBUTING CIRCUMSTANCE 3 (UNIT 1)	MV DRIVER CONTRIBUTING CIRCUMSTANCE 1 (UNIT 2)	MV DRIVER CONTRIBUTING CIRCUMSTANCE 2 (UNIT 2)	MV DRIVER CONTRIBUTING CIRCUMSTANCE 3 (UNIT 2)	FIRST IMPACT LOCATION (City, County \& Misc Trafficways - 2010 forward)	WA STATE PLANE SOUTH - X 2010FORWARD	WA STATE PLANE SOUTH - Y 2010- FORWARD
Dark-Street Lights On	Entering at angle	Going Straight Ahead	Going Straight Ahead	West	East	South	North	None			Inattention			Lane of Primary Trafficway	1087245.89	201910.65

Left-Turn Lane Warrant Analysis

Project:	Vineyard Vista Subdivision
Intersection:	1. Site Access at NE North Fork Avenue
Date:	$11 / 6 / 2023$
Scenario:	2026 Buildout Conditions - AM Peak Hour (SB)

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	25
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	3%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh $/ \mathrm{h}:$	39
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	25

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	1252

Guidance for determining the need for a major-road left-turn bay: Left-turn treatment NOT warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Left-Turn Lane Warrant Analysis

Project: Vineyard Vista Subdivision
Intersection: 1. Site Access at NE North Fork Avenue
Date: 11/6/2023
Scenario: 2026 Buildout Conditions - PM Peak Hour (SB)

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	25
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	4%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	28
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh/h:	78

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	1000

Guidance for determining the need for a major-road left-turn bay: Left-turn treatment NOT warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, $\mathrm{s}:$	3.0
Critical headway, $\mathrm{s}:$	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Left-Turn Lane Warrant Analysis

Project: Vineyard Vista Subdivision
Intersection: 2. E 18th Street at Aspen Avenue
Date: 11/6/2023
Scenario: 2026 Buildout Conditions - AM Peak Hour (SB)

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	25
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	1%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	107
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	48

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	2000

Guidance for determining the need for a major-road left-turn bay: Left-turn treatment NOT warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Left-Turn Lane Warrant Analysis

Project: Vineyard Vista Subdivision
Intersection: 2. E 18th Street at Aspen Avenue
Date: 11/6/2023
Scenario: 2026 Buildout Conditions - PM Peak Hour (SB)

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	25
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	4%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	71
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh/h:	181

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	818

Guidance for determining the need for a major-road left-turn bay: Left-turn treatment NOT warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, $\mathrm{s}:$	3.0
Critical headway, $\mathrm{s}:$	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Traffic Signal Warrant Analysis

Project:	Valley View Subdivision	
Date:	11/6/2023	
Scenario:	2026 Buildout Conditions	
Major Street:	NE North Fork Avenue	Minor Street:

Warrant Used:
工

100 percent of standard warrants used

Number of Lanes for Moving Traffic on Each Approach:	ADT on Major St. (total of both approaches)		ADT on Minor St. (higher-volume approach)	
WARRANT 1, CONDITION A	100\%	70\%	100\%	70\%
Major St. Minor St.	Warrants	Warrants	Warrants	Warrants
11	8,850	6,200	2,650	1,850
2 or more 1	10,600	7,400	2,650	1,850
2 or more 2 or more	10,600	7,400	3,550	2,500
12 or more	8,850	6,200	3,550	2,500
WARRANT 1, CONDITION B				
11	13,300	9,300	1,350	950
2 or more 1	15,900	11,100	1,350	950
2 or more 2 or more	15,900	11,100	1,750	1,250
12 or more	13,300	9,300	1,750	1,250

Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume

Note: Minor street right-turning traffic volumes reduced by 25%.

Traffic Signal Warrant Analysis

\(\left.\begin{array}{lllc}Project: \& Valley View Subdivision \& \&

Date: \& 11 / 6 / 2023 \& \&

Scenario: \& 2026 Buildout Conditions \& \& E 18th Street

Major Street: \& Aspen Avenue \& Minor Street: \& Number of Lanes:\end{array}\right]\)| Number of Lanes: |
| :--- |

Warrant Used:
\qquad 100 percent of standard warrants used

X	0 percent of standard warrants used due to 85th percentile speed in excess f 40 mph or isolated community with population less than 10,000.

Number Traffic	Lanes for Moving Each Approach:	ADT (total of bo	jor St. proaches)	$\begin{array}{r} \text { ADT o } \\ \text { (higher-vol } \end{array}$	or St. approach)
WARRANT 1, CONDITION A		100\%	70\%	100\%	70\%
Major St	Minor St.	Warrants	Warrants	Warrants	Warrants
1	1	8,850	6,200	2,650	1,850
2 or more	1	10,600	7,400	2,650	1,850
2 or more	2 or more	10,600	7,400	3,550	2,500
1	2 or more	8,850	6,200	3,550	2,500
WARRANT 1, CONDITION B					
1	1	13,300	9,300	1,350	950
2 or more	1	15,900	11,100	1,350	950
2 or more	2 or more	15,900	11,100	1,750	1,250
1	2 or more	13,300	9,300	1,750	1,250

Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume

Note: Minor street right-turning traffic volumes reduced by 25%.

Traffic Signal Warrant Analysis

Project:	Valley View Subdivision		
Date:	$11 / 6 / 2023$		
Scenario:	2026 Buildout Conditions		
Major Street:	Aspen Avenue	Minor Street:	W 10th Street
Number of Lanes:	1	Number of Lanes:	1
PM Peak Hour Volumes:	407	PM Peak	
Hour Volumes:	39		

Warrant Used:
X

100 percent of standard warrants used

Number of Lanes for Moving Traffic on Each Approach:	ADT on Major St. (total of both approaches)		ADT on Minor St. (higher-volume approach)	
WARRANT 1, CONDITION A	100\%	70\%	100\%	70\%
Major St. Minor St.	Warrants	Warrants	Warrants	Warrants
11	8,850	6,200	2,650	1,850
2 or more 1	10,600	7,400	2,650	1,850
2 or more 2 or more	10,600	7,400	3,550	2,500
12 or more	8,850	6,200	3,550	2,500
WARRANT 1, CONDITION B				
11	13,300	9,300	1,350	950
2 or more 1	15,900	11,100	1,350	950
2 or more 2 or more	15,900	11,100	1,750	1,250
12 or more	13,300	9,300	1,750	1,250

Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume

Note: Minor street right-turning traffic volumes reduced by 25%.

Traffic Signal Warrant Analysis

Project:	Valley View Subdivision		
Date:	$11 / 6 / 2023$		
Scenario:	2026 Buildout Conditions		
Major Street:	W/E 4th Street	Minor Street:	Aspen Avenue
Number of Lanes:	2	Number of Lanes:	2
PM Peak Hour Volumes:	1216	PM Peak Hour Volumes:	121

Warrant Used:
工

100 percent of standard warrants used

Number of Lanes for Moving Traffic on Each Approach:	ADT on Major St. (total of both approaches)		ADT on Minor St. (higher-volume approach)	
WARRANT 1, CONDITION A	100\%	70\%	100\%	70\%
Major St. Minor St.	Warrants	Warrants	Warrants	Warrants
11	8,850	6,200	2,650	1,850
2 or more 1	10,600	7,400	2,650	1,850
2 or more 2 or more	10,600	7,400	3,550	2,500
12 or more	8,850	6,200	3,550	2,500
WARRANT 1, CONDITION B				
11	13,300	9,300	1,350	950
2 or more 1	15,900	11,100	1,350	950
2 or more 2 or more	15,900	11,100	1,750	1,250
12 or more	13,300	9,300	1,750	1,250

Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume

Note: Minor street right-turning traffic volumes reduced by 25%.

Traffic Signal Warrant Analysis

Project:	Valley View Subdivision		
Date:	11/6/2023		
Scenario:	2026 Buildout Conditions		
Major Street:	NW La Center Road	Minor Street:	NW Paradise Park Road
Number of Lanes:	2	Number of Lanes:	2

Warrant Used:
X

100 percent of standard warrants used

Number of Lanes for Moving Traffic on Each Approach:	ADT on Major St. (total of both approaches)		ADT on Minor St. (higher-volume approach)	
WARRANT 1, CONDITION A	100\%	70\%	100\%	70\%
Major St. Minor St.	Warrants	Warrants	Warrants	Warrants
11	8,850	6,200	2,650	1,850
2 or more 1	10,600	7,400	2,650	1,850
2 or more 2 or more	10,600	7,400	3,550	2,500
12 or more	8,850	6,200	3,550	2,500
WARRANT 1, CONDITION B				
11	13,300	9,300	1,350	950
2 or more 1	15,900	11,100	1,350	950
2 or more 2 or more	15,900	11,100	1,750	1,250
12 or more	13,300	9,300	1,750	1,250

Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume

Note: Minor street right-turning traffic volumes reduced by 25%.

Appendix E-Operation Analysis

Level of Service Descriptions
Capacity Reports

Level of Service Definitions

Level of service is used to describe the quality of traffic flow. Levels of service A to C are considered good, and rural roads are usually designed for level of service C. Urban streets and signalized intersections are typically designed for level of service D. Level of service E is considered to be the limit of acceptable delay. For unsignalized intersections, level of service E is generally considered acceptable. Here is a more complete description of levels of service:

- Level of service A: Very low delay at intersections, with all traffic signal cycles clearing and no vehicles waiting through more than one signal cycle. On highways, low volume and high speeds, with speeds not restricted by other vehicles.
- Level of service B: Operating speeds beginning to be affected by other traffic; short traffic delays at intersections. Higher average intersection delay than for level of service A resulting from more vehicles stopping.
- Level of service C: Operating speeds and maneuverability closely controlled by other traffic; higher delays at intersections than for level of service B due to a significant number of vehicles stopping. Not all signal cycles clear the waiting vehicles. This is the recommended design standard for rural highways.
- Level of service D: Tolerable operating speeds; long traffic delays occur at intersections. The influence of congestion is noticeable. At traffic signals many vehicles stop, and the proportion of vehicles not stopping declines. The number of signal cycle failures, for which vehicles must wait through more than one signal cycle, are noticeable. This is typically the design level for urban signalized intersections.
- Level of service E : Restricted speeds, very long traffic delays at traffic signals, and traffic volumes near capacity. Flow is unstable so that any interruption, no matter how minor, will cause queues to form and service to deteriorate to level of service F. Traffic signal cycle failures are frequent occurrences. For unsignalized intersections, level of service E or better is generally considered acceptable.
- Level of service F: Extreme delays, resulting in long queues which may interfere with other traffic movements. There may be stoppages of long duration, and speeds may drop to zero. There may be frequent signal cycle failures. Level of service F will typically result when vehicle arrival rates are greater than capacity. It is considered unacceptable by most drivers.

Level of Service Criteria For Signalized Intersections Control Delay per Vehicle (Seconds)	
Level of Service (LOS)	<10
A	$10-20$
B	$20-35$
C	$35-55$
D	$55-80$
E	>80
F	

Level of Service Criteria
For Unsignalized Intersections

Level of Service (LOS)	Control Delay per Vehicle (Seconds)
A	<10
B	$10-15$
C	$15-25$
D	$25-35$
E	$35-50$
F	>50

Intersection						

Intersection	
Intersection Delay, s/veh	8.1
Intersection LOS	A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			${ }_{\text {¢ }}$			¢			\$	
Traffic Vol, veh/h	4	3	6	45	16	1	14	26	9	3	115	19
Future Vol, veh/h	4	3	6	45	16	\%	14	26	9	3	115	19
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Heavy Vehicles, \%	39	39	39	5	5	5	14	14	14	2	2	2
Mumt Flow	5	4	8	56	20	1	18	33	11	4	144	24
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.1			8.2			7.9			8.2		
HCM LOS	A			A			A			A		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	29%	31%	73%	2%
Vol Thru, \%	53%	23%	26%	84%
Vol Right, \%	18%	46%	2%	14%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	14	13	62	137
LT Vol	4	45	3	
Through Vol	96	3	16	115
RT Vol	91	6	1	19
Lane Flow Rate	1	16	78	171
Geometry Grp	0.076	0.022	1	0.1
Degree of Util (X)	4.491	4.96	4.658	4.064
Departure Headway (Hd)	Yes	Yes	Yes	Yes
Convergence, Y/N	802	725	773	868
Cap	2.495	2.964	2.66	2.16
Service Time	0.076	0.022	0.101	0.197
HCM Lane V/C Ratio	7.9	8.1	8.2	8.2
HCM Control Delay	A	A	A	A
HCM Lane LOS	0.2	0.1	0.3	0.7

Intersection						
Int Delay, s/veh	3.2					
Movement E	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	${ }^{*}$	4	个		${ }^{7}$	「
Traffic Vol, veh/h	46	291	433	35	32	130
Future Vol, veh/h	46	291	433	35	32	130
Conflicting Peds, \#/hr	0	0	0	0	1	0
Sign Control F	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	55	-	-	-	70	0
Veh in Median Storage, \#	\#	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	80	80	80	80	80	80
Heavy Vehicles, \%	5	5	8	8	4	4
Mvmt Flow	58	364	541	44	40	163

Major/Minor		Major1	Major2					Minor2		
Conflicting Flow All	585	0	-	0	1044	563				
Stage 1	-	-	-	-	563	-				
\quad Stage 2	-	-	-	-	481	-				
Critical Hdwy	4.15	-	-	-	6.44	6.24				
Critical Hdwy Stg 1	-	-	-	-	5.44	-				
Critical Hdwy Stg 2	-	-	-	-	5.44	-				
Follow-up Hdwy	2.245	-	-	-3.536	3.336					
Pot Cap-1 Maneuver	975	-	-	-	251	522				
\quad Stage 1	-	-	-	-	566	-				
Stage 2	-	-	-	-	618	-				
Platoon blocked, \%		-	-	-						
Mov Cap-1 Maneuver	975	-	-	-	236	522				
Mov Cap-2 Maneuver	-	-	-	-	236	-				
Stage 1	-	-	-	-	533	-				
Stage 2	-	-	-	-	618	-				

Approach	EB	WB	SB
HCM Control Delay, s	1.2	0	16.6
HCM LOS			C

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2		
Capacity (veh/h)	975	-	-	-	236	522
HCM Lane V/C Ratio	0.059	-	-	-	0.169	0.311
HCM Control Delay (s)	8.9	-	-	-	23.3	15
HCM Lane LOS	A	-	-	-	C	C
HCM 95th \%tile Q(veh)	0.2	-	-	-	0.6	1.3

[^3]| Intersection | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 1.6 | | | | | |
| Movement | WBL | WBR | NBT | NBR | SBL | SBT |
| Lane Configurations | Mr | | 1 | | | \neq |
| Traffic Vol, veh/h | 17 | 1 | 41 | 36 | 3 | 21 |
| Future Vol, veh/h | 17 | 1 | 41 | 36 | 3 | 21 |
| Conflicting Peds, \#/hr | 5 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Free | Free | Free | Free |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | 0 | - | - | - | - | - |
| Veh in Median Storage, \# | 0 | - | 0 | - | - | 0 |
| Grade, \% | 0 | - | 0 | - | - | 0 |
| Peak Hour Factor | 83 | 83 | 83 | 83 | 83 | 83 |
| Heavy Vehicles, \% | 0 | 0 | 1 | 1 | 13 | 13 |
| Mvmt Flow | 20 | 1 | 49 | 43 | 4 | 25 |

Intersection	
Intersection Delay, s/veh	7.8
Intersection LOS	A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			*			¢			${ }_{4}$	
Traffic Vol, veh/h	7	9	9	24	6	1	14	111	53	1	59	10
Future Vol, veh/h	7	9	9	24	6	1	14	111	53	1	59	10
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, \%	0	0	0	0	0	0	2	2	2	4	4	4
Mvmt Flow	8	10	10	26	6	1	15	119	57	1	63	11
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7.5			7.8			8			7.6		
HCM LOS	A			A			A			A		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	8%	28%	77%	1%
Vol Thu, \%	62%	36%	19%	84%
Vol Right, \%	30%	36%	3%	14%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	178	25	31	70
LT Vol	14	7	24	1
Through Vol	111	9	6	59
RT Vol	53	9	1	10
Lane Flow Rate	191	27	33	75
Geometry Grp	1	1	1	1
Degree of Util (X)	0.209	0.032	0.043	0.086
Departure Headway (Hd)	3.934	4.346	4.633	4.136
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	905	828	778	856
Service Time	1.991	2.347	2.633	2.212
HCM Lane V/C Ratio	0.211	0.033	0.042	0.088
HCM Control Delay	8	7.5	7.8	7.6
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	0.8	0.1	0.1	0.3

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	335	0	-	0	1187	323
Stage 1	-	-	-	-	323	-
\quad Stage 2	-	-	-	-	864	-
Critical Hdwy	4.12	-	-	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	2.218	-	-	-3.527	3.327	
Pot Cap-1 Maneuver	1224	-	-	-	207	716
\quad Stage 1	-	-	-	-	732	-
Stage 2	-	-	-	-	411	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1222	-	-	-	175	715
Mov Cap-2 Maneuver	-	-	-	-	175	-
Stage 1	-	-	-	-	620	-
Stage 2	-	-	-	-	410	-

Approach	EB	WB	SB
HCM Control Delay, s	2.3	0	13.8
HCM LOS			B

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2		
Capacity (veh/h)	1222	-	-	-	175	715
HCM Lane V/C Ratio	0.151	-	-	-0.108	0.122	
HCM Control Delay (s)	8.5	-	-	-	28.1	10.7
HCM Lane LOS	A	-	-	-	D	B
HCM 95th \%tile Q(veh)	0.5	-	-	-	0.4	0.4

Intersection						

Intersection	
Intersection Delay, s/veh $\quad 8.3$	
Intersection LOS	A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			*			¢			${ }_{4}$	
Traffic Vol, veh/h	7	3	6	48	17	1	15	40	10	3	158	27
Future Vol, veh/h	7	3	6	48	17	1	15	40	10	3	158	27
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	39	39	39	5	5	5	14	14	14	2	2	2
Mvmt Flow	8	3	7	52	18	1	16	43	11	3	172	29
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.3			8.3			8			8.4		
HCM LOS	A			A			A			A		

Lane	NBLn1	EBLn1	WBLLn1	SBLn1
Vol Left, \%	23%	44%	73%	2%
Vol Thru, \%	62%	19%	26%	84%
Vol Right, \%	15%	38%	2%	14%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	65	16	66	188
LT Vol	15	7	48	3
Through Vol	40	3	17	158
RT Vol	71	6	1	27
Lane Flow Rate	17	72	204	
Geometry Grp	0.089	0.025	0.095	0.236
Degree of Util (X)	4.522	5.126	4.752	4.163
Departure Headway (Hd)	Yes	Yes	Yes	Yes
Convergence, Y/N	795	700	756	868
Cap	2.536	3.146	2.77	2.163
Service Time	0.089	0.024	0.095	0.235
HCM Lane V/C Ratio	8	8.3	8.3	8.4
HCM Control Delay	A	A	A	A
HCM Lane LOS	0.3	0.1	0.3	0.9

Intersection						
l						

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	623	0	-	0	1083	600
\quad Stage 1	-	-	-	-	600	-
Stage 2	-	-	-	-	483	-
Critical Hdwy	4.15	-	-	-6.44	6.24	
Critical Hdwy Stg 1	-	-	-	-	5.44	-
Critical Hdwy Stg 2	-	-	-	-	5.44	-
Follow-up Hdwy	2.245	-	-	-3.536	3.336	
Pot Cap-1 Maneuver	944	-	-	-	238	497
\quad Stage 1	-	-	-	-	544	-
\quad Stage 2	-	-	-	-	616	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	944	-	-	-	223	497
Mov Cap-2 Maneuver	-	-	-	-	223	-
Stage 1	-	-	-	-	510	-
Stage 2	-	-	-	-	616	-

Approach	EB	WB	SB
HCM Control Delay, s	1.3	0	17.9
HCM LOS			C

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2		
Capacity (veh/h)	944	-	-	-	223	497
HCM Lane V/C Ratio	0.062	-	-	-	0.21	0.33
HCM Control Delay (s)	9.1	-	-	-	25.4	15.8
HCM Lane LOS	A	-	-	-	D	C
HCM 95th \%tile Q(veh)	0.2	-	-	-	0.8	1.4

Intersection						

Intersection	
Intersection Delay, s/veh	8.2
Intersection LOS	A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			*			¢			${ }_{4}$	
Traffic Vol, veh/h	16	10	10	25	6	1	15	158	56	1	87	16
Future Vol, veh/h	16	10	10	25	6	1	15	158	56	1	87	16
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, \%	0	0	0	0	0	0	2	2	2	4	4	4
Mvmt Flow	16	10	10	25	6	1	15	158	56	1	87	16
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7.8			8			8.5			7.9		
HCM LOS	A			A			A			A		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	7%	44%	78%	1%
Vol Thru, \%	69%	28%	19%	84%
Vol Right, \%	24%	28%	3%	15%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	229	36	32	104
LT Vol	15	16	25	1
Through Vol	158	10	6	87
RT Vol	56	10	1	16
Lane Flow Rate	229	36	32	104
Geometry Grp	1	1	1	1
Degree of Util (X)	0.254	0.046	0.043	0.123
Departure Headway (Hd)	3.996	4.576	4.796	4.272
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	886	786	750	844
Service Time	2.081	2.583	2.803	2.272
HCM Lane V/C Ratio	0.258	0.046	0.043	0.123
HCM Control Delay	8.5	7.8	8	7.9
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	1	0.1	0.1	0.4

Intersection						
Int Delay, s/veh	3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	${ }^{*}$	4	\uparrow		${ }^{*}$	「
Traffic Vol, veh/h	201	573	362	35	27	97
Future Vol, veh/h	201	573	362	35	27	97
Conflicting Peds, \#/hr	2	0	0	2	7	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	55	-	-	-	70	0
Veh in Median Storage, \#	\#	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, \%	2	2	2	2	3	3
Mvmt Flow	201	573	362	35	27	97

Intersection						
Int Delay, s/veh	2.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\mathbf{F}			\uparrow
Traffic Vol, veh/h	26	0	16	9	0	39
Future Vol, veh/h	26	0	16	9	0	39
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	12	12	3	3
Mvmt Flow	28	0	17	10	0	42

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	64	22	0	0	27	0
Stage 1	22	-	-	-	-	-
Stage 2	42	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.13	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.227	-
Pot Cap-1 Maneuver	942	1055	-	-	1580	-
Stage 1	1001	-	-	-	-	-
Stage 2	980	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	942	1055	-	-	1580	-
Mov Cap-2 Maneuver	942	-	-	-	-	-
Stage 1	1001	-	-	-	-	-
Stage 2	980	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.9		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	942	1580	-
HCM Lane V/C Ratio		-	-	0.03	-	-
HCM Control Delay (s)		-	-	8.9	0	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	0.1	0	-

[^4]Synchro 11 Report DS

[^5]| Intersection | |
| :--- | ---: |
| Intersection Delay, s/veh | 8.7 |
| Intersection LOS | A |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			¢			¢			¢	
Traffic Vol, veh/h	8	3	6	48	17	1	15	54	10	3	197	32
Future Vol, veh/h	8	3	6	48	17	,	15	54	10	3	197	32
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	39	39	39	5	5	5	14	14	14	2	2	2
Mumt Flow	9	3	7	52	18	1	16	59	11	3	214	35
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.5			8.5			8.2			8.9		
HCM LOS	A			A			A			A		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	19%	47%	73%	1%
Vol Thru, \%	68%	18%	26%	85%
Vol Right, \%	13%	35%	2%	14%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	79	17	66	232
LT Vol	15	8	48	3
Through Vol	54	3	17	197
RT Vol	10	6	1	32
Lane Flow Rate	86	18	72	252
Geometry Grp	1	1	1	1
Degree of Util (X)	0.109	0.027	0.098	0.293
Departure Headway (Hd)	4.588	5.294	4.897	4.181
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	783	677	733	862
Service Time	2.605	3.317	2.917	2.194
HCM Lane V/C Ratio	0.11	0.027	0.098	0.292
HCM Control Delay	8.2	8.5	8.5	8.9
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	0.4	0.1	0.3	1.2

[^6]Synchro 11 Report

Intersection						

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	626	0	-	0	1108	601
\quad Stage 1	-	-	-	-	601	-
Stage 2	-	-	-	-	507	-
Critical Hdwy	4.15	-	-	-6.44	6.24	
Critical Hdwy Stg 1	-	-	-	-	5.44	-
Critical Hdwy Stg 2	-	-	-	-5.44	-	
Follow-up Hdwy	2.245	-	-	-3.536	3.336	
Pot Cap-1 Maneuver	941	-	-	-	230	497
\quad Stage 1	-	-	-	-	544	-
\quad Stage 2	-	-	-	-	601	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	941	-	-	-	213	497
Mov Cap-2 Maneuver	-	-	-	-	213	-
Stage 1	-	-	-	-	503	-
Stage 2	-	-	-	-	601	-

Approach	EB	WB	SB
HCM Control Delay, s	1.5	0	19.2
HCM LOS			C

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2		
Capacity (veh/h)	941	-	-	-	213	497
HCM Lane V/C Ratio	0.075	-	-	-	0.25	0.402
HCM Control Delay (s)	9.1	-	-	-	27.4	17
HCM Lane LOS	A	-	-	-	D	C
HCM 95th \%tile Q(veh)	0.2	-	-	-	1	1.9

[^7]

Intersection						

Intersection	
Intersection Delay, s/veh	8.7
Intersection LOS	A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			¢			\uparrow	
Traffic Vol, veh/h	21	10	10	25	6	1	15	203	56	1	113	19
Future Vol, veh/h	21	10	10	25	6	1	15	203	56	1	113	19
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, \%	0	0	0	0	0	0	2	2	2	4	4	4
Mvmt Flow	21	10	10	25	6	1	15	203	56	1	113	19
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay, s/veh	8.1			8.2			9.1			8.2		
HCM LOS	A			A			A			A		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	5%	51%	78%	1%
Vol Thru, \%	74%	24%	19%	85%
Vol Right, \%	20%	24%	3%	14%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	274	41	32	133
LT Vol	15	21	25	1
Through Vol	203	10	6	113
RT Vol	56	10	1	19
Lane Flow Rate	274	41	32	133
Geometry Grp	1	1	1	1
Degree of Util (X)	0.316	0.054	0.044	0.16
Departure Headway (Hd)	4.153	4.777	4.971	4.336
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	871	750	721	830
Service Time	2.153	2.802	2.996	2.351
HCM Lane V/C Ratio	0.315	0.055	0.044	0.16
HCM Control Delay, s/veh	9.1	8.1	8.2	8.2
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	1.4	0.2	0.1	0.6

[^8]Synchro 11 Report

Intersection						

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	406	0	-	0	1443	385
\quad Stage 1	-	-	-	-	385	-
\quad Stage 2	-	-	-	-	1058	-
Critical Hdwy	4.12	-	-	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	2.218	-	-	-3.527	3.327	
Pot Cap-1 Maneuver	1153	-	-	-	145	660
\quad Stage 1	-	-	-	-	686	-
\quad Stage 2	-	-	-	-	332	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1151	-	-	-	114	659
Mov Cap-2 Maneuver	-	-	-	-	114	-
\quad Stage 1	-	-	-	-	542	-
Stage 2	-	-	-	-	331	-

Approach	EB	WB	SB
HCM Control Delay, s/v	2.6	0	19.6
HCM LOS		C	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2		
Capacity (veh/h)	1151	-	-	-	114	659
HCM Lane V/C Ratio	0.208	-	-	-0.281	0.179	
HCM Control Delay (s/veh)	8.9	-	-	-	48.5	11.7
HCM Lane LOS	A	-	-	-	E	B
HCM 95th \%tile Q (veh)	0.8	-	-	-	1.1	0.6

[^0]: ${ }^{1}$ Institute of Transportation Engineers (ITE), Trip Generation Manual, 114 ${ }^{\text {th }}$ Edition, 2021.

[^1]: ${ }^{2}$ American Association of State Highway and Transportation Officials (AASHTO), A Policy on Geometric Design of Highways and Streets, $6^{\text {th }}$ Edition, 2011.

[^2]: ${ }^{3}$ Transportation Research Board, Highway Capacity Manual 6 ${ }^{\text {th }}$ Edition, 2016.

 Page 21 of 23

[^3]: Scenario 1 Vineyard Vista Subdivision 3:33 pm 04/28/2023 Existing Conditions - AM Peak Hour

[^4]: Scenario 1 Vineyard Vista Subdivision 3:33 pm 04/28/2023 2026 Buildout Conditions - AM Peak Hour

[^5]: Scenario 1 Vineyard Vista Subdivision 3:33 pm 04/28/2023 2026 Buildout Conditions - AM Peak Hour

[^6]: Scenario 1 Vineyard Vista Subdivision 3:33 pm 04/28/2023 2026 Buildout Conditions - AM Peak Hour DS

[^7]: Scenario 1 Vineyard Vista Subdivision 3:33 pm 04/28/2023 2026 Buildout Conditions - AM Peak Hour

[^8]: Scenario 1 Vineyard Vista Subdivision 3:33 pm 04/28/2023 2026 Buildout Conditions - PM Peak Hour DS

