LIST OF APPENDICES

Appendix A	IJR Methods and Assumptions
Appendix B	Transportation Impact Analysis (TIA) for the Cowlitz Reservation Development
Appendix C	Engineering Assessment of NW La Center Road/I-5 Interchange Structure
Appendix D	March 14th, 2013 Alternatives Workshop Meeting Minutes
Appendix E	July 14th, 2014 Alternatives Workshop Meeting Minutes
Appendix F	Technical Memorandum: Interchange Evaluation - Intersection Traffic Control
Appendix G	Single-Line Sketches of Interchange Concept Alternatives
Appendix H	Detailed Interchange Design Concept Review
Appendix I	Single-Line Sketches of Frontage Road Options
Appendix J	Cowlitz Reservation Development IJR Analysis Methodology
Appendix K	Existing Conditions Worksheets - Freeway Mainline
Appendix L	Existing Conditions Worksheets - Merge/Diverge Locations
Appendix M	Existing Conditions Worksheets - Study Intersections
Appendix N	Signal Warrant Analysis Worksheets for Existing Conditions
Appendix 0	2017 Background Conditions Worksheets - Freeway Mainline
Appendix P	2017 Background Conditions Worksheets - Merge/Diverge Locations
Appendix Q	2017 Background Conditions Worksheets - Study Intersections
Appendix R	2017 Total Traffic Conditions Worksheets - Freeway Mainline
Appendix S	2017 Total Traffic Conditions Worksheets - Merge/Diverge Locations
Appendix T	2017 Total Traffic Conditions (Build) Worksheets - Northbound Off-Ramp Diverge
Appendix U	2017 Total Traffic Conditions (No Build) Worksheets - Study Intersections
Appendix V	2017 Total Traffic Conditions (Build) Worksheets - Study Intersections
Appendix W	2017 Trip Distribution Sensitivity Analysis Worksheets for 85/15 Split
Appendix X	2037 Total Traffic Conditions Worksheets - Freeway Mainline
Appendix Y	2037 Total Traffic Conditions Worksheets - Merge/Diverge Locations
Appendix Z	2037 Total Traffic Conditions (No Build) Worksheets - Study Intersections
Appendix AA	2037 Total Traffic Conditions (Build) Worksheets - Study Intersections
Appendix BB	2037 Trip Distribution Sensitivity Analysis Worksheets for 85/15 Split
Appendix CC	NW La Center Road/I-5 Interchange IJR Methods \& Assumptions Supplement - Collision Analysis
Appendix DD	Crash Data (2009-2013)
Appendix EE	Predictive Crash Assessment Worksheets

Appendix FF Truck Speed Study
Appendix GG Design Criteria

Appendix A IJR Methods and Assumptions

NW La Center Road/I-5 Interchange Improvement Project (MP 16.80)

La Center, Washington

Final

NW La Center Road/I-5 Interchange Improvement Project (MP 16.80)

La Center, Washington

Prepared For:

Mohegan Tribal Gaming Authority
One Mohegan Sun Boulevard
Uncasville, CT 06382

Prepared By:
Kittelson \& Associates, Inc.
610 SW Alder, Suite 700
Portland, OR 97205
(503) 228-5230

Project Manager: Matt Hughart, AICP
Project Principal: Mark Butorac, P.E., P.T.O.E.

Project No. 12393.0

September 2013

STAKEHOLDER ACCEPTANCE

The undersigned parties, including all members of the team from the Washington Department of Transportation (WSDOT) and the Federal Highway Administration (FHWA) concur with the Interchange Justification Report Methods and Assumptions for the NW La Center Road/I-5 Interchange Project as presented in this document.

WSDOT Region:

WSDOT Headquarter Design:

Development Services and Access Manager
$\frac{\text { (itite }}{\text { Tite~ }}$ Daten)

FHWA:

(1) Participation on the Stakeholders Committee and/or signing of this document does not constitute approval of the NW La Center Road/I-5 Interchange Improvement Project Interchange Justification Report.
(2) All members of the Stakeholder Committee will accept this document as a guide and reference as the study progresses through the various stages of project development. If there are any agreed upon changes to the assumptions in this document a revision will be created, endorsed and signed by all the stakeholders.

TABLE OF CONTENTS

Executive Summary vi
Introduction and Project Description 1
Project Description 4
Analysis Years/Periods 5
Project and Study Areas 5
Traffic Operations Analysis 6
Selection of Measures of Effectiveness 9
Interchange Justification Report Requirements 11

EXECUTIVE SUMMARY

The Exit 16 interchange (at NW La Center Road and NW 319 ${ }^{\text {th }}$ Street, milepost 16.80) along Interstate 5 currently serves the City of La Center and surrounding rural areas. The interchange is a diamond interchange with a two-lane structure over the freeway and stop-controlled access at the ramp terminals. Closely spaced frontage road intersections exist just outside each of the l-5 ramp terminals, posing access management challenges to the operations of the interchange. From a pure capacity standpoint, the existing interchange form is adequate to support existing development within the City of La Center and surrounding rural areas. However, the interchange has been the subject of recent planning studies that examined the impacts of enhancing development opportunities along NW La Center Road on the east and west sides of I-5. One nearterm development opportunity involves 152 acres of land owned by Salishan Mohegan, LLC along the west side of I-5. This property spans the north and south sides of NW $319^{\text {th }}$ Street and is proposed to be developed as a major casino center associated with the Cowlitz Tribe (Cowlitz Reservation Development).

Given the anticipated traffic impacts associated with the Cowlitz Reservation Development, it is recognized that the existing NW La Center Road/I-5 interchange will need to be reconstructed/modified along with the supporting local circulation network in order to provide safe and efficient access to/from l-5.

To support the interchange reconstruction/modification project, the Washington State Department of Transportation (WSDOT) and the Federal Highway Administration (FHWA) requires an Interchange Justification Report (IJR). The IJR documents the interchange planning process, the evaluation of improvement alternatives, the design of the preferred alternative, the impacts to the Interstate system and local street network, and the coordination that supports and justifies the request for an access revision. As a component of the IJR process, the WSDOT Design Manual requires a 'Methods and Assumptions Document' be developed to record assumptions, criteria, and support team decisions used in the IJR. The remainder of this document outlines the Methods and Assumptions that will be used in the NW La Center Road/I-5 Interchange IJR.

INTRODUCTION AND PROJECT DESCRIPTION

The existing NW La Center Road/I-5 Interchange is a simple diamond interchange form that was constructed to provide access between I-5, the City of La Center, and surrounding rural residential areas. Based on a limited interchange form and the findings of several recent planning studies ${ }^{12}$, the interchange and supporting local circulation system are not capable of safely and efficiently supporting extensive new development. One such development, the Cowlitz Reservation Development involves 152 acres of land owned by the Salishan Mohegan, LLC. This property, which is located on the west side of I-5 and spans the north and south sides of NW $319^{\text {th }}$ Street, is proposed to be developed as a cultural center, housing for tribal elders, a gaming facility, and a potential hotel.

To support the Cowlitz Reservation Development, the existing interchange and supporting local street network will need to be reconfigured to better accommodate intensified traffic patterns at the interchange. An IJR will be completed to document the planning, evaluation, and selection of the necessary interchange replacement. The IJR will be completed with the following focus areas:

- Accommodating multi-modal traffic circulation in a safe and efficient manner,
- Addressing and satisfying regulatory agency approval criteria,
- Minimizing negative impacts to adjacent property owners (right-of-way and access),
- Addressing the existing closely spaced frontage road intersections at NW $319^{\text {th }}$ Street and NW Paradise Park Road.
- Advancing the transportation system in a manner consistent with long-term community aspirations (e.g, La Center Transportation Plan), and
- Ensuring that the selected interchange form supports future expansion to meet the surrounding communities' growth needs through 2036.
- Interchange improvement(s) will not inhibit WSDOT’s ability to improve or expand mainline I-5.

The IJR will focus on the existing NW La Center Road/I-5 Interchange and its functional area along the NW $319^{\text {th }}$ Street/NW La Center Road corridors. This will include the two adjacent frontage roads on either side of the interchange. As illustrated in Figure 1, the project study area will also include the two upstream/downstream (SR 501 Exit 14 at milepost 14.17 and SR 503 Exit 21 at milepost 21.08) interchanges along the I-5 corridor. Analysis included in the IJR will formally document these minimal impacts. The following sections describe the existing conditions of the interstate system and the non-interstate highway/local transportation system within the project study area.

[^0]||kittelson.com|fs|H_Portland|projfile|12393 - Cowlitz Reservation Development|dwgs|figs|FreewayAnalysis_figures.dwg Dec 18, 2012-11:51am - klaustsen \quad Layout Tab: 1_Site Vicinity_TG

I-5 Mainline

Within the interchange improvement study area, l-5 is a 6-lane, median-separated, interstate highway. The WSDOT State Highway Log classifies this section of I-5 as Rural. Existing average annual daily traffic (AADT) for this section of I-5 is approximately 65,350 vehicles per day based on the most recent 2011 data at nearby R045 permanent traffic recorder station located at milepost 20.14. The posted speed limit along this segment of $\mathrm{I}-5$ is 70 mph .

NW La Center Road/I-5 Interchange

The NW La Center Road interchange is a diamond interchange located at milepost 16.80. The interchange is located within the City of La Center. The interchange consists of single-lane on- and off-ramps with unsignalized ramp terminals at NW La Center Road. Traffic volumes on I-5 at the NW La Center Road interchange are approximately 62,000 vehicles per day.

The ramp terminals are located approximately 535 feet (centerline-to-centerline) apart and are separated by a relatively narrow two-lane overpass structure with no formal pedestrian accommodations. The I-5/NW La Center Road interchange is served by several local roadways that provide connectivity between I-5, La Center, and the surrounding rural areas. These facilities are documented below.

NW La Center Road

NW La Center Road is an east-west, two-lane roadway that connects I-5 and the City of La Center. Clark County classifies NW La Center Road as a Major Collector. Within the vicinity of the interchange, there are no sidewalks or bicycle lanes along either side of the roadway. Based on recent traffic count information, the existing ADT east of the I-5 interchange is approximately 11,000 vehicles per day.

NW 319 ${ }^{\text {th }}$ Street

West of I-5, NW La Center Road becomes NW 319 ${ }^{\text {th }}$ Street. This east-west roadway is classified as a Rural Minor Collector by Clark County and primarily serves the rural residential development located between I-5 and the Columbia River to the west. Existing ADT along this roadway is approximately 1,500 vehicles per day.

NW 31 ${ }^{\text {st }}$ Avenue

NW $31^{\text {st }}$ Avenue is a north-south roadway located on the west side of I-5 south of NW $319^{\text {th }}$ Street. Clark County classifies NW $31^{\text {st }}$ Avenue as a Rural Major Collector. Oriented parallel to I-5, this roadway acts as a rural frontage road to $1-5$ providing a continuous connection between NW $319^{\text {th }}$ Street and the City of Ridgefield to the south. The intersection of NW $31^{\text {st }}$ Avenue with NW $319^{\text {th }}$ Street is located approximately 100 feet (centerline-to-centerline) from the l-5 southbound ramp terminal.

NW Paradise Park Road

NW Paradise Park Road is a north-south roadway located on the east side of I-5. Clark County classifies NW Paradise Park Road as a Local roadway. As with NW 31 ${ }^{\text {st }}$ Avenue, NW Paradise Park Road acts as a rural
frontage road to I-5 and connects to NW La Center Road approximately 125 feet (centerline-to-centerline) east of the northbound ramp terminal. NW Paradise Park Road provides access to Paradise Point State Park.

SR 503/I-5 Interchange

The SR 503/I-5 interchange is a split diamond interchange located in Woodland, WA. This interchange is located approximately 4.28 miles north of the NW La Center Road/I-5 interchange at milepost 21.08 in Woodland, WA.

SR 501/I-5 Interchange

The SR 501/I-5 Interchange is diamond interchange located approximately 2.63 miles south of the NW La Center Road/l-5 interchange at milepost 14.17. Recently reconstructed to include a six-lane overpass and signalized ramp terminals, this interchange primarily serves the City of Ridgefield and the surrounding rural residential areas.

I-5 Weigh Station

An existing weigh station for northbound I-5 traffic is located south of the La Center/l-5 interchange at milepost 15.5.

PROJECT DESCRIPTION

The NW La Center Road interchange improvement project is expected to mitigate the impacts of the proposed Cowlitz Reservation Development at full-buildout in year 2016. For the purposes of the analysis, the proposed Cowlitz Reservation Development is anticipated to include the following uses:

- 2,440 gaming positions (the IJR will study 3,500 gaming positions for a conservative analysis)
- Up to 3,450 parking spaces
- 4 restaurants
- 5,000-6,000 square feet of retail space
- Casino bars
- Event Center with seating for up to 1,500 guests
- Valet parking services
- 250-room hotel

The traffic impacts of such a development are expected to necessitate the reconstruction of the existing NW La Center Road/I-5 interchange and realignment of NW 31 ${ }^{\text {st }}$ Avenue and NW Paradise Park Road. As previously stated, the IJR will formally document the planning, alternatives development, alternatives evaluation, and selection of the preferred interchange form to address the anticipated project traffic as well as the background traffic growth in the study area. To support this effort, the following sections highlight the study parameters and assumptions that will be incorporated into the IJR analysis.

ANALYSIS YEARS/PERIODS

Based on preliminary scoping efforts with the City of La Center, Clark County, WSDOT and FHWA, three analysis years, 2012, 2016 and 2036, will be required. The 2016 study year is assumed to represent the build out year of the Cowlitz Reservation Development and will be used for identifying mitigations that will be needed for and funded exclusively (no federal, state, or local dollars will be used to plan, design, and/or construct the project) by Salishan Mohegan, LLC. The 2036 study year scenario is informational for WSDOT to ensure that near-term interchange improvements don't preclude the ability to provide future long-term improvements.

In order to assess the impact of the Cowlitz Reservation Development, conditions will be analyzed for the following time periods based daily profile counts of the surrounding roadways and the anticipated trip generation profile of the casino:

- Weekday morning peak period (7:00-9:00 a.m.)
- Weekday evening roadway peak period (4:00-6:00 p.m.)
- Friday peak period (4:00-6:00 p.m.) [This time period represents when traffic volumes in the site vicinity would peak in the future with trips associated from the proposed Cowlitz Reservation Development]

PROJECT AND STUDY AREAS

The project study area will focus on the NW La Center Road/I-5 Interchange and immediately adjacent frontage road network. A transportation impact analysis of intersections impacted by the Cowlitz Reservation Development will be prepared to address the transportation system impacts beyond the NW LaCenter Road/I-5 Interchange on the local LaCenter and Clark County roadway network. The following NW La Center Road/l-5 interchange intersections have been identified for detailed operations analyses within the IJR:

- NW 31 ${ }^{\text {st }}$ Avenue/NW 319 ${ }^{\text {th }}$ Street;
- I-5 Southbound Ramp/NW La Center Road;
- I-5 Northbound Ramp/NW La Center Road; and
- Paradise Road/NW La Center Road

In addition to the intersection operations, the IJR will include I-5 mainline and merge/diverge analyses for the following locations:

- I-5 at the NW La Center Road interchange ramps; and
- I-5 at the weigh station located approximately 1.25 miles south of the NW La Center Road interchange.

The project study area extends to the northern interchange (I-5/SR 503 in Woodland) and southern interchange (I-5/SR 501 in Ridgefield).

TRAFFIC OPERATIONS ANALYSIS

In total, the traffic operations analyses will be performed for the following scenarios:

- Existing 2012 Weekday AM Peak Hour
- Existing 2012 Weekday PM Peak Hour
- Existing 2012 Weekday Friday PM Peak Hour
- 2016 Background Weekday AM Peak Hour
- 2016 Background Weekday PM Peak Hour
- 2016 Background Weekday Friday PM Peak Hour
- 2016 w/Cowlitz Reservation Development (No-Build), Weekday AM Peak Hour
- 2016 w/Cowlitz Reservation Development (No-Build), Weekday PM Peak Hour
- 2016 w/Cowlitz Reservation Development (No-Build), Weekday Friday PM Peak Hour
- 2016 w/Cowlitz Reservation Development and interchange improvements (Build), Weekday AM Peak Hour
- 2016 w/Cowlitz Reservation Development and interchange improvements (Build), Weekday PM Peak Hour
- 2016 w/Cowlitz Reservation Development and interchange improvements (Build), Weekday Friday PM Peak Hour
- 2036 Background (No-Build) Weekday AM Peak Hour
- 2036 Background (No-Build) Weekday PM Peak Hour
- 2036 Background (No-Build) Weekday Friday PM Peak Hour
- 2036 w/Cowlitz Reservation Development and 2016 identified interchange improvements (Build), Weekday AM Peak Hour
- 2036 w/Cowlitz Reservation Development and 2016 interchange improvements (Build), Weekday PM Peak Hour
- 2036 w/Cowlitz Reservation Development and 2016 interchange improvements (Build), Weekday Friday PM Peak Hour

EXISTING CONDITIONS ANALYSIS

The existing operations and level of service will be assessed at the identified study intersections/l-5 mainline/merge-diverge areas during the three peak hour analysis periods using 2012 traffic volumes. These volumes were developed using data collected in mid-September 2012 and data provided by WSDOT for the permanent traffic recorder (PTR) station R045 located on I-5 north of the NW La Center Road/I-5 Interchange in the study area. The process used to develop traffic volumes for the l-5 mainline and interchange ramps that are representative of typical traffic volumes was developed based on conversation with WSDOT staff. The existing traffic volumes development is described in detail in Appendix A.

Synchro/SimTraffic and HCS 2010 will be used for the traffic operation analysis. Synchro and SimTraffic (Version 7) will be used to analyze signalized and stop-controlled intersections. HCS 2010 will be used to analyze the $\mathrm{l}-5$ mainline performance and the interchange merge/diverge areas.

2016 BACKGROUND ANALYSIS

This analysis will determine traffic operations at the study intersections/l-5 mainline/merge-diverge areas during all three study periods in the year 2016 without any improvements or changes to the interchange/local roadway network. Traffic volumes for the year 2016 will be derived based on the 2011 Clark County Metropolitan Transportation Plan (MTP) model. Where feasible, the projected volumes will be calculated by first using a straight-line interpolation between the base 2010 and future year 2036 traffic volume projections from the model and then post-processing (using the NCHRP 255 methodology) the results. In-process development data has been requested ${ }^{3}$ from the City of La Center, City of Ridgefield, City of Woodland, and Clark County and included as part of year 2016 forecast traffic volumes.

City of La Center, City of Ridgefield, and Clark County transportation improvement plans will be reviewed for the surrounding area to determine how any planned improvements may impact access to the site and operations at the study intersections.

Synchro/SimTraffic, and HCS 2010 will be used for the traffic operation analysis. Synchro and SimTraffic (Version 7) will be used to analyze signalized and stop-controlled intersections. HCS 2010 will be used to analyze the l-5 Mainline performance and the interchange merge/diverge areas.

2016 WITH COWLITZ RESERVATION DEVELOPMENT ANALYSIS

Traffic operations at the study intersections/l-5 mainline/merge-diverge areas for all three study periods will be estimated in the year 2016 with the additional traffic volumes generated by the Cowlitz Reservation Development. The expected trip generation form the Cowlitz Reservation Development will then be added to the 2016 background volumes to create this analysis scenario. The assumption is that no improvements are made to the roadway network or intersections. In addition, no capacity improvements to l-5 will be assumed in the study area by 2016.

Synchro/SimTraffic, and HCS 2010 will be used for the traffic operation analysis. Synchro and SimTraffic (Version 7) will be used to analyze signalized and stop-controlled intersections. HCS 2010 will be used to analyze the $\mathrm{I}-5$ Mainline performance and the interchange merge/diverge areas.

It is anticipated that roundabouts will be a design consideration in the development and analysis of interchange improvement alternatives. In these instances, the traffic analysis software SIDRA will be used to conduct the analysis. In recognition of WSDOT standards, Appendix B outlines several SIDRA variables that will be changed from the default parameters.

[^1]
TRIP GENERATION AND ASSIGNMENT

Trip generation estimates for the proposed Cowlitz Reservation Development will be based on data from other similar casino developments (a separate Trip Generation memorandum will be prepared for review and consent by all stakeholders prior to the publication of the Draft IJR). Based on past experience and a preliminary assessment of the data, we recommend calculating trips per gaming position ${ }^{4}$. Data indicates that the number of trips generated at a casino is more highly correlated to the number of gaming positions than the square footage of gaming space or the size of the entire development. We will assign the sitegenerated traffic to the study intersections using the estimated trip distribution patterns within the site vicinity for each of the three analysis periods. The proposed peak hour trip assignments for the Cowlitz Reservation Development are shown in Appendix C.

2016 WITH COWLITZ RESERVATION DEVELOPMENT AND INTERCHANGE IMPROVEMENTS ANALYSIS

This scenario will present the proposed mitigation to address the impacts of the proposed Cowlitz Reservation Development. The operations at the study intersections/l-5 mainline/merge-diverge areas for the three analysis periods based on projected 2016 traffic volumes and the Cowlitz Reservation Development. An initial level of analysis will involve using forecasted volumes and potentially Synchro and HCS 2010 to determine the two critical time periods of this 2016 scenario. Based on our understanding of the proposed development, it is expected that the two critical time periods will be the Weekday p.m. peak hour and the Friday Evening/Weekend peak hour period.

If necessary, a VISSIM model of the study area will be created if a preferred interchange alternative scenario does not meet the operational performances specified in the body of this report. Additional details of the VISSIM modeling is outlined in Appendix D.

2036 BACKGROUND ANALYSIS

This analysis will determine traffic operations at the study intersections/l-5 mainline/merge-diverge areas during all three study periods in the year 2036 without any improvements or changes to the interchange/local roadway network. Traffic volumes for the year 2036 will be derived based on the 2011 Clark County Metropolitan Transportation Plan (MTP) model.

2036 WITH COWLITZ RESERVATION DEVELOPMENT AND 2016 INTERCHANGE IMPROVEMENTS ANALYSIS

A long-term 2036 scenario will be analyzed to demonstrate the long-term impacts of the Cowlitz Reservation Development. Future traffic volumes for the 2036 scenario will be projected based on the same methodology previous described above. The analysis will be used to ensure that the proposed interchange project does not preclude the development of future capacity needs and is designed in such a way that it can be readily expanded to meet the year 2036 needs.

[^2]
SELECTION OF MEASURES OF EFFECTIVENESS

Multiple Measures of Effectiveness (MOE) will be used for the operational analysis of the different scenarios. Level of Service (LOS) is the critical measure to determine whether the project can meet the minimum operation requirements.

WSDOT

The WSDOT Design Manual, Chapter 320 describes the measure of effectiveness (MOE) used for determining a highway facilities' level of service (LOS) as follows:

- The level of service (LOS) for operating state highway facilities is based upon measures of effectiveness (MOEs), in accordance with the latest version of the Highway Capacity Manual.
- These MOEs (see Table 1 below) describe the measures best suited for analyzing state highway facilities, such as freeway segments, signalized intersections, and on- or off-ramps. Depending on the facility, WSDOT LOS thresholds are LOS C and LOS D on state highway facilities.

Table 1 WSOT Measures of Effectiveness by Facility Type

Type of Facility	Measure of Effectiveness (MOE)
Basic Freeway Segments	Density (pc/mi/ln)
Ramps	Density (pc/mi/ln)
Ramp Terminals	Delay (sec/veh)
Multilane Highways	Density (pc/mi/ln)
Two-Lane Highways	Percent Time Spent Following Average Travel Speed (mi/hr)
Signalized Intersections	Control Delay Per Vehicle (sec/veh)
Unsignalized Intersections	Average Control Delay Per Vehicle (sec/veh)
Urban Streets	Average Travel Speed (mi/hr)

Intersection Analysis - Level of Service (LOS), Delay, Volume/Capacity (V/C) Ratio, Queues

For intersection analysis, LOS is determined by the average delay (seconds). The 2010 Highway Capacity Manual (HCM) provides LOS criteria for intersections, illustrated in Table 2. As shown in the table, the same LOS criteria will be used for both signalized intersections and roundabouts.

Table 2 LOS Criteria for Intersection with Traffic Control (HCM 2010)

LOS	Traffic Signals and Roundabouts	Stop Signs and Yield Signs
	Total Delay per Vehicle (sec)	Control Delay per Vehicle (sec)
	≤ 10	$0-10$
B	>10 and 20	>10 and 15
C	>20 and 35	>15 and 25
D	>35 and 55	>25 and 35
E	>55 and 80	>35 and 50
F	>80	>50

Per discussions with WSDOT staff, it has been noted that the existing interchange is in a predominately rural area. However, it is anticipated that the proposed Cowlitz Reservation Development will change the character of the area to a more urban setting. Therefore, the LOS C standard will be used at the interchange ramp terminals for the existing conditions analysis and the 2016 analysis, while the LOS D standard will be used for the 2036 analysis.

Mainline LOS, Density, Speed, Travel Time

For freeway analysis (including mainline analysis of I-5, merge, and diverge), LOS is determined by the density of traffic. The HCM provides LOS criteria for freeway merge, diverge, and weave, shown in Table 3.

Table 3 LOS Criteria for Freeway Merge/Diverge/Weave (HCM 2010)

	Maximum Density (pc/mi/ln)	
	Merge/Diverge	Weave
A	≤ 10	$0-10$
B	$>10-20$	$>10-20$
C	$>20-28$	$>20-28$
D	$>28-35$	$>28-35$
E	>35	>35
F	Demand Exceeds Capacity	Demand Exceeds Capacity

Speed (mph) and travel time (minutes) are also indictors of the performance of an individual segment and the overall freeway facility. HCS 2010 will be the primary software for freeway facility analysis.

The base saturation flow rate for all signalized intersection analyses will be 1,900.

INTERCHANGE JUSTIFICATION REPORT REQUIREMENTS

As outlined by the WSDOT Design Manual, there are eight policy point requirements that need to be addressed as part of an IJR. These eight policy points are outlined below:

- Policy Point 1 - Need for Access Point Revision
- The IJR will describe the need for the interchange improvement and why the existing interchange is not sufficient to meet the design year needs.
- Data analysis will be provided to support the needs findings.
- Policy Point 2 - Reasonable Alternatives
- This policy point will be one of the main focal points for the NW La Center Road/l-5 Interchange Improvement Project.
- All reasonable alternatives will be described and considered in the interchange form alternatives analysis. These will include the design options, locations, and transportation system management-type improvements to meet the proposal design year needs.
- All reasonable design alternatives will be evaluated and documented in the evaluation process.
- Policy Point 3 - Operational and Safety Analyses
- This policy point will be one of the main focal points for the NW La Center Road/I-5 Interchange Improvement Project.
- An operational and safety analysis will be conducted per WSDOT IJR guidelines.
- Policy Point 4 - Access Connections and Design
- Access within the vicinity of the interchange will be critical component of the NW La Center Road/I-5 Interchange Improvement Project given the presence of the two existing frontage roads on both sides of the interchange.
- The analysis will include documentation on how the interchange improvements relate to the WSDOT Design Manual spacing criteria. Any design deviations needed to support the preferred interchange design will be fully addressed in this section.
- Policy Point 5 - Land Use and Transportation Plans
- Future land use and transportation considerations will be accounted for the in the nearand long-term operations analyses.
- The interchange improvement proposal will address consistency with local and regional land use and transportation plans.
- Policy Point 6 - Future Interchanges
- The proposed interchange improvement will demonstrate compliance with other planned access points and revisions along the l-5 study corridor.
- Policy Point 7 - Coordination
- In parallel with the IJR, a separate transportation impact analysis will be prepared for the Cowlitz Development Project. The applicable traffic volume increases from this separate study effort will be included at the IJR study intersections and appropriate references will be made as necessary to ensure coordination and consistency.
- Policy Point 8 - Environmental Processes
- A separate NEPA process is being developed in parallel with the IJR.

To meet these requirements, all eight policy points will be addressed in the NW La Center Road/I-5 Interchange Improvement Project IJR.

Appendix A

Existing Traffic Volumes Development

EXISTING TRAFFIC VOLUMES DEVELOPMENT

A variety of traffic volume data were utilized as part of this transportation analysis, including:

- Twenty-four hour tube counts collected at all four ramps of the l-5/La Center Road Interchange from September 2012;
- Basic Axle Classification Report data for permanent traffic recorder (PTR) R045, located on I-5 at milepost 20.14 for portions of 2010, 2011, and 2012;
- Diamond Traffic Counter sixty minute counts for ramps of the l-5/La Center interchange from March 2011.

NW La Center Road/I-5

KAI collected twenty-four hour tube counts at the ramps of the l-5/La Center Road interchange for Friday, September 14, 2012 through Sunday, September 23, 2012. These automated tube counts collected hourly traffic volumes and vehicle classification by direction. The average of the Tuesday through Thursday data was used to develop the weekday AM peak (7:00 AM - 9:00 AM) and weekday PM peak (4:00 PM - 6:00 PM) volumes and truck percentages. The data from Friday, September 14 and Friday, September 21, 2012 was used to develop the Friday peak (4:00 PM - 6:00 PM) volumes and truck percentages. The data was not seasonally adjusted, as traffic reports from station R045 suggest that September traffic volumes are higher than average. This is further shown in Attachment A, which includes the monthly conversion factors for station R045. The factor to convert September average weekday traffic (AWDT) to annual average daily traffic (AADT) is 0.96, indicating that September traffic is higher than average traffic. Therefore, using the September counts is conservative. Attachment A also includes an analysis of PTR data provided by Ray Shank that justifies the use of September count data.

I-5 Mainline

WSDOT provided a basic axle classification report for ATR station R045, which is located on I-5 at milepost 20.14, just north of the I-5/La Center Road interchange, from September 2012. Traffic volumes at the station from Wednesday, September 19, 2012 through Monday, September 24, 2012 were available. Therefore, an average of the weekday AM peak period (7:00 AM - 9:00 AM) and weekday PM peak period (4:00 PM - 6:00 PM) traffic volumes from Wednesday and Thursday were used to estimate the weekday peak periods. In order to confirm the appropriateness of this data, it was compared to additional data at the ATR station, which suggested the September 2012 data is fairly typical for the freeway. This comparison is provided in Attachment 2, which includes peak volume data at station R045 from September 2010 and June 2012. Also, historical WSDOT data from R045 indicates that September is one of the higher months in terms of traffic volumes (as explained above and demonstrated in Attachment A). Therefore, using September data is conservative.

The volumes at the ATR station were used in conjunction with the ramp volumes to extrapolate the volumes on I-5 south of the NW La Center Road/I-5 interchange. The truck percentages recorded at the station were used for all of I-5.

STATE OF WASHINGTON - DEPARTMENT OF TRANSPORTATION
R I P S S Y S T E M

CONVERSION FACTORS: AVERAGE WEEKDAY TRAFFIC (AWDT) TO ANNUAL AVERAGE DAILY TRAFFIC (AADT) RURAL STATIONS

MONTH	AWDT FACTOR													
	R014		R020		R023		R037		R038		R039		R040W	
JANUARY	10379	1.64	5374	1.13	8573	1.29	899	1.85	2446	2.04	21331	1.57	737	2.34
FEBRUARY	11520	1.48	5597	1.09	8379	1.32	988	1.69	3111	1.60	23374	1.43	939	1.84
MARCH	13542	1.26	5968	1.02	9519	1.16	730	2.28	2476	2.01	23650	1.42	895	1.93
APRIL	14694	1.16	6287	. 97	10090	1.09	756	2.20	2488	2.00	24596	1.36	875	1.97
MAY	16080	1.06	6225	. 98	10603	1.04	1178	1.41	2973	1.68	27405	1.22	1131	1.53
JUNE	18375	. 93	6431	. 95	11624	. 95	1946	. 86	3435	1.45	30724	1.09	1514	1.14
JULY	20766	. 82	6830	. 89	13173	. 84	2751	. 61	4736	1.05	34678	. 97	2058	. 84
AUGUST	19917	. 86	7491	. 81	13389	. 82	2598	. 64	4594	1.08	34974	. 96	1980	. 87
SEPTEMBER	16819	1.01	7509	. 81	11733	. 94	2115	. 79	3588	1.39	30199	1.11	1833	. 94
OCTOBER	14669	1.16	6739	. 90	10267	1.07	1693	. 98	2966	1.68	26444	1.27	1345	1.28
NOVEMBER	14439	1.18	5988	1.02	9709	1.14	968	1.72	2517	1.98	24541	1.37	980	1.76
DECEMBER	12652	1.35	5565	1.09	9852	1.12	1090	1.53	3798	1.31	26149	1.28	1052	1.64
AADT	17032		6091		11031		1666		4982		33518		1726	
	R041		R042		R043		R045		R047E		R047S		R047W	
JANUARY	3385	1.39	8086	1.78	4535	1.13	55528	1.18	10682	1.40	2795	1.85	9168	1.34
FEBRUARY	3652	1.28	8993	1.60	4566	1.12	55963	1.17	11081	1.35	2978	1.74	9445	1.30
MARCH	3923	1.20	10410	1.38	4610	1.11	60528	1.08	11399	1.31	3257	1.59	9581	1.28
APRIL	4155	1.13	12065	1.19	5079	1.01	62155	1.05	13025	1.15	3760	1.38	10048	1.22
MAY	4492	1.04	12552	1.15	5248	. 97	63336	1.03	14443	1.03	4287	1.21	11966	1.03
JUNE	4852	. 97	14410	1.00	5328	. 96	68173	. 96	15687	. 95	5030	1.03	12926	. 95
JULY	5236	. 90	16740	. 86	5890	. 87	72012	. 91	18019	. 83	6275	. 83	14568	. 84
AUGUST	5327	. 88	17019	. 85	6294	. 81	72811	. 90	17679	. 84	6071	. 85	14492	. 85
SEPTEMBER	5140	. 91	13466	1.07	5637	. 91	67949	. 96	16049	. 93	5020	1.03	13581	. 91
OCTOBER	4629	1.01	12238	1.18	5035	1.01	63914	1.02	15127	. 99	4535	1.14	12805	. 96
NOVEMBER	4215	1.11	11291	1.27	4518	1.13	63466	1.03	12281	1.22	3564	1.45	10327	1.19
DECEMBER	4043	1.16	10480	1.37	4475	1.14	62679	1.04	12635	1.18	3799	1.36	10908	1.13
AADT	4689		14396		5106		65349		14932		5180		12293	
	R048		R054		R055		R057		R058		R061		R063	
JANUARY	11870	1.35	1791	1.16	6359	1.67	2053	2.04	1636	2.56	10422	1.33	6622	1.23
FEBRUARY	12730	1.25	1756	1.19	7117	1.49	2143	1.95	2045	2.05	11574	1.20	6934	1.17
MARCH	13781	1.16	1984	1.05	8223	1.29	2352	1.78	1771	2.37	12856	1.08	7338	1.11
APRIL	14972	1.07	2070	1.01	9133	1.16	2775	1.51	2165	1.94	12918	1.07	7711	1.06
MAY	15747	1.01	1940	1.07	9767	1.09	3252	1.29	2862	1.46	13203	1.05	8294	. 98
JUNE	16815	. 95	2183	. 95	11256	. 94	3816	1.10	3345	1.25	14358	. 96	8718	. 93
JULY	17658	. 90	2494	. 84	12958	. 82	4865	. 86	4628	. 91	15584	. 89	9467	. 86
AUGUST	17380	. 92	2703	. 77	12814	. 83	4776	. 88	4451	. 94	15920	. 87	9419	. 86
SEPTEMBER	16619	. 96	2438	. 85	10960	. 97	3751	1.12	3496	1.20	14059	. 99	8564	. 95
OCTOBER	15947	1.00	2255	. 92	9463	1.12	3390	1.23	2857	1.47	13364	1.04	8101	1.01
NOVEMBER	14191	1.13	1848	1.13	8799	1.21	2789	1.50	2166	1.93	12634	1.10	7658	1.06
DECEMBER	13372	1.19	1820	1.14	8213	1.29	3038	1.38	2866	1.46	12027	1.15	7412	1.10
AADT	159				106						138			

* OREGON-OWNED RECORDERS AND FERRY TERMINALS EXCLUDED

Kelly Laustsen

From:	Shank, Ray ShankR@wsdot.wa.gov
Sent:	Thursday, November 29, 2012 3:00 PM
To:	Matt Hughart
Cc:	Keniston, Rick; Bellinger, Dave; Nova, Robert; Clark, Mike; Kelly Laustsen; Jeff Whitman
Subject:	Cowlitz Reservation Development - Volume Methodology Discussion

Matt,

The following comments/guidance has been provided by our headquarters staff regarding the development of traffic volumes to be used in the analysis of the 5/LaCenter Interchange.

Justification Discussion for using September 2012 Count Data

The Permanent Traffic Recorder (PTR) R045 is used for factoring mainline I-5 from the LaCenter Interchange northward. We use PTR R109 for factoring the mainline I-5 through the SR 501 (Ridgefield) Interchange.

Looking into this data, the seasonality we ascribe to both the end of SR 501 and the end of 503 (and therefore should reflect the ramps as well) comes from an average of urban sites we label GR-02. This is a much flatter seasonal curve than R045 or R109. The figures below reflect 2011 total monthly volume divided by total annual volume for GR-02, R045 and R109. What they show (somewhat cryptically) is that the 7-day average from your short count is likely only going to be a few percent off from the annual average. Since this is well within the margin of error for factoring, we would just consider the September count average as equivalent to the annual average.

Factor	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
GR-02	7.9\%	7.4\%	8.5\%	8.3\%	8.6\%	8.7\%	8.8\%	9.0\%	8.5\%	8.4\%	7.9\%	8.2\%
R045	7.2\%	6.8\%	8.1\%	8.0\%	8.4\%	8.8\%	9.7\%	10.0\%	8.8\%	8.4\%	7.9\%	8.0\%
R109	7.4\%	7.0\%	8.2\%	8.1\%	8.5\%	8.8\%	9.5\%	9.7\%	8.7\%	8.3\%	7.9\%	8.1\%

The peak hour volumes from the short count are anticipated to be appreciably lower than a $30^{\text {th }}$ highest hour. The fact that R045 has significantly different temporal trends than the ramps means it is not appropriate as a factor source.

Therefore to justify using the available September data, we suggest multiplying the short count peak hour volume by 1.3 and determine if the higher volume would have any practical implication for design over the un-factored peak. If the answer is no, just use the short count peak as is. If the answer is yes, we will have to discuss further to determine an appropriate methodology.

Comparing Counts at Adjacent Interchanges

Weekday counts are available for all ramps of the Ridgefield, LaCenter, and Woodland Interchanges in March 2011. We can utilize these short counts along with the data you collected at the LaCenter Interchange in September 2012 to create a factor to derive estimated September 2012 volume data for the adjacent interchanges. In order to create this factor, we're assuming similar temporal trends between these three interchanges.

After looking at the September 2012 data, it appears that the peak hour on Friday is slightly lower than that of the weekday peak hour. To be conservative in our evaluation, the weekday peak volume data for the ramps will be applied as the Friday peak hour volume.

Additional Data Effort

- PTR R045 Validation - I have requested a status update for this effort and will let you know when the validation has been completed.
- SR 503/Woodland Interchange Study - After reviewing the study, the forecast year was 2025 and likely won't help with your volume projection for the Woodland interchange. However, if you think it might help I can forward you a CD containing a copy.
- Weigh Station Data - I should receive some information tomorrow regarding the number of commercial vehicles that use the weigh station. I will forward this information onto you when it becomes available.

Please review and let me know if you have any questions.

Ray Shank

Transportation Planner
WSDOT - SW Region
11018 NE 51st Circle
Vancouver, WA 98682
(360) 905-2087
shankr@wsdot.wa.gov

I-5 Data Comparison

PTR Station R045

Wed/Thurs Avg	Northbound				Southbound			
9/19-20/2012	1	2	3	Total	4	5	6	Total
6:00 AM	517	638.5	414	1569.5	442	714	503	1659
7:00 AM	571.5	840.5	567.5	1979.5	490	815.5	564.5	1870
8:00 AM	557	722.5	453.5	1733	479.5	759	477	1715.5
4:00 PM	792	912.5	677.5	2382	620	1080.5	992	2692.5
5:00 PM	779.5	895	638.5	2313	585	1021.5	890.5	2497
6:00 PM	648	773.5	529	1950.5	462.5	742	502	1706.5

	Northbound					Southbound			
$9 / 21 / 2012$	1	2	3	Total	4	5	6	Total	
$4: 00 ~ P M$	898	1130	1097	$\mathbf{3 1 2 5}$	660	1177	1144	$\mathbf{2 9 8 1}$	
$5: 00 ~ P M$	897	1084	1071	$\mathbf{3 0 5 2}$	607	1117	1065	$\mathbf{2 7 8 9}$	
$6: 00 ~ P M$	761	1030	939	$\mathbf{2 7 3 0}$	542	963	781	$\mathbf{2 2 8 6}$	

Wed	Northbound				Southbound			
$9 / 22 / 2010$	1	2	3	Total	4	5	6	Total
$6: 00 \mathrm{AM}$	480	663	440	$\mathbf{1 5 8 3}$	470	718	452	$\mathbf{1 6 4 0}$
$7: 00 \mathrm{AM}$	612	784	549	1945	506	833	616	1955
$8: 00 \mathrm{AM}$	574	737	459	$\mathbf{1 7 7 0}$	480	771	448	$\mathbf{1 6 9 9}$
4:00 PM	757	877	646	$\mathbf{2 2 8 0}$	593	993	858	$\mathbf{2 4 4 4}$
5:00 PM	760	847	610	$\mathbf{2 2 1 7}$	547	1,006	849	$\mathbf{2 4 0 2}$
$6: 00 \mathrm{PM}$	676	779	520	$\mathbf{1 9 7 5}$	452	781	479	$\mathbf{1 7 1 2}$

Fri 9/24/2010	Northbound				Southbound			
	1	2	3	Total	4	5	6	Total
4:00 PM	902	1,074	958	2934	680	1,195	1,345	3220
5:00 PM	895	1,072	967	2934	593	1,113	1,001	2707
6:00 PM	753	926	767	2446	536	960	838	2334

Wed	Northbound					Southbound			
$6 / 13 / 2012$	1	2	3	Total	4	5	6	Total	
$6: 00 \mathrm{AM}$	508	667	387	$\mathbf{1 5 6 2}$	441	665	592	$\mathbf{1 6 9 8}$	
$7: 00 \mathrm{AM}$	597	800	578	1975	495	721	599	1815	
$8: 00 \mathrm{AM}$	574	693	467	$\mathbf{1 7 3 4}$	454	754	595	$\mathbf{1 8 0 3}$	
4:00 PM	781	874	633	$\mathbf{2 2 8 8}$	569	959	1,087	$\mathbf{2 6 1 5}$	
5:00 PM	776	841	599	$\mathbf{2 2 1 6}$	519	884	889	$\mathbf{2 2 9 2}$	
$6: 00 \mathrm{PM}$	609	692	447	$\mathbf{1 7 4 8}$	408	665	494	$\mathbf{1 5 6 7}$	

Fri $6 / 15 / 20$	Northbound				Southbound			
	1	2	3	Total	4	5	6	Total
4:00 PM	868	1,094	1,155	3117	583	1,054	1,348	2985
5:00 PM	856	1,042	1,034	2932	504	1,038	1,191	2733
6:00 PM	760	917	840	2517	106	953	1,342	2401

Appendix B
SIDRA Assumptions and Methods

WSDOT Roundabout Standard Operations Analysis

It is recognized that WSDOT uses different methodologies than what is accepted in NCHRP 572 Roundabouts: An informational guide. The following parameters will be used in the roundabout analysis for the NW La Center Road/I-5 Interchange Improvement Project.

1) Change the Level of Service Method to HCM 2000
2) Change Capacity Model to SIDRA Standard
3) Change Roundabout LOS Method to 'Same as signalized intersections'
4) Change Entry Lane Width to 14 ft
5) Environment Factor:

- La Center does not have any roundabouts. Therefore, a 1.2 environment factor (which is consistent with HCM 2010) will be used. For future 2036 scenarios, the environmental factor will be adjusted to 1.1 per WSDOT methodology.

6) Basic Saturation Rate

- Although the existing interchange is in a predominately rural area, it is anticipated that the proposed Cowlitz Reservation Development will change the character of the area to more of an urban setting. As such, it is proposed that 1,900 be used as the base saturation rate.

Appendix C

Trip Distribution and Assignment

VITMELSON \& ASSOCIATES, INC.

Appendix D

VISSIM Modeling Assumptions and Methods

The purpose of this appendix is to outline the processes and standards associated with developing any needed microsimulation (VISSIM) models for the NW La Center Road/I-5 Interchange improvement project. These microsimulation models will be developed using VISSIM to determine the impacts associated with the following issues:

- Development of the Cowlitz Reservation
- Modifications to NW La Center Road and the its interchange with I-5

The remainder of this appendix outlines the process Kittelson \& Associates, Inc. (KAI) will use to develop any applicable VISSIM models for this project.

Modeling Study Area

As previously developed by regional stakeholders, the prepared VISSIM models will include the following intersections.

- NW 31 ${ }^{\text {st }}$ Avenue/NW 319 ${ }^{\text {th }}$ Street
- I-5 Southbound Ramp/NW La Center Road
- I-5 Northbound Ramp/NW La Center Road
- Paradise Road/NW La Center Road

In addition to the above intersections, I-5 ramps will be modeled, along with their interaction with I-5, for the ramps at the NW La Center Road Interchange, the SR 501 Interchange, the SR 503 interchange, and the $\mathrm{l}-5$ weigh station.

Scenarios/Study Time Periods

Per the above methods and assumptions, VISSIM will only be used if a preferred alternative scenario does not meet the operational performances specified in the body of this report. For these scenarios, VISSIM will be used to review the alternative to determine feasibility of implementation. For each of these scenarios the following two time periods will be analyzed.

- Weekday PM Peak Hour
- Weekday Friday PM Peak Hour (Due to Casino use)

Prior to the future alternative being modeled in VISSIM, an existing conditions model will be developed and calibrated for the same time periods. The procedures used for this calibration and delivery of models are discussed further in this appendix.

For each VISSIM model the peak period data will be entered in the model in 15 minute intervals along with a thirty minute "warm-up" period. For this model, the term peak period refers to the point in time where forecasted traffic along either NW La Center Road or at the interchange's ramps results in a failing level of service (congestion) to the point where the model recovers (uncongested). It is believed that this will be no greater than two hours. Peak period information will be documented in the final report. The warm-up
period of the model cannot be used to develop meaningful measures of effectiveness; however, it is used to "prime" the model for peak hour conditions. Data for the warm-up periods will be developed based on the same traffic data used to develop the peak hour data with the warm-up period being 90% as intense as the peak hour. The peak hour factor for the peak hour will be the same as in existing condition.

Model Development

Development of the VISSIM models will follow the Federal Highway Administration's (FHWA) 7 step process as outlined in the FHWA's Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Microsimulation Modeling Software. These steps are summarized below.

- Identification of Study Purpose, Scope, and Approach
- Data Collection and Preparation
- Base Model Development
- Error Checking
- Calibration
- Alternatives Analysis
- Final Report and Technical Documentation

Based on the above process, the project team has prepared a list of assumptions which will be used for the individual steps. These are summarized below.

Identification of Study Purpose, Scope, and Approach

The purpose and scope for this project were previously developed and approved by the regional stakeholders. No alternation to the scope and purpose is being proposed at this time.

Data Collection and Preparation

Data sources required for model construction have been identified and are documented below.

Geometric Data

Geometric data for the future condition will be developed based on the functional layout and design phase of this project and will be entered into VISSIM.

Traffic Control Data

Control data for the future year conditions will be based on the functional analysis and design phase of this project. Control data includes, but is not limited to, the following:

- Signal Timing
- Speed Limits
- Turn Restrictions
- Yield Signs/Stop Signs

Traffic Demand Data

Future year data will be developed through a trip generation and traffic forecasting exercise to be carried out and documented during this project. Existing year traffic count information will also be used to determine the base background heavy vehicle percentage. Vehicle characteristics, aside from heavy vehicle percentage, and performance data has not been collected and the default values contained within VISSIM will be used. Heavy vehicle models within the VISSIM model will be split between AASHTO design vehicles WB $40,50,65$ and 67 as determined by the available data.

Origin-Destination Data

O-D data will not be developed for this project due to the model area's limited extents. As such all potential legal O-D pairs will be allowed and volume distribution will be handled through VISSIM's routing decisions. When routing decisions need to cover multiple intersections, relative percentages will be applied to the routes based on the turning movement distributions the route travel's through. Precautions will be taken to prevent I-5 off-ramp traffic from entering the network and immediately entering the adjacent I-5 on-ramp, unless this is observed in the field.

Travel Time Data

Travel time data will not be collected for this project due to the limited extents of the model. Average vehicle speed will be compared to the posted speed limits and field visit data to ensure drivers are travelling at reasonable speeds.

Base Model Development

Using the data outlined above, the required scenarios and existing conditions will be developed using VISSIM and industry best practices. Base model development represents a model which still needs to be validated and is only the first preliminary step in model development. The following key information regarding the base model is summarized below.

Basic Settings

- VISSIM version 5.40 will be used
- A modeling resolution of 10 steps per second will be used
- Aggregated data will be developed based on 10 individual model runs and checked against FHWA procedures to ensure that the model is statistically valid. For this effort, a confidence interval of 95% will be assumed.
- If the model is shown to require more runs, the model will be further ran and continuously checked for stabilization.
- Default vehicle lengths and distributions will be used for passenger vehicles.
- Heavy vehicles will use AASHTO design vehicles WB 40, 50, 62, 65 and 67 as determined by the available data.
- Wiedemann 74 driver behaviors will be used for NW La Center Road modeling
- Wiedemann 99 driver behaviors will be used for I-5 mainline and ramp modeling
- Any model specific settings will be documented in the final technical documentation
- Desired speed curves will be developed based on available l-5 mainline data

Routing Decisions

Routing decisions will be coded in a manner that the beginning of the decision (red bar) is as far upstream of the first decision point as possible. The will enable a vehicle to make a decision at the first possible opportunity. In instances of short distances between intersections, routing decisions may need to combine multiple routes in order to minimize unrealistic lane changes. At this time it has not been determined if passenger vehicle and heavy vehicle traffic share similar routes. If it is determined that they do not, a specific set of routing decisions will be included to accommodate heavy vehicle routing through the model.

Speed Decisions

Speed decisions will be placed at each entrance to the model. For instances where a speed change will occur, the decision point will be placed so the vehicle will change speeds as soon as they are on the link with the new anticipated speed. For off and on-ramps, speed decisions will be placed accordingly per the geometric and control data from the alternative development.

Reduced Speed Areas

Reduced speed areas will be placed on any link or connector whose corresponding roadway geometry would cause vehicles to temporarily slow down to negotiate the area. The most common area for reduced speed zones are for left and right turn movements. As this data will not be collected, the following reduced speed area settings will be used for passenger vehicles.

- Right Turns - $10 \mathrm{mph}(7 \mathrm{mph}-13 \mathrm{mph})$
- Left Turns - 15 mph ($12 \mathrm{mph}-18 \mathrm{mph}$)

Heavy vehicles will use the following speeds.

- Right Turns - $8 \mathrm{mph}(5 \mathrm{mph}-10 \mathrm{mph})$
- Left Turns - 12 mph ($10 \mathrm{mph}-15 \mathrm{mph}$)

Conflicts Areas/Priority Rules

Conflicts in VISSIM can be modeled using conflict areas and/or priority rules. Typically it is desired to use conflict areas; however, certain situations may require the use of priority rules. For this model, the project team will prioritize the use of conflict areas over priority rules.

Error Checking

KAI's error checking process is summarized below. It is similar to the process outlined in FHWA Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Microsimulation Modeling Software.

- Review Input
- Roadway network
- Traffic volumes and routing
- Traffic control
- Review Animation
- Driver behavior
- Location, extent and frequency of congestion
- Miscellaneous localized problems
- Review Errors
- Traffic unable to enter network
- Traffic removed from simulation

Error checking for this project will be conducted by a senior engineer with the project modeler performing a back check on the identified issues. Error checking will be completed prior to model calibration.

Existing Condition Model Calibration

Calibration of the VISSIM model will occur for the "existing condition" models only. Any modified parameters will be carried forward to future conditions models. The existing conditions model is deemed calibrated when the volume, speed, and other operational observations are satisfactorily replicated to those in the field.

The calibration process we will follow is illustrated in Figure 1 below. This figure is from FHWA Traffic Analysis Toolbox Volume IV which discusses CORSIM modeling. However, the general principals of calibration do not change between VISSIM and other microsimulation tools.

Figure 1 - Calibration Approach Flowchart

Calibration for the existing conditions model will be based on reaching target thresholds of model reported results versus field measured data. Each of the thresholds for these areas is detailed below. For this effort, traffic volume will be the primary calibration metrics, while queue lengths and visual accuracy will be secondary efforts. Once the below outlined targets are met, the model will be considered calibrated and existing condition measures of effectiveness will be collected.

Traffic Volume Calibration (Primary Calibration Indicator)

Traffic volume calibration involves measuring averaged modeled volumes against field measured data. To do this comparison the project team will use the GEH statistic formula. The GEH formula was empirically developed to review traffic models involving a wide variety of traffic volume intensities. Its primary benefit is that it accounts for the desire to have varying levels of agreement depending on how large or small traffic volumes are.

An example of this issue is that a turning movement of 50 vehicles per hour may experience a typical stochastic model fluctuation of between 10-20 vehicles or 20-40 percent and still be acceptable. While a mainline volume of 5000 vehicles per hour, should experience a fluctuation of no more then $5-10$ percent. In using the GEH formula, the same set of rules can be used for any volume as the desired deviation from the measured volume is built into the formula. In this manner, the formula is similar to a Chi-Squared test.

The GEH formula is:

$$
G E H=\sqrt{\frac{(M-C)^{2}}{(0.5(C+M))}}
$$

For this modeling effort, the following guidance will be used regarding the GEH score of calibrated movements.
i. GEH Less than 2 - Calibrated Value
ii. GEH Between 2 and 5 - Acceptable Value
iii. GEH Between 5 and 10 - Review model, provide comment if volume cannot be further calibrated
iv. GEH Greater than 10 - Revise model, provide explanation in report if volume cannot be further calibrated

Target goals for this model develop are:

- 85% of the modeled movements with a GEH score below a 5 , and
- The model aggregated with a GEH score below a 4.

Instances where it is not possible to meet these goals will be documented in the final technical documentation.

I-5 Speed Data (Primary Calibration Indicator)

I-5 speed data will be used as the second primary calibration metric. Two values will be reviewed based on available data; the average mainline speed, by direction, across all through lanes and the $85^{\text {th }}$ percentile speed across all through lanes. The proposed calibration targets are documented for each below.

- Average speed across all lanes within 5% (approximately $+/-3.5 \mathrm{mph}$)
- 85th percentile speed across all lanes within 5% (approximately $+/-4 \mathrm{mph}$)

Instances where it is not possible to meet these goals will be documented in the final technical documentation.

Queuing Calibration (Secondary Calibration Indicator)

Queuing will be collected visually during the project team's field visits. As such, the model will only be calibrated in a general sense to queuing. The visual information gathered will be documented in the final technical memorandum and the model will be visually inspected to ensure that queues are neither significantly shorter nor longer than what was observed in the field.

Visual Calibration (Secondary Calibration Indicator)

VISSIM is capable of producing a visual output of the model which the analyst can then compare to their own experience in the field and others' field notes. This visual observation will be completed to ensure that the model overall is operating as expected and that the representation of driver behavior is reasonable. Any unique situations which occur in the model will be documented in the final technical documentation.

Future Condition Analysis

Once a calibrated existing conditions model is created, the future conditions documented above will be analyzed using the base assumptions developed during calibration. Future year traffic volumes and geometric modifications have been developed outside of the VISSIM effort and will be incorporated in the future VISSIM model.

Similar to calibration a base level of volume validation will be completed to ensure that modeled volumes are in line with expected volumes. Once volume validation is complete, the future year model will undergo error checking and will be considered complete. Following these steps, the future year alternatives' measures of effectiveness will be produced.

Measures of effectiveness will be based on VISSIM's default data collection settings. Current settings are not HCM compliant in that the HCM and VISSIM measure delay slightly differently. However, per the ODOT VISSIM protocols (endorsed by WSDOT); it was determined that the difference in delay calculations is minimal and the appropriate course action is to refer to the delay values generated by VISSIM by the term delay instead of HCM delay. HCM level of service will continue to be applied using the VISSIM delay data.

VISSIM Milestones

Due to the expedient nature of this effort the following project milestones are proposed for model review by project stakeholders.

- Calibrated Base Model and Calibration and Results Report
- Future Alternative Models with Corresponding Documentation
- Final Report with all Alternative Models

Further milestones included as part of the larger project will cover topics such as forecast volumes, alternative geometry, traffic control, project background and project justification. Results from these efforts will be forwarded onto technical reviewers based on their availability at the above milestones.

Final Report and Technical Documentation

Technical documentation for a VISSIM modeling effort involves two parts. The first is a final technical report which will include the following items:

- Project Background
- Base Assumptions
- Areas of concern or special interest
- Future Year Conditions
- Supporting Appendices (traffic counts, model outputs, signal data.., etc)

The second deliverable is the VISSIM model themselves, including the existing condition model as well as any alternatives. The following VISSIM files will be provided to the reviewing agency(s) and allow for independent verification of the models.

- VISSIM (.inp) files
- Signal Timing (.rbc) Files
- Background Imagery (various formats) and background scaling files (.bgr)
- Random Seed Numbers

Appendix B Transportation Impact Analysis (TIA) for the Cowlitz Reservation Development

Due to the size of the Transportation Impact Analysis, it is provided as a separate file.

Appendix C Engineering Assessment of NW La Center Road/I-5 Interchange Structure

NW La Center Road/I-5 Interchange Existing Bridge Review

Prepared For: Cowlitz Reservation Development Project Team

Prepared By: Don Wagner, CH2M HILL
Date: July 23, 2014
The existing NW La Center Road Bridge over I-5 is a four span structure constructed in 1969 with an overall length of 313 feet with span lengths of 105.5 feet over the northbound and southbound Interstate 5 Freeway (I-5) and 51 feet long end spans. The overall bridge width is 34 feet and the minimum vertical clearance is 16.5 feet. The bridge provides a 26 foot wide roadway with one 11 foot wide travel lane and 2 foot wide shoulder in each direction and 3 foot wide sidewalks on each side. The bridge superstructure includes prestressed concrete girders with a cast in place concrete deck. The bridge substructure includes cast in place concrete abutments and piers supported by timber piling.

Based upon the most recent inspection, the bridge is generally in fair to good condition with some hairline map cracking of the deck, columns and cap beams. Several girders located over I5 have high vehicle impact damage with spalls, delamination and exposed prestress strands and repairs. The bridge inventory load rating is 33 tons and operating load rating is 56 tons. The bridge is not posted.

The existing bridge will require widening to meet current roadway travel lane, shoulder, and sidewalk width design standards. In addition, future traffic demands result in the need for at least two travel lanes in each direction. Due to right of way constraints on the northeast side of the bridge, widening on the south side of the bridge is preferred. The roadway profile on I-5 raises to the south. Widening on the south side of the existing bridge and maintaining the existing cross slope will result in a reduction in the minimum vertical clearance to less than 16.5 feet without either reducing the structure depth, lowering the I-5 profile, raising the overcrossing roadway profile or some combination of these. In addition, traffic will need to be maintained during construction of the widening resulting in the need for staged construction of the widening.

The existing bridge does not meet current seismic design standards. The existing bridge structural seismic deficiencies include columns that do not have sufficient transverse reinforcing steel to provide confinement in the plastic hinge regions at the top and bottom, cap beams that do not have sufficient top and bottom reinforcing steel to accommodate the column plastic moment demands, footings that do not have top reinforcing steel, and timber piles that are embedded 6 inches and do not include any tension ties. In addition, the bridge
spans are all simple spans with no continuity at the intermediate piers and no longitudinal restrainers.

Chapter 4 of the WSDOT Bridge Design Manual requires for widening of an existing bridge that element seismic capacity/demand ratios be compared before and after widening. If the seismic capacity/demand ratio is not decreased, the widening can be designed and constructed without retrofitting existing seismically deficient bridge elements. If the widened bridge capacity/demand ratios are decreased, the seismically deficient existing elements must be retrofitted as part of the widening project.

Considering the existing bridge structural system and seismic deficiencies, it will be difficult to widen the existing bridge without increasing the existing seismic capacity/demand ratios. Thus, the existing structure will need to be retrofitted for the widening. Considering the age and condition of the existing bridge, replacement of the bridge deck and the outer girders with high load impact damage should be included with the widening and retrofit of the existing bridge. In addition, considering traffic must be maintained and construction must be staged, the cost of the widening, retrofitting, and deck and girder replacement will likely be about the same or more than a new wider bridge. The new bridge can be constructed south of the existing bridge while traffic is maintained on the existing bridge resulting in minimal traffic impacts except when the roadway tie-ins are constructed at each end of the bridge. As such, replacement of the existing bridge is recommended in lieu of widening and retrofitting the existing bridge.

Appendix D March 14th, 2013 Alternatives Workshop Meeting Minutes

Kittelson \& Associates, inc.
TRANSTPORTATIONENGINEERING/PLANNING 610 SW Alder Street, Suite 700, Portland, OR 97205 P 503.228.5230 F 503.273.8169

I-5/NW La Center Road Interchange Improvement -

Alternatives Workshop

March 14, 2013 at 10:00 AM

Date:	March 21, 2013
To:	Wroject \#: 12393.0
	Project Team
From:	Kittelson and Associates, Inc. (KAI)
Project:	I-5/NW La Center Road Interchange Improvement
Subject:	Summary Meeting Notes

Summary of Action Items:

- Project Team to update Property and Right-of-Way (ROW) Map to adjust ROW lines on west side of interchange to accurately reflect County ROW.
- Project Team to develop additional interchange concept sketches to include designs developed as part of the La Center Sub Area Plan.
- Project Team to consider comments received during meeting related to interchange and corridor concepts that have been developed thus far.
- Project Team to distribute a matrix comparing the interchange concepts in the next couple of weeks.
- Project Team to evaluation NB Terminal dual left-turn utilization based on Casino entrance and circulation plan and conduct an event sensitivity analysis for evening events.
- WSDOT and City staff to provide any additional comments on the Operations Memorandum, Design Criteria Memorandums, and interchange and corridor concepts developed by the Project Team by Monday, March $25^{\text {th }}, 2013$.
- WSDOT and City staff to provide any additional interchange or corridor concepts for the Project Team's consideration by Monday, March $25^{\text {th }}, 2013$.

1. Introductions

- The focus of this meeting is on the interchange form (l-5/NW La Center Road), as well as the alignments of NW $319^{\text {th }}$ Street and NW $31^{\text {st }}$ Avenue on the west side of the interchange. The scheduled April $2^{\text {nd }}$ meeting will address the alignment of NW Paradise Park Road.
- The purpose of this meeting is to present the concepts that have been developed thus far, receive feedback, and gather input on any additional concepts the project team should consider.

2. Background

a. Summary of available property and right-of-way for improvements

- The Property and Right-of Way Map (Figure A) displays existing ROW constraints, property ownership, and wetlands. The majority of challenges and constraints are on the east side of the interchange (narrow ROW, property negotiation discussions).
- Action Item: It was noted that NW 31 ${ }^{\text {st }}$ Avenue is in the County ROW (not the City). KAI will update the map to accurately reflect ROW on the west side of the interchange.

b. Overview of future interchange operations

- Merge/diverge operations show that the northbound (NB) off-ramp and southbound (SB) on-ramp do not meet standards in 2016 or 2036 with the Cowlitz Reservation development. Therefore, double-lane ramps are necessary.
- Question: Did you explore just extending the ramps? Yes, we looked at a variety of options.
- With signals at the ramp terminal intersections, a 4-lane bridge structure will be required in 2016 and a 6-lane structure in 2036 to support future traffic volumes and the proposed Cowlitz Reservation development.
- Question: How do the intersections look with the proposed 2016 configuration and 2036 volumes? Unacceptable - intersections are operating over-capacity.
- Comment: It looks like the AM peak is very concentrated (one dominant movement), while the PM peak is more dispersed (several movements). Also, the AM peak is more concentrated because everyone leaves for work near the same time. True. However, the volume of vehicles making opposing movements (in conflict with the left-turn onto I-5 southbound) in the AM is low.
- Question: The NB off-ramp has 960 left turns. How does this intersection operate at a LOS D? The operations displayed in the memorandum are with the proposed geometry, not the existing geometry.
- Question: Is there a second access to the site? Yes, an additional access is planned farther west. We split the volumes 50/50 at the two accesses for this analysis. We also looked at a scenario where 85% of vehicles enter at the first access and exit at the second access based on the one-way operations currently anticipate on site. We will consider the distribution of vehicles in each access when refining the site plan layout. We will also look at weaving maneuvers along the NW 319 ${ }^{\text {th }}$ Street/NW La Canter Road corridor.
- Action Item: KAI will evaluate the NB Terminal dual left-turn utilization based on Casino entrance and circulation plan and conduct an event sensitivity analysis for evening events
- With roundabouts at the ramp terminals, there is more flexibility for staging the design, and a narrower bridge structure (4-lane) is required. The specifics of the signal and roundabout designs are further discussed later in the meeting.
- Comment: WSDOT will consider both roundabouts and signals. WSDOT does not like roundabouts on high-speed facilities (posted speed greater than 50 mph), but at ramp terminals they are typically acceptable.
- Question: Have you considered teardrop roundabouts instead of circular roundabouts? Yes. Circular roundabouts provide the opportunity for U-turns if accesses need to be limited in the vicinity of the ramp terminals, but we will also consider teardrop roundabouts.
- Action item: The project team requests any additional comments or questions on the Operations Memorandum as soon as possible so we can incorporate them before the process goes any farther.

c. Overview of design criteria

- The goal is to maintain the existing gore points on the I-5 SB off-ramp and I-5 NB onramp; design new gore points on I-5 NB off-ramp and I-5 SB on-ramp (future operations require double-lane ramps).
- Question: Have you checked geometry of existing ramps? Not yet, but intend to. At a high-level assessment, we are concerned about the existing acceleration and deceleration distances, respectively.
- Question: Are there environmental impacts if the ramps are altered? Potentially not (based on how far the gore points are moved), but we haven't looked at this specifically.
- The design speed for the cross road (i.e., NW La Center Road and NW $319^{\text {th }}$ Street) is currently anticipated for 55 mph .
- Comment: It appears that a 35 -mph design speed would be more appropriate in the vicinity of the interchange. For a signalized corridor, the design speed dictates the horizontal alignment and the associate superelevation, while roundabouts provide more flexibility for the approaching geometry due to managing speeds. Project team will work with City and Clark County staff to establish the desired design speed for the NW La Center Road/NW 319 ${ }^{\text {th }}$ Street corridor.
- Action items:
- The project team requests any additional comments or questions on the design criteria assumptions as soon as possible.
- The project team requests an appropriate design speed for the NW La Center Road/NW 319th Street corridor.

d. Existing structure assessment

- The existing structure has sufficient capacity to carry existing loads.
- The existing structure is substandard in terms of lane-widths, shoulders, and lack of sidewalk.
- The vertical clearance appears to be 16.5 feet. We do not have exact deck clearance information, as the original assumption was that we will not retain the existing structure. If there is an option to keep the structure, we will survey the bridge main deck and ensure vertical clearances.
- The grades approaching the bridge over the highway is approximately 2.5-2.8\%. The profile over the bridge is within a vertical curve.
- Our preliminary recommendation is to potentially reuse the existing substructure and replace the superstructure.
- There are seismic issues, so that any widening of the bridge structure will require the substructure to be upgraded. Therefore, it may be advisable to replace the full-bridge in terms of cost-effectiveness.
- Question: Is there room to add a lane in each direction along I-5 under the existing structure? This is likely possible, but we can't say with certainty yet. The median is approximately 64 feet.
e. Site constraints (environmental, topography)
- There are no wetlands in the northeast (NE) corner (Fudge property) or impacts to the stream.
- Question: You have taken in to account that the Cowlitz Reservation development may use the stream, correct (i.e. for clean wastewater)? Yes, we have had initial discussions about this but will continue to look at this possibility.
- In the southeast (SE) corner (Carlson property), there is compacted top soil, wetland areas (category 4), and a previous waste-site. This restricts how far NW La Center Road can be moved south and to the east. With the realignment of NW Paradise Park Road, it may be difficult to maintain the S-curve and have the road tie in at a 90degree intersection angle.
- On the west side of the interchange, the wetlands represented on the maps were surveyed as part of the environmental impact statement (EIS).

3. Interchange Concepts

a. Initial design concepts

- Part of the interchange justification report (IJR) process involves doing a thorough look at other potential alternatives.
- The operations analysis done thus far on the ramps and at the ramp terminals assumes the existing diamond interchange form, but we are also considering other interchange forms.
- We have developed 8 interchange concepts and created single-line sketches to get an idea of what the interchange form will look like. Once a form is selected, we will further develop the concept and identify impacts.
- Question: The analysis is based on where identified deficiencies are, correct? Yes, we are reacting to where we have identified deficiencies due to growth in the area.
- Question: Any there issues with weigh-station south of interchange? There are no merge/diverge issues there, but there are potentially mainline capacity issues.
- Question (on Concept 5): The NB off-ramp does not have to be aligned with the cloverleaf ramp, correct? Yes, the concepts show one option, typically the worst-case scenario.
- The parclo concepts will push the ramp gore points farther from the interchange and have significant impacts on properties at each quadrant of the interchange.
- The project team would like to get any additional thoughts or ideas to add to mix of options. We would like to ensure that we have a thorough and robust assessment to include in the IJR.

b. Evaluation criteria

- The project team presented the preliminary evaluation criteria to compare the interchange concepts.
- Comment: We should also consider the potential for wrong-way movements (i.e. on the loop ramps).
- Comment: The evaluation assessment in the IJR should be in as concise a form as possible (i.e., a matrix). We don't need a long write-up or analysis.
c. Work session to sketch other potential concepts to consider
- No additional concepts were suggested during the meeting.
- Comment: The parclo designs where the ramps and frontage roads are next to each other may create complications and be hard to deal with from a driver expectation point of view. The parclo concepts also have significant right-of-way impacts. They can be problematic with wrong-way movements and driver confusion.
- Comment: The project team has done a thorough job of capturing the concepts WSDOT would typically look at.
- Question: Have you looked at sub-area concepts? Yes. We will look at these more thoroughly and include a sketch of any applicable concepts in the evaluation.
- Action Item: the project team will add sketches of any applicable concepts from the La Center sub-area concept plan.
- Action item: the project team requests any additional ideas or concepts in the next week.

4. Corridor Concepts

a. Horizontal and vertical alignments

i. La Center Road

- Constraints for the alignment of NW La Center Road include:
- The existing bridge structure and how we construct/expand the bridge while maintaining traffic;
- Staying within the existing ROW on the east side of interchange; and
- Wetland constraints.
- There are less ROW constraints on the west side of the interchange, so most challenges for the alignment are on the east side.
- The goal is to leave 12 -foot lanes on the bridge structure and maintain 2 feet of clearance for workers during construction. If we maintain and expand the existing bridge structure, we will likely expand to one side.
- The initial alignment layouts are based on the design criteria and assumptions.
- To accommodate potential vertical alignments, the existing structure would either have to be raised or significantly modified (which may not be cost effective).
- The roundabout concept has the option of building a second separate bridge structure, with each structure providing for one direction of traffic. The structure could be built to accommodate long-term demand with striping used to size it for near-term demand.
- The ramp terminals will have to be raised 3-5 feet.
- Question: There is limited left-turn storage on the bridge between the ramp terminals. Could you pull the terminals closer together to create tight diamond? We have the design working with signal timing (in terms of providing sufficient left turn storage), but we can look at that convention.
- Action Item: Project team to consider design with more closely spaced ramp terminals, with left-turn vehicles stored outside the interchange.

ii. NW 31 ${ }^{\text {st }}$ Avenue, and NW $319^{\text {th }}$ Street

- The horizontal alignment of NW $319^{\text {th }}$ Street will be developed to tie-in with NW La Center Road across the bridge and avoid wetland impacts. The alignment will be further refined based on the bridge structure and placement of ramp terminal intersections.
- The alignment of NW $319^{\text {th }}$ Street west of the interchange cannot be fully developed without discussions with the County.
- Comment: We can ask the County questions now, but they cannot provide engineering guidance. Once we define the layouts further we can sit down with the County to work out an appropriate alignment of NW 319 ${ }^{\text {th }}$ Street to match the existing facilities on the west of the project.
- Comment: WSDOT noted that another project was able to pay for the wetland impacts using Habitat Bank, LLC. This may be a possibility for this project as well if wetland impacts are unavoidable. Credits may be available in the next couple months.
- Question: Will the County road be on easement through tribal land? No, the County will own the land.
- Once the layouts are further defined, we will thoroughly look at on-site circulation, weaving, and how to move vehicles in out and of the site.
b. Ramp terminals and frontage road intersections

i. Signals or roundabouts

- The project team presented a design with signals at the ramp terminal and frontage road intersections to accommodate projected 2016 traffic volumes (including the proposed Cowlitz Reservation development).
- Question: What assumptions were made about left-turn utilization from the northbound off-ramp to NW La Center Road? We will have to check this and do a sensitivity analysis.
- The project team presented a design with signals at the intersections that accommodates projected 2036 traffic volumes (including the proposed Cowlitz Reservation development).
- The 2036 design requires widening the bridge structure and expanding the intersections. We typically widen to the outside on both sides, although this creates complications with the bridge structure and alignment.
- The project team presented design options to accommodate the projected 2016 and 2036 traffic volumes with roundabouts instead of signals.
- A narrow (4-lane) bridge structure is required with roundabouts.
- From a constructability and design perspective, roundabouts provide more flexibility.
- The roundabout design can be expanded from 2016 to 2036 by widening to the inside (using the splitter islands). Additional turn lanes are also required on the ramps to accommodate 2036 traffic volumes.
c. Work session to sketch other potential concepts to consider
- No additional concepts were suggested during the meeting.
- Action Item: The project team requests any comments on the signal or roundabout layouts or any additional concepts in the next week.

5. Next Steps

- The project team will produce meeting minutes and distribute them with a copy of the PowerPoint in the next week.
- Action Item: The project team requests any additional interchange or corridor concepts in the next week.
- Action Item: The project team will distribute a matrix comparing the interchange concepts in the next couple of weeks.
- A second workshop is scheduled for April $2^{\text {nd }}$ (10 am - noon)
- Additional property negotiation discussions are necessary before this meeting can be held.
- The meeting will discuss the alignment of NW Paradise Park Road.
- Question: Will the frontage roads be moved farther from interchange? Yes, the question is how far. We will also maintain full access to the gas station in the NE quadrant of the interchange.
- The goal is to submit the TIA and IJR by May $2^{\text {nd }}$
- The project team would like to receive and incorporate all comments before the submittal.

Other Items:

- Property Update
- Carlson and Fudge property owners are cooperative
- The preferred alternative is to use a westernly NW Paradise Park Road alignment, which would help provide full access to the gas station. However, the Landon property is not yet available.
- Question: What is the timeline for conducting the bridge assessment? The assessment will only be done if we intend to maintain the existing structure, which is likely only plausible with the roundabout design.
- Comment: The City of La Center noted that they would like to see the potential frontage road alignments and impacts on City. They also noted that a diverging diamond interchange (DDI) design is likely to be unpopular, although left-turn movements on to l-5 have been a concern. As the City does not currently have someone to main traffic signals (and likely won't for a while), roundabouts work well.
- Comment: WSDOT noted that there would have to be a reason to use a DDI above other alternatives (i.e. roundabouts) and it would be less desirable. FHWA will have the final say on the interchange form.
- Question: Have you looked at operations for the SPUI? We have not done a detailed analysis, but will look at farther. The bridge structure to accommodate a SPUI would be large and expensive, and the form would also create pedestrian and bike concerns due to the size of the intersection.
- Question Can the design handle the flow in/out of the site during an event when traffic volumes in and out of the site are not balanced? The project team will look into this and consider operations during special events (e.g., flagging).
- Comment: From a guest perspective, roundabouts are likely more comfortable and attractive. The DDI form would have some negatives, and may lessen property values (as there may be concerns associated with the design).
- Steve Horenstein provided an updated on the federal case, and noted that it is moving along. Recent news articles related to the case have not represented the situation accurately. Steve noted that we have a strategy for addressing the situation, and will likely lose approximately 4 months in the project timeline.

Appendix E July 14th, 2014 Alternatives Workshop Meeting Minutes

ALTERNATIVES WORKSHOP \#2: JULY 14, 2014 at 1:30 PM

July 17, 2014
Project \#: 12393.0
To: WSDOT Staff, City of La Center Staff, and Project Team
From: Marc Butorac, P.E. PTOE and Matt Hughart, AICP
Project: Cowlitz Reservation Development
Subject: Workshop Meeting Summary

This memorandum provides a summary of the action items developed as part of the July 14, 2014 Alternatives Workshop \#2 held at WSDOT as well as high level meeting notes and a copy of the PowerPoint presentation. Please review these materials and let us know if we have inadvertently missed any of the requested action items or if you would like to see any additional points of clarification be provided in this meeting summary by Tuesday, July 22nd. We will be providing a written summary addressing the action items below by Friday, July $25^{\text {th }}$.

Summary of Action Items:

A. Begin formal Coordination with Washington State Parks and Recreation: Project team to reach out to officials at Paradise Point State Park regarding interchange and frontage road realignments.
B. $\mathbf{3 2 4}{ }^{\text {th }}$ Avenue Connection to Paradise Park Road: Project team to look at alternatives for enhancing this connection.
C. 2037 Design Cost Estimates: Project team to prepare the cost estimates for the 2037 full buildout improvements under both the signal and roundabout options
D. $\mathbf{2 0 3 7}$ No-Build Operation Analysis: Project team to prepare operations without secondary improvements.
E. Refined Roundabout Design Plan and discuss Bicycle \& Pedestrian Accommodations: Project team to prepare narrative and additional plans that illustrate pedestrian and bicycle accommodations for the roundabout designs.
F. Preliminary List of Design Deviations: Project team to prepare a preliminary list of design deviations and provide a brief narrative on the preliminary justifications to WSDOT for review prior to initial IJR submittal.
G. Weekday PM Peak Analysis: Project team to prepare a brief discussion and comparison of the weekday p.m. peak hour to the Friday p.m. peak hour in the IJR and TIA.
H. $31^{\text {st }}$ Documentation for City Ownership: Project team to prepare documentation of $31^{\text {st }}$ ROW
I. Work Session Response Packet: Project team to prepare a response packet addressing these action items and submit to WSDOT and City of La Center.

Meeting Notes

1.) Introductions

- See attached attendance list and copy of the presentation.
- Clark County staff were invited, but chose not to attend this Workshop.
- Comment: IJR Policy Point requires coordination with all impacted agencies. Clark County coordination issue will need to be addressed in IJR.
2.) Project Update
- Project Schedule
- DRAFT IJR and TIA on-going - targeting September submittal
- Re-Evaluation Report on-going - targeting October submittal
- SEPA/NEPA review - targeting January 2015 completion
- Final Interchange Design (pending review and approval) - Jan 2015 to Jan 2016
- Construction - ~Spring 2016 to ~Fall 2017
- Property Acquisition
- Property acquisition and options are being acquired to accommodate frontage road realignments
3.) Interchange Form Alternatives Analysis
- Diamond form based on March 2013 Work Shop.
- Developing a new overpass alignment south of existing structure for construction phasing and maintenance of traffic.
- New overpass profile approximately 5 feet higher than existing.
- Ramp Modifications
- NB Dual Lane Exit (similar to Ridgefield)
- SB Dual Lane Entrance at Terminal with merge prior to Mainline merge
- Comment: Need to produce a list of design deviations. WSDOT staff would like to review them prior to being included in IJR.
- Dual NB off-ramp will have impacts to existing Paradise Park Road alignment and likely require some mitigation.
- Comment: Analysis needs to show 2017 and 2037 no-build operations.
4.) Frontage Road Alternatives Analysis
- Private acquisition of property for roadway realignment - no eminent domain
- 8 frontage road alignment concepts were developed
- Preferred frontage road alignment - Option E2
- Comment: More analysis and discussion is needed regarding $324^{\text {th }}$ connection to Paradise Park Road.
- Comment: Project team should begin discussions with Paradise Park State Park officials regarding proposed Paradise Park Road realignment.
5.) Ramp Terminal Control Analysis
- Signalized and Roundabout scenarios being analyzed
- 2017 and 2037 layouts were presented
- Comment: Are alternatives being driven solely by projected volumes? No, staging, maintaining adjacent parcel sizes, and construction issues are also being considered.
- 2017 Signalization - Preliminary Cost of $\$ 24.2 \mathrm{M}(\pm 20 \%)$
- 2017 Roundabout - Preliminary Cost of $\$ 25.6 \mathrm{M}(\pm 20 \%)$
- Comment: Cost estimates should be developed for 2037 build scenarios to determine how long-term costs compare. Long-term signalization may be higher than long-term roundabout.
- Preliminary Preferred Ramp Terminal Control - Roundabouts
- Better Near- and Long-term Operations
- Overpass width set in the near-term
- Safety benefits
- Aesthetics / Gateway Treatment
- Comment: Need to assess pedestrian and bicycle accommodation for roundabout designs
- Comment: Need to assess La Center Road/Realigned Paradise Park intersection as a signal with roundabouts at the ramp terminals.
6.) $319^{\text {th }}$ Alignment Alternatives
- Existing $319^{\text {th }}$ is an easement
- Comment: Send WSDOT documentation of La Center boundary along $31^{\text {st }}$.
- Preferred new southerly alignment to accommodate more efficient east-west through travel.
- New alignment avoids wetlands
7.) Next Steps
- WSDOT staff to review memos submitted as part of the Workshop and provide project team comments by end of July.
- Project team will prepare a response memo addressing Workshop comments.
- Submittal of Draft IJR and TIA - September $1^{\text {st }}$
- Tentative date for next meeting is August $6^{\text {th }}$ at 1:30 p.m.

Appendix F Technical Memorandum: Interchange Evaluation Intersection Traffic Control

Kittelson \& Associates, inc.
TRANSPORTATIONENGINEERING/PLANNING 610 SW Alder Street, Suite 700, Portland, OR 97205 P 503.228.5230 F 503.273.8169

TECHNICAL MEMORANDUM
 NW La Center Road/I-5 Interchange Improvement Project Signalized Interchange Evaluation

Date:	February $23^{\text {rd }}, 2015$	Project \#: 12393
To:		
	Peter Schultz and Paul Tresnan	
	Mohegan Gaming Advisors, LLC	
From:	Jeff Whitman, PE; Kelly Laustsen	
Copy:	Project Team (i.e., CH2MHILL, Olson Engineering, and BergerABAM)	

This memorandum presents the intersection analysis findings and design alternatives for intersection control at the NW La Center Road/Interstate 5 (I-5) interchange. Specifically, the memorandum assesses the lane configurations and storage lengths needed to support projected future traffic conditions with traffic signals at the interchange ramp terminals and frontage road intersections. The results of this assessment were used to inform the interchange improvement recommendations included in the NW La Center Road/I-5 Interchange Justification Report (IJR).

METHODOLOGY AND ASSUMPTIONS

The operational analysis results presented in this memorandum assess intersection geometric needs for signalized intersection control at the following intersections:

- NW 319 ${ }^{\text {th }}$ Street/NW $31^{\text {st }}$ Avenue
- NW La Center Road/I-5 Southbound Ramp Terminal
- NW La Center Road/I-5 Northbound Ramp Terminal
- NW La Center Road/NW Paradise Park Road

These intersections were analyzed for two horizon years during two peak hour conditions ${ }^{1}$:

- Opening Year 2017 Weekday AM and Weekend Peak ${ }^{2}$ Hours
- Future Year 2037 Weekday AM and Weekend Peak ${ }^{2}$ Hours

[^3]
Analysis Assumptions

The following key assumptions were made in preparing the analysis:

- The need to mitigate the four intersections is identified in the NW La Center Road/l-5 Interchange Improvement Project Interchange Justification Report (IJR). The IJR highlights the intersection and interchange improvement needs for accommodating trips traveling to the Cowlitz Reservation Development during the critical weekend peak hour and accommodating eastbound trips from the City of La Center to l-5 during the AM peak hour.
- The IJR provides the methodology for developing 2017 and 2037 traffic volumes.
- All four analysis scenarios include site-generated traffic from full build-out of the proposed Cowlitz Reservation Development. The site-generated traffic was added to 2017 and 2037 background traffic volumes to arrive at the total traffic volumes.
- With the project, NW $31^{\text {st }}$ Avenue will be realigned and the intersection with NW $319^{\text {th }}$ Street moved approximately 600 feet (centerline-to-centerline) west of the southbound ramp terminal.
- With the project, NW $319^{\text {th }}$ Street will be relocated approximately 350 feet south of its current alignment.
- With the project, Paradise Park Road will be realigned and the intersection with NW La Center Road moved approximately 450 feet (centerline-to-centerline) east of the northbound ramp terminal.
- This analysis assumes the existing gas station driveway near the Paradise Park Road/La Center Road intersection will operate as a right-in/right-out driveway. Therefore, all left turning traffic into and out of the gas station would use the Paradise Park Road /La Center Road intersection.
- The IJR identifies traffic volumes at this intersection do not meet signal warrants under 2017 traffic conditions, but do meet signal warrants under 2037 traffic conditions. This evaluation assumes a stop controlled (northbound and southbound approaches) intersection in 2017, and a signalized intersection in 2037.
- A detailed site plan for the Cowlitz Reservation Development was not available at the time this evaluation was prepared; therefore, the analysis presented in this technical memorandum is predicated on the assumption that the two site accesses on NW 319 ${ }^{\text {th }}$ Street results in a roughly even distribution of site traffic with 50% entering and exiting the site at the NW $319^{\text {th }}$ Street/NW $31^{\text {st }}$ Avenue (east access) intersection, and 50% entering and exiting the site at the west access along $319^{\text {th }}$ Street. The $50 / 50$ trip distribution split also translates to a 50/50 lane utilization for the northbound left-turn lanes at the NW La Center Road/NB Ramp Terminal.

Analysis Methodology

The traffic signal intersection operational analyses presented in this technical memorandum were prepared following Highway Capacity Manual 2010 (HCM 2010) analysis procedures using Synchro 8 software. Synchro 8 analyzes individual signalized intersections as well as coordinated traffic signal timings along a corridor. Queuing analyses reflects the average $95^{\text {th }}$ percentile queues obtained from five simulation runs using SimTraffic software. Queue lengths are rounded up to the nearest 25 feet.

SIGNALIZED CORRIDOR ASSESSMENT

The following sections assess intersection operations and queueing on the corridor with signal control at the ramp terminals and frontage road intersections. The analysis was utilized to determine the lane configurations and storage necessary to accommodate future traffic projections.

Opening Year 2017 Build (Signalized) Total Traffic Conditions

The build total traffic conditions analysis forecasts how the study intersections will operate with the traffic generated by the Cowlitz Reservation Development assuming traffic signals and associated lane widenings are installed at the intersection of NW $31^{\text {st }}$ Avenue/NW $319^{\text {th }}$ Street/East Site Access and the I-5 ramp terminals. The traffic volumes at the intersection of NW La Center Road/NW Paradise Park Road are not sufficient to warrant signalization, so the intersection was modeled with two-way stop control.

Figure 1 illustrates the assumed potential 2017 build lane configurations. Figure 2 illustrates the 2017 signalized design concept at the study intersections. Table 1 provides level of service (LOS) results for the signalized intersections during the weekday AM and weekend peak hours (also shown in Figure 1).

Appendix " A " includes the 2017 build total intersection operations analysis worksheets.
Table 12017 Signalized Intersection Operations (Build)

Intersection	Operating Standard	Weekday AM Peak Hour	Weekend Peak Hour
NW 319 ${ }^{\text {th }}$ Street/NW 31 ${ }^{\text {st }}$ Avenue	D	A	B
NW La Center Road/I-5 SB Ramp Terminal	C	A	A
NW La Center Road/I-5 NB Ramp Terminal	C	B	B
NW La Center Road/NW Paradise Park Road	E	E	E

As shown in Table 1, all intersections satisfy the LOS criteria.

Table 2 provides the associated projected $95^{\text {th }}$ percentile queue lengths. Available storage lengths are provided based on the conceptual design illustrated in Figure 2.

Table 22017 Signalized Intersection $95^{\text {th }}$ Percentile Queue Lengths (feet) (Build)

Intersection	Approach Lane	Weekday AM Peak Hour	Weekend Peak Hour	Available Storage	Adequate Storage?
NW 319 ${ }^{\text {th }}$ Street/ NW 31 ${ }^{\text {st }}$ Avenue (Traffic Signal)	SB Left	75	200	225	Yes
	SB Through/Right	25	25	300	Yes
	EB Left	25	25	150	Yes
	EB Through/Right	75	175	500+	Yes
	NB Left	25	25	100	Yes
	NB Through/Right	75	75	500+	Yes
	WB Left	75	125	325	Yes
	WB Through	100	300	$550{ }^{1}$	Yes
	WB Right	75	150	$550{ }^{1}$	Yes
NW La Center Road/ I-5 SB Ramp Terminal (Traffic Signal)	SB Through/Left	150	150	500+	Yes
	SB Right	25	100	425	Yes
	EB Through	175	125	$550{ }^{1}$	Yes
	WB Through (right lane)	125	150	$450{ }^{1}$	Yes
	WB Through (middle lane)	150	125	$450{ }^{1}$	Yes
	WB Left	150	50	225	Yes
NW La Center Road/ I-5 NB Ramp Terminal (Traffic Signal)	NB Left (left lane)	150	200	300	Yes
	NB Left (middle lane)	125	250	500+	Yes
	NB Through/Right	150	200	500+	Yes
	WB Through	200	200	425^{1}	Yes
	WB Through/Right	100	125	200	Yes
	EB Left	125	100	175	Yes
	EB Through	75	100	$450{ }^{1}$	Yes
NW La Center Road/ Paradise Park Road (Two-Way StopControl)	SB	125	75	125	Yes
	EB Left	100	75	125	Yes
	NB	50	75	15	Yes
	WB Left	25	25	125	Yes
${ }^{1}$ Distance to adjacent intersection $E B=$ Eastbound, $N B=$ Northbound, $S B=$ Southbound, $W B=W e s t b o u n d$					

Table 2 shows the projected $95^{\text {th }}$ percentile queues can be accommodated within the available storage areas.

Future Year 2037 Total Traffic Conditions

An operational analysis was conducted for the horizon year 2037 to ensure the proposed interchange area improvements identified under the year 2017 do not preclude future improvement needs.

2037 No-Build Analysis

A 2037 "No-Build" analysis was conducted to determine what infrastructure improvements may be needed beyond those identified in the 2017 total signalized build analysis. The operations at the study intersections in 2037 with the proposed Cowlitz Reservation Development and 2017 signalized infrastructure improvements are provided in Table 3 and Figure 3.

Appendix " B " includes the 2037 no-build total intersection operations analysis worksheets.

Table 32037 Signalized Intersection Operations (No-Build)

Intersection	Operating Standard	Weekday AM Peak Hour	Weekend Peak Hour
NW $319^{\text {th }}$ Street/NW 31 ${ }^{\text {st }}$ Avenue	D	A	C
NW La Center Road/I-5 SB Ramp Terminal	D	B	B
NW La Center Road/I-5 NB Ramp Terminal	D	C	C
NW La Center Road/NW Paradise Park Road	E	F	F

As shown in Table 3, the NW $319^{\text {th }}$ Street/NW $31^{\text {st }}$ Avenue, NW La Center Road/Southbound Ramp, and NW La Center Road/Northbound Ramp intersections satisfy the LOS criteria. Although these intersections meet the overall LOS criteria, some intersection approaches are near capacity during the weekday AM and weekend peak periods. In addition, considerations should be made for additional lanes at these intersections as described in the next section.

VI KITTELSON \& ASSOCIATES, INC.

2037 Build Analysis

While the $319^{\text {th }}$ Street $/ 31^{\text {st }}$ Avenue and ramp terminal intersections meet the overall LOS criteria, the long-term 2037 design should consider the following improvement measures (beyond those needed in 2017) to mitigate for long-term local and regional growth not accounted for in the RTC travel demand models and not associated with the Cowlitz Reservation Development:

- a second eastbound and westbound through lane along NW $319^{\text {th }}$ Street west of the NW $31^{\text {st }}$ Avenue intersection;
- a second eastbound through lane on the overpass between the l-5 ramp terminal intersections;
- a second westbound and eastbound left-turn lane on the overpass between the l-5 ramp terminal intersections;
- a traffic signal at NW La Center Road/NW Paradise Park Road with two thru lanes on the eastbound and westbound approaches.

Figure 4 illustrates the assumed potential 2037 build lane configurations. Figure 5 illustrates the 2037 signalized design concept at the study intersection. Table 4 provides level of service (LOS) results for the signalized intersections during the weekday AM and weekend peak hours (also shown in Figure 4).

Appendix " C " includes the 2037 build total intersection operations analysis worksheets.
Table 42037 Signalized Intersection Operations (Build)

Intersection	Operating Standard	Weekday AM Hour	Weekend Hour
NW 319 ${ }^{\text {th }}$ Street/NW 31 ${ }^{\text {st }}$ Avenue	D	B	C
NW La Center Road/I-5 SB Ramp Terminal	D	B	B
NW La Center Road/I-5 NB Ramp Terminal ${ }^{1}$	D	B	C
NW La Center Road/NW Paradise Park Road	D	A	B

${ }^{1}$ Lane utilization at this intersection assumed all westbound traffic turning left onto the I-5 southbound on-ramp at the NW 319th Street/l-5 SB Ramp intersection, would line up in the westbound left/through lane (left lane) at the NW La Center Road/I-5 NB Ramp Terminal.

As shown in Table 4, all intersections are projected to operate acceptably in 2037 with signal control and the lane configurations shown in Figure 4 . Table 5 provides projected $95^{\text {th }}$ percentile queue lengths. Available storage lengths are provided based on the conceptual design illustrated in Figure 5.

KITTELSON \& ASSOCIATES, INC.

Table 52037 Signalized Intersection $95^{\text {th }}$ Percentile Queue Lengths (feet) (Build)

Intersection	Approach Lane	Weekday AM Peak Hour	Weekend Peak Hour	Available Storage	Adequate Storage?
NW 319 ${ }^{\text {th }}$ Street/ NW 31 ${ }^{\text {st }}$ Avenue (Traffic Signal)	SB Left	100	350	350	Yes
	SB Through/Right	50	50	300	Yes
	EB Left	25	25	150	Yes
	EB Through	75	150	500+	Yes
	EB Through/Right	100	300	500+	Yes
	NB Left	25	25	100	Yes
	NB Through/Right	100	175	500+	Yes
	WB Left	150	175	375	Yes
	WB Through	75	225	$550{ }^{1}$	Yes
	WB Through/Right	125	325	$550{ }^{1}$	Yes
NW $319^{\text {th }}$ Street/ I-5 SB Ramp Terminal (Traffic Signal)	SB Through/Left	225	250	500+	Yes
	SB Right	75	150	425	Yes
	EB Through	200	175	$550{ }^{1}$	Yes
	EB Through	150	100	$550{ }^{1}$	Yes
	WB Through	100	150	$450{ }^{1}$	Yes
	WB Through	125	200	$450{ }^{1}$	Yes
	WB Left	125	50	225	Yes
	WB Left	150	75	225	Yes
NW La Center Road/ I-5 NB Ramp Terminal (Traffic Signal)	NB Left	150	350	350	Yes
	NB Left	200	400	500+	Yes
	NB Through/Right	175	375	500+	Yes
	WB Through	250	225	425^{1}	Yes
	WB Through/Right	150	250	425^{1}	Yes
	EB Left	100	75	175	Yes
	EB Left	125	100	175	Yes
	EB Through	75	75	$450{ }^{1}$	Yes
	EB Through	100	100	$450{ }^{1}$	Yes
NW La Center Road/ NW Paradise Park Road (Traffic Signal)	SB Left	100	75	175	Yes
	SB Through/Right	75	50	500+	Yes
	EB Left	75	75	175	Yes
	EB Through	100	175	400^{1}	Yes
	EB Through/Right	150	200	400^{1}	Yes
	NB Left	100	175	125	Yes
	NB Through/Right	100	100	500+	Yes
	WB Left	125	100	100	Yes
	WB Through	150	150	500+	Yes
	WB Through/Right	125	125	275	Yes

${ }^{1}$ Distance to adjacent intersection
$E B=E a s t b o u n d, N B=$ Northbound, $\mathrm{SB}=$ Southbound, WB=Westbound

Table 5 shows the projected $95^{\text {th }}$ percentile queues can be accommodated within the available storage areas.

CONSTRUCTION PHASING CONSIDERATIONS

Preliminary construction phasing insights are summarized below.

I-5 Overpass Alignment Options

There are two options for the NW $319^{\text {th }}$ Street-NW La Center Road alignment across the I-5 overpass; each with its own bridge construction approach.

- Option \#1 - Maintain existing NW $319^{\text {th }}$ Street alignment (west side of I-5). Half of the new bridge (to accommodate 2017 traffic conditions) will be built to the south of the existing bridge. During construction, traffic will then be shifted onto the new bridge, while the existing bridge is being removed and the north half of the bridge is being completed. To accommodate future 2037 traffic conditions the bridge will be widening to the north.
- Option \#2 - Realign NW $319^{\text {th }}$ Street to the south of its current location. The entire new bridge (to accommodate 2017 traffic conditions) will be built to the south of the existing bridge. To accommodate future 2037 traffic conditions the bridge will be widened to the north.

For the signalized option, construction phasing between 2017 and 2037 would be planned so that future 2037 roadway needs would be widened to the outside from the 2017 configuration. This phased implementation approach will minimize "throw-away" work and outlines an approach to locate and construct signal equipment to accommodate the ultimate configuration, while serving the near-term configuration with narrower cross sections. Special attention should be given to drainage (especially with the installation of curbed facilities) to minimize reconstruction.

Existing on-ramp and off-ramp alignments could be maintained, reducing overall impacts to the project. All ramp widening could be accomplished by maintaining the inside edge of the existing ramp and widening to the outside based on capacity needs. However, the geometry of the northbound offand southbound on-ramps will be revisited to address existing undesirable horizontal alignments (i.e., radius of curve closets to the freeway).

CONCLUSIONS

Based on the operations and queueing assessment presented within this memorandum, signals can be constructed at the ramp terminals and frontage roads of the NW La Center Road/I-5 Interchange to support projected future traffic conditions. There are advantages and constraints associated with this option. For one, signals have the advantage of being easier to construct while maintaining traffic during construction.

The information presented in this memorandum was used to inform the decision process and selection of traffic control as part of the NW La Center Road/I-5 Interchange IJR.

Appendix A 2017 Build Total Intersection Operations Analysis Worksheets

	\rangle	\rightarrow	7	\downarrow	\leftarrow	4	4	\dagger	$>$	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	$\hat{\square}$		\%	\uparrow	「	\%	1		${ }^{7}$	F	
Volume (veh/h)	5	155	15	49	192	146	5	5	78	110	5	5
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.99		0.98	0.98		0.98	0.99		0.99	0.99		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1833	1900	1712	1863	1881	1900	1562	1900	1881	1881	1900
Adj Flow Rate, veh/h	5	155	15	49	192	146	5	5	78	110	5	5
Adj No. of Lanes	1	1	0	1	1	1	1	1	0	1	1	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, \%	0	4	4	11	2	1	0	1	1	1	1	1
Cap, veh/h	608	558	54	629	633	532	606	16	247	522	171	171
Arrive On Green	0.34	0.34	0.34	0.34	0.34	0.34	0.20	0.20	0.20	0.20	0.20	0.20
Sat Flow, veh/h	1046	1642	159	1095	1863	1564	1410	80	1244	1310	858	858
Grp Volume(v), veh/h	5	0	170	49	192	146	5	0	83	110	0	10
Grp Sat Flow(s),veh/h/ln	1046	0	1801	1095	1863	1564	1410	0	1323	1310	0	1717
Q Serve(g_s), s	0.1	0.0	1.5	0.7	1.6	1.5	0.1	0.0	1.2	1.7	0.0	0.1
Cycle Q Clear(g_c), s	1.7	0.0	1.5	2.2	1.6	1.5	0.2	0.0	1.2	2.9	0.0	0.1
Prop In Lane	1.00		0.09	1.00		1.00	1.00		0.94	1.00		0.50
Lane Grp Cap(c), veh/h	608	0	612	629	633	532	606	0	263	522	0	341
V/C Ratio(X)	0.01	0.00	0.28	0.08	0.30	0.27	0.01	0.00	0.32	0.21	0.00	0.03
Avail Cap(c_a), veh/h	1459	0	2077	1520	2149	1804	1951	0	1526	1773	0	1980
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	5.9	0.0	5.2	6.0	5.3	5.2	7.1	0.0	7.4	8.6	0.0	7.0
Incr Delay (d2), s/veh	0.0	0.0	0.2	0.1	0.3	0.3	0.0	0.0	0.7	0.2	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.0	0.0	0.7	0.2	0.8	0.6	0.0	0.0	0.5	0.6	0.0	0.1
LnGrp Delay(d),s/veh	5.9	0.0	5.5	6.1	5.5	5.5	7.1	0.0	8.1	8.8	0.0	7.0
LnGrp LOS	A		A	A	A	A	A		A	A		A
Approach Vol, veh/h		175			387			88			120	
Approach Delay, s/veh		5.5			5.6			8.0			8.7	
Approach LOS		A			A			A			A	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s		12.4		9.3		12.4		9.3				
Change Period ($\mathrm{Y}+\mathrm{Rc}$) , s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		25.0		25.0		25.0		25.0				
Max Q Clear Time (g_c+l1), s		3.7		4.9		4.2		3.2				
Green Ext Time (p_c), s		2.6		0.8		2.6		0.8				
Intersection Summary												
HCM 2010 Ctrl Delay			6.3									
HCM 2010 LOS			A									

Notes

User approved pedestrian interval to be less than phase max green.

	4			\dagger	\leftarrow	4	4	4	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「	\％	个个						\uparrow	F
Volume（veh／h）	0	118	225	535	361	0	0	0	0	118	4	25
Number	5	2	12	1	6	16				7	4	14
Initial $\mathrm{Q}(\mathrm{Qb})$ ，veh	0	0	0	0	0	0				0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00				1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow，veh／h／ln	0	1583	1863	1827	1863	0				1900	1664	1759
Adj Flow Rate，veh／h	0	118	0	535	361	0				118	4	25
Adj No．of Lanes	0	1	1	1	2	0				0	1	1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Percent Heavy Veh，\％	0	20	2	4	2	0				8	50	8
Cap，veh／h	0	258	258	614	2279	0				154	5	150
Arrive On Green	0.00	0.16	0.00	0.59	1.00	0.00				0.10	0.10	0.10
Sat Flow，veh／h	0	1583	1583	1740	3632	0				1535	52	1495
Grp Volume（v），veh／h	0	118	0	535	361	0				122	0	25
Grp Sat Flow（s），veh／h／ln	0	1583	1583	1740	1770	0				1587	0	1495
Q Serve（g＿s），s	0.0	2.6	0.0	10.2	0.0	0.0				2.9	0.0	0.6
Cycle Q Clear（g＿c），s	0.0	2.6	0.0	10.2	0.0	0.0				2.9	0.0	0.6
Prop In Lane	0.00		1.00	1.00		0.00				0.97		1.00
Lane Grp Cap（c），veh／h	0	258	258	614	2279	0				160	0	150
V／C Ratio（X）	0.00	0.46	0.00	0.87	0.16	0.00				0.76	0.00	0.17
Avail Cap（c＿a），veh／h	0	485	485	1600	4792	0				689	0	649
HCM Platoon Ratio	1.00	1.00	1.00	1.67	1.67	1.00				1.00	1.00	1.00
Upstream Filter（l）	0.00	0.99	0.00	0.93	0.93	0.00				1.00	0.00	1.00
Uniform Delay（d），s／veh	0.0	14.8	0.0	7.3	0.0	0.0				17.2	0.0	16.1
Incr Delay（d2），s／veh	0.0	1.2	0.0	3.7	0.0	0.0				7.4	0.0	0.5
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.0	1.2	0.0	5.2	0.0	0.0				1.6	0.0	0.3
LnGrp Delay（d），s／veh	0.0	16.1	0.0	11.0	0.0	0.0				24.6	0.0	16.6
LnGrp LOS		B		B	A					C		B
Approach Vol，veh／h		118			896						147	
Approach Delay，s／veh		16.1			6.6						23.2	
Approach LOS		B			A						C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4		6						
Phs Duration（ $G+Y+R \mathrm{c}$ ），s	59.7	11.4		8.9		71.1						
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s	5.0	5.0		5.0		5.0						
Max Green Setting（Gmax），s	36.0	12.0		17.0		53.0						
Max Q Clear Time（ $\mathrm{g}_{\sim} \mathrm{c}+11$ ），s	12.2	4.6		4.9		2.0						
Green Ext Time（p＿c），s	1.7	1.6		0.0		3.1						
Intersection Summary												
HCM 2010 Ctrl Delay			9.7									
HCM 2010 LOS			A									

Intersection									
Int Delay, s/veh 5.3									
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	91	384	5	10	628	9	10	0	5
Conflicting Peds, \#/hr	0	0	0	5	0	5	0	0	5
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	200	-	-	200	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	42	13	0	25	3	20	14	0	25
Mumt Flow	91	384	5	10	628	9	10	0	5
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	642	0	0	394	0	0	1266	1236	397
Stage 1	-	-	-	-	-	-	574	574	
Stage 2	-	-	-	-	-	-	692	662	
Critical Hdwy	4.52	-	-	4.35	-	-	7.24	6.5	6.45
Critical Hdwy Stg 1	-	-	-	-	-	-	6.24	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.24	5.5	
Follow-up Hdwy	2.578	-	-	2.425	-	-	3.626	4	3.525
Pot Cap-1 Maneuver	778	-	-	1050	-	-	138	178	605
Stage 1	-	-	-	-	-	-	483	506	
Stage 2	-	-	-	-	-	-	415	462	
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	778	-	-	1046	-	-	102	154	600
Mov Cap-2 Maneuver	-	-	-	-	-	-	102	154	
Stage 1	-	-	-	-	-	-	425	445	
Stage 2	-	-	-	-	-	-	344	456	

Approach	EB	WB	NB
HCM Control Delay, s	1.9	0.1	33.5
HCM LOS			D

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	141	778	-	-	1046	-	-	186
HCM Lane V/C Ratio	0.106	0.117	-	-	0.01	-	-	0.581
HCM Control Delay (s)	33.5	10.2	-	-	8.5	-	-	48.2
HCM Lane LOS	D	B	-	-	A	-	-	E
HCM 95th \%tile Q(veh)	0.3	0.4	-	-	0	-	-	3.1

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	39	4	65
Conflicting Peds, \#/hr	5	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	-	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	100
Heavy Vehicles, \%	69	100	30
Mvmt Flow	39	4	65

Major/Minor	Minor2		
Conflicting Flow All	1234	1234	638
\quad Stage 1	658	658	-
\quad Stage 2	576	576	-
Critical Hdwy	7.79	7.5	6.5
Critical Hdwy Stg 1	6.79	6.5	-
Critical Hdwy Stg 2	6.79	6.5	-
Follow-up Hdwy	4.121	4.9	3.57
Pot Cap-1 Maneuver	113	116	430
\quad Stage 1	359	339	-
\quad Stage 2	403	375	-
Platoon blocked, \%			
Mov Cap-1 Maneuver	100	101	428
Mov Cap-2 Maneuver	100	101	-
Stage 1	316	334	-
Stage 2	351	330	-

Approach	SB
HCM Control Delay, s	48.2
HCM LOS	E

[^4]Intersection: 102: NW 31st Ave/East Access \& NW 319th St

Movement	EB	EB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	T	R	L	TR	L	TR
Maximum Queue (ft)	28	92	76	140	102	28	78	94	23
Average Queue (ft)	4	33	25	40	35	3	35	41	6
95th Queue (ft)	19	71	61	97	76	17	67	74	22
Link Distance (ft)		650		532	532		1521		545
Upstream Blk Time (\%)									
Queuing Penalty (veh)			305			300		300	
Storage Bay Dist (ft)	300		325						

Intersection: 103: I-5 SB On Ramp/l-5 SB Off Ramp \& NW 319th St/NW La Center Rd

Movement	EB	WB	WB	WB	SB	SB
Directions Served	T	L	T	T	LT	R
Maximum Queue (ft)	182	180	161	147	165	45
Average Queue (ft)	85	78	80	62	74	14
95th Queue (ft)	161	139	141	119	135	35
Link Distance (ft)	532		502	502	656	
Upstream Blk Time (\%)						
Queuing Penalty (veh)					400	
Storage Bay Dist (ft)		225				

Intersection: 104: I-5 NB Off Ramp/l-5 NB On Ramp \& NW La Center Rd

Movement	EB	EB	WB	WB	NB	NB	NB
Directions Served	L	T	T	TR	L	L	TR
Maximum Queue (ft)	143	109	215	120	143	155	172
Average Queue (ft)	64	25	119	40	77	71	76
95th Queue (ft)	123	74	203	89	133	123	132
Link Distance (ft)	502	502	211	211		810	810
Upstream Blk Time (\%)			0				
Queuing Penalty (veh)			2				
Storage Bay Dist (ft)							
Storage Blk Time (\%)							

Intersection: 105: NW Paradise Park Rd \& NW La Center Rd

Movement	EB	EB	WB	WB	NB	SB
Directions Served	L	TR	L	TR	LTR	LTR
Maximum Queue (ft)	115	39	45	17	51	149
Average Queue (ft)	49	1	5	1	12	62
95th Queue (ft)	96	17	25	7	38	124
Link Distance (ft)		189		2587	1309	964
Upstream Blk Time (\%)						
Queuing Penalty (veh)			200			
Storage Bay Dist (ft)	200					

Zone Summary

[^5]| | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Notes

User approved pedestrian interval to be less than phase max green.

	4			\checkmark	4	4	4	4	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「	*	个4						\uparrow	7
Volume (veh/h)	0	146	636	375	982	0	0	0	0	172	4	141
Number	5	2	12	1	6	16				7	4	14
Initial $Q(Q b)$, veh	0	0	0	0	0	0				0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00				1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1845	1863	1863	1881	0				1900	1829	1759
Adj Flow Rate, veh/h	0	146	0	375	982	0				172	4	141
Adj No. of Lanes	0	1	1	1	2	0				0	1	1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Percent Heavy Veh, \%	0	3	2	2	1	0				8	0	8
Cap, veh/h	0	423	363	698	2518	0				224	5	197
Arrive On Green	0.00	0.23	0.00	0.79	1.00	0.00				0.13	0.13	0.13
Sat Flow, veh/h	0	1845	1583	1774	3668	0				1704	40	1495
Grp Volume(v), veh/h	0	146	0	375	982	0				176	0	141
Grp Sat Flow(s), veh/h/ln	0	1845	1583	1774	1787	0				1743	0	1495
Q Serve(g_s), s	0.0	4.0	0.0	4.8	0.0	0.0				6.0	0.0	5.5
Cycle Q Clear(g_c), s	0.0	4.0	0.0	4.8	0.0	0.0				6.0	0.0	5.5
Prop In Lane	0.00		1.00	1.00		0.00				0.98		1.00
Lane Grp Cap(c), veh/h	0	423	363	698	2518	0				229	0	197
V/C Ratio(X)	0.00	0.35	0.00	0.54	0.39	0.00				0.77	0.00	0.72
Avail Cap(c_a), veh/h	0	423	363	698	2518	0				486	0	417
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	1.00				1.00	1.00	1.00
Upstream Filter(l)	0.00	0.71	0.00	0.84	0.84	0.00				1.00	0.00	1.00
Uniform Delay (d), s/veh	0.0	19.7	0.0	4.5	0.0	0.0				25.6	0.0	25.4
Incr Delay (d2), s/veh	0.0	0.3	0.0	2.5	0.4	0.0				5.3	0.0	4.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.0	2.1	0.0	2.7	0.1	0.0				3.2	0.0	2.5
LnGrp Delay(d),s/veh	0.0	20.0	0.0	7.0	0.4	0.0				30.9	0.0	30.2
LnGrp LOS		C		A	A					C		C
Approach Vol, veh/h		146			1357						317	
Approach Delay, s/veh		20.0			2.2						30.6	
Approach LOS		C			A						C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4		6						
Phs Duration ($G+Y+R c$), s	29.0	19.0		13.0		48.0						
Change Period ($\mathrm{Y}+\mathrm{Rc}$) , s	5.0	5.0		5.0		5.0						
Max Green Setting (Gmax), s	24.0	14.0		17.0		43.0						
Max Q Clear Time (g_c+l1), s	6.8	6.0		8.0		2.0						
Green Ext Time (p_c), s	1.0	4.3		0.1		9.2						
Intersection Summary												
HCM 2010 Ctrl Delay			8.6									
HCM 2010 LOS			A									

Intersection									
Int Delay, s/veh 2.8									
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	82	721	5	5	455	8	10	5	5
Conflicting Peds, \#/hr	0	0	0	5	0	5	0	0	5
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	200	-	-	200	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	13	4	17	0	3	17	11	0	50
Mumt Flow	82	721	5	5	455	8	10	5	5
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	468	0	0	731	0	0	1386	1371	734
Stage 1	-	-	-	-	-	-	893	893	
Stage 2	-	-	-	-	-	-	493	478	
Critical Hdwy	4.23	-	-	4.1	-	-	7.21	6.5	6.7
Critical Hdwy Stg 1	-	-	-	-	-	-	6.21	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.21	5.5	
Follow-up Hdwy	2.317	-	-	2.2	-	-	3.599	4	3.75
Pot Cap-1 Maneuver	1038	-	-	883	-	-	115	147	350
Stage 1	-	-	-	-	-	-	324	363	
Stage 2	-	-	-	-	-	-	541	559	
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1038	-	-	879	-	-	99	133	347
Mov Cap-2 Maneuver	-	-	-	-	-	-	99	133	
Stage 1	-	-	-	-	-	-	297	333	
Stage 2	-	-	-	-	-	-	503	554	

Approach	EB	WB	NB
HCM Control Delay, s	0.9	0.1	37.4
HCM LOS			E

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	131	1038	-	-	879	-	-	186
HCM Lane V/C Ratio	0.153	0.079	-	-	0.006	-	-	0.36
HCM Control Delay (s)	37.4	8.8	-	-	9.1	-	-	34.9
HCM Lane LOS	E	A	-	-	A	-	-	D
HCM 95th \%tile Q(veh)	0.5	0.3	-	-	0	-	-	1.5

Intersection			
Int Delay, s/veh			
Movement	30	4	33
Vol, veh/h	SBT	SBR	
Conflicting Peds, \#/hr	5	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	-	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	100
Heavy Vehicles, \%	0	0	13
Mvmt Flow	30	4	33

Major/Minor	Minor2		
Conflicting Flow All	1372	1369	464
\quad Stage 1	474	474	-
\quad Stage 2	898	895	-
Critical Hdwy	7.1	6.5	6.33
Critical Hdwy Stg 1	6.1	5.5	-
Critical Hdwy Stg 2	6.1	5.5	-
Follow-up Hdwy	3.5	4	3.417
Pot Cap-1 Maneuver	124	148	576
\quad Stage 1	575	561	-
\quad Stage 2	337	362	-
Platoon blocked, \%			
Mov Cap-1 Maneuver	110	134	574
Mov Cap-2 Maneuver	110	134	-
Stage 1	527	555	-
Stage 2	300	332	-

Approach	SB
HCM Control Delay, s	34.9
HCM LOS	D

[^6]Intersection: 102: NW 31st Ave/East Access \& NW 319th St

Movement	EB	EB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	T	R	L	TR	L	TR
Maximum Queue (ft)	30	209	168	375	217	47	91	234	31
Average Queue (ft)	6	95	49	153	59	6	39	113	6
95th Queue (ft)	24	166	117	289	144	27	72	198	23
Link Distance (ft)		650		532	532		1521		545
Upstream Blk Time (\%)				0	0				
Queuing Penalty (veh)				0	0			300	
Storage Bay Dist (ft)	300		325			300		0	
Storage Blk Time (\%)		0		1				0	
Queuing Penalty (veh)		0		1					

Intersection: 103: I-5 SB On Ramp/l-5 SB Off Ramp \& NW 319th St/NW La Center Rd

Movement	EB	WB	WB	WB	SB	SB
Directions Served	T	L	T	T	LT	R
Maximum Queue (ft)	145	51	178	138	173	104
Average Queue (ft)	70	9	82	67	85	45
95th Queue (ft)	116	36	148	119	142	84
Link Distance (ft)	532		503	503	656	
Upstream Blk Time (\%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)		225				
Storage Blk Time (\%)			0			
Queuing Penalty (veh)			1			

Intersection: 104: I-5 NB Off Ramp/l-5 NB On Ramp \& NW La Center Rd

Movement	EB	EB	WB	WB	NB	NB	NB
Directions Served	L	T	T	TR	L	L	TR
Maximum Queue (ft)	110	140	186	126	208	328	243
Average Queue (ft)	56	45	134	56	124	122	113
95th Queue (ft)	101	97	198	104	186	237	200
Link Distance (ft)		503	175	175		817	817
Upstream Blk Time (\%)			3			0	
Queuing Penalty (veh)			8			0	
Storage Bay Dist (ft)	175				350		
Storage Blk Time (\%)		0					
Queuing Penalty (veh)		0					

Intersection: 105: NW Paradise Park Rd \& NW La Center Rd

Movement	EB	EB	WB	WB	NB	SB
Directions Served	L	TR	L	TR	LTR	LTR
Maximum Queue (ft)	76	31	19	18	66	86
Average Queue (ft)	30	2	1	1	20	33
95th Queue (ft)	64	17	9	8	55	66
Link Distance (ft)		230		2587	1309	964
Upstream Blk Time (\%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)	200		200			
Storage Blk Time (\%)						

Zone Summary

Zone wide Queuing Penalty: 10

Appendix B 2037 No-build Total Intersection Operations Analysis Worksheets

	\rangle	\rightarrow	7	\downarrow	\leftarrow	4	4	\dagger	$>$	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	$\hat{\beta}$		\%	\uparrow	「	\%	1		${ }^{7}$	F	
Volume (veh/h)	5	211	15	193	234	146	5	5	168	110	5	5
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.99		0.98	0.99		0.98	0.99		0.99	0.99		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1832	1900	1712	1863	1881	1900	1553	1900	1881	1881	1900
Adj Flow Rate, veh/h	5	211	15	193	234	146	5	5	168	110	5	5
Adj No. of Lanes	1	1	0	1	1	1	1	1	0	1	1	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, \%	0	4	4	11	2	1	0	1	1	1	1	1
Cap, veh/h	562	708	50	574	782	659	600	10	346	417	233	233
Arrive On Green	0.42	0.42	0.42	0.42	0.42	0.42	0.27	0.27	0.27	0.27	0.27	0.27
Sat Flow, veh/h	1009	1688	120	1045	1863	1570	1414	38	1276	1212	860	860
Grp Volume(v), veh/h	5	0	226	193	234	146	5	0	173	110	0	10
Grp Sat Flow(s),veh/h/ln	1009	0	1808	1045	1863	1570	1414	0	1314	1212	0	1720
Q Serve(g_s), s	0.1	0.0	2.7	4.9	2.7	1.9	0.1	0.0	3.6	2.7	0.0	0.1
Cycle Q Clear(g_c), s	2.8	0.0	2.7	7.5	2.7	1.9	0.2	0.0	3.6	6.3	0.0	0.1
Prop In Lane	1.00		0.07	1.00		1.00	1.00		0.97	1.00		0.50
Lane Grp Cap(c), veh/h	562	0	759	574	782	659	600	0	356	417	0	467
V/C Ratio(X)	0.01	0.00	0.30	0.34	0.30	0.22	0.01	0.00	0.49	0.26	0.00	0.02
Avail Cap(c_a), veh/h	1167	0	1843	1201	1899	1601	959	0	690	725	0	903
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	7.2	0.0	6.2	8.7	6.2	6.0	8.7	0.0	9.9	12.5	0.0	8.6
Incr Delay (d2), s/veh	0.0	0.0	0.2	0.3	0.2	0.2	0.0	0.0	1.0	0.3	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.0	0.0	1.4	1.4	1.4	0.8	0.0	0.0	1.4	0.9	0.0	0.1
LnGrp Delay(d),s/veh	7.2	0.0	6.4	9.1	6.4	6.2	8.7	0.0	10.9	12.9	0.0	8.7
LnGrp LOS	A		A	A	A	A	A		B	B		A
Approach Vol, veh/h		231			573			178			120	
Approach Delay, s/veh		6.5			7.3			10.9			12.5	
Approach LOS		A			A			B			B	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s		18.6		13.8		18.6		13.8				
Change Period ($\mathrm{Y}+\mathrm{Rc}$) , s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		33.0		17.0		33.0		17.0				
Max Q Clear Time (g_c+l1), s		4.8		8.3		9.5		5.6				
Green Ext Time (p_c), s		4.2		0.9		4.0		1.1				
Intersection Summary												
HCM 2010 Ctrl Delay			8.2									
HCM 2010 LOS			A									

Notes

User approved pedestrian interval to be less than phase max green.

	4			\checkmark	4	4	4	4	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「	*	个4						\uparrow	7
Volume (veh/h)	0	225	264	627	445	0	0	0	0	177	3	127
Number	5	2	12	1	6	16				7	4	14
Initial $Q(Q b)$, veh	0	0	0	0	0	0				0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00				1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1583	1863	1827	1863	0				1900	1672	1759
Adj Flow Rate, veh/h	0	225	0	627	445	0				177	3	127
Adj No. of Lanes	0	1	1	1	2	0				0	1	1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Percent Heavy Veh, \%	0	20	2	4	2	0				8	50	8
Cap, veh/h	0	307	307	679	2387	0				228	4	217
Arrive On Green	0.00	0.19	0.00	0.65	1.00	0.00				0.15	0.15	0.15
Sat Flow, veh/h	0	1583	1583	1740	3632	0				1567	27	1495
Grp Volume(v), veh/h	0	225	0	627	445	0				180	0	127
Grp Sat Flow(s), veh/h/ln	0	1583	1583	1740	1770	0				1594	0	1495
Q Serve(g_s), s	0.0	7.4	0.0	17.5	0.0	0.0				6.0	0.0	4.4
Cycle Q Clear(g_c), s	0.0	7.4	0.0	17.5	0.0	0.0				6.0	0.0	4.4
Prop In Lane	0.00		1.00	1.00		0.00				0.98		1.00
Lane Grp Cap(c), veh/h	0	307	307	679	2387	0				231	0	217
V/C Ratio(X)	0.00	0.73	0.00	0.92	0.19	0.00				0.78	0.00	0.58
Avail Cap(c_a), veh/h	0	371	371	1413	4023	0				489	0	459
HCM Platoon Ratio	1.00	1.00	1.00	1.67	1.67	1.00				1.00	1.00	1.00
Upstream Filter(l)	0.00	0.97	0.00	0.89	0.89	0.00				1.00	0.00	1.00
Uniform Delay (d), s/veh	0.0	21.0	0.0	8.9	0.0	0.0				22.8	0.0	22.1
Incr Delay (d2), s/veh	0.0	5.7	0.0	5.4	0.0	0.0				5.6	0.0	2.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.0	3.7	0.0	8.8	0.0	0.0				3.0	0.0	1.9
LnGrp Delay(d),s/veh	0.0	26.6	0.0	14.3	0.0	0.0				28.4	0.0	24.6
LnGrp LOS		C		B	A					C		C
Approach Vol, veh/h		225			1072						307	
Approach Delay, s/veh		26.6			8.4						26.8	
Approach LOS		C			A						C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4		6						
Phs Duration ($G+Y+R c$), s	61.2	15.8		13.0		77.0						
Change Period ($\mathrm{Y}+\mathrm{Rc}$) , s	5.0	5.0		5.0		5.0						
Max Green Setting (Gmax), s	45.0	13.0		17.0		63.0						
Max Q Clear Time (g_c+l1), s	19.5	9.4		8.0		2.0						
Green Ext Time (p_c), s	2.1	1.4		0.1		4.6						
Intersection Summary												
HCM 2010 Ctrl Delay			14.5									
HCM 2010 LOS			B									

Intersection									
Int Delay, s/veh	147.3								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	96	439	170	147	728	11	78	2	52
Conflicting Peds, \#hr	0	0	0	5	0	5	0	0	5
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	200	-	-	200	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	100	92	100	92	100	100
Heavy Vehicles, \%	2	2	2	25	2	20	2	0	25
Mvmt Flow	104	477	185	147	791	11	85	2	52
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	807	0	0	667	0	0	1924	1884	580
Stage 1	-	-	-	-	-	-	783	783	
Stage 2	-	-	-	-	-	-	1141	1101	
Critical Hdwy	4.12	-	-	4.35	-	-	7.12	6.5	6.45
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.5	
Follow-up Hdwy	2.218	-	-	2.425	-	-	3.518	4	3.525
Pot Cap-1 Maneuver	818	-	-	823	-	-	~ 51	72	474
Stage 1	-	-	-	-	-	-	387	407	-
Stage 2	-	-	-	-	-	-	244	290	-
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	818	-	-	820	-	-	~ 26	51	470
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 26	51	
Stage 1	-	-	-	-	-	-	336	354	
Stage 2	-	-	-	-	-	-	150	237	

Approach	EB	WB	NB
HCM Control Delay, s	1.4	1.6	$\$ 1278.8$
HCM LOS			F

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	41	818	-	-	820	-	-	56
HCM Lane V/C Ratio	3.385	0.128	-	-	0.179	-	-	2.462
HCM Control Delay (s)	$\$ 1278.8$	10	-	-	10.3	-	$-\$ 821.8$	
HCM Lane LOS	F	B	-	-	B	-	-	F
HCM 95th \%tile Q(veh)	15.6	0.4	-	-	0.7	-	-	13.9
Notes								

\sim : Volume exceeds capacity $\quad \$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined $\quad *:$ All major volume in platoon

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	47	5	79
Conflicting Peds, \#/hr	5	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	-	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	92
Heavy Vehicles, \%	69	100	2
Mvmt Flow	47	5	86

Major/Minor	Minor2		
Conflicting Flow All	1906	1972	802
Stage 1	1096	1096	-
\quad Stage 2	810	876	-
Critical Hdwy	7.79	7.5	6.22
Critical Hdwy Stg 1	6.79	6.5	-
Critical Hdwy Stg 2	6.79	6.5	-
Follow-up Hdwy	4.121	4.9	3.318
Pot Cap-1 Maneuver	~ 35	35	384
\quad Stage 1	194	195	-
\quad Stage 2	291	259	-
Platoon blocked, \%			
Mov Cap-1 Maneuver	~ 23	25	382
Mov Cap-2 Maneuver	~ 23	25	-
Stage 1	169	159	-
Stage 2	224	225	-

Approach	SB
HCM Control Delay, s	$\$ 821.8$
HCM LOS	F

Minor Lane/Major Mvmt

	\rangle	\rightarrow	∇	\dagger	4	4	4	\dagger	$>$	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	1		\%	\uparrow	F	\%	F		\%	1	
Volume (veh/h)	5	410	12	149	573	493	5	15	168	329	10	5
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		0.98	1.00		0.98	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1881	1829	1900	1792	1863	1881	1520	1831	1900	1881	1881	1900
Adj Flow Rate, veh/h	5	410	12	149	573	493	5	15	168	329	10	5
Adj No. of Lanes	1	1	0	1	1	1	1	1	0	1	1	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, \%	1	4	4	6	2	1	25	1	1	1	1	1
Cap, veh/h	201	804	24	356	848	1055	8	19	213	381	421	211
Arrive On Green	0.45	0.45	0.45	0.45	0.45	0.45	0.01	0.15	0.15	0.21	0.36	0.36
Sat Flow, veh/h	532	1767	52	925	1863	1573	1448	127	1424	1792	1181	591
Grp Volume(v), veh/h	5	0	422	149	573	493	5	0	183	329	0	15
Grp Sat Flow(s),veh/h/ln	532	0	1819	925	1863	1573	1448	0	1551	1792	0	1772
Q Serve(g_s), s	0.6	0.0	13.5	11.2	19.8	12.5	0.3	0.0	9.3	14.5	0.0	0.5
Cycle Q Clear(g_c), s	20.5	0.0	13.5	24.7	19.8	12.5	0.3	0.0	9.3	14.5	0.0	0.5
Prop In Lane	1.00		0.03	1.00		1.00	1.00		0.92	1.00		0.33
Lane Grp Cap(c), veh/h	201	0	828	356	848	1055	8	0	232	381	0	632
V/C Ratio(X)	0.02	0.00	0.51	0.42	0.68	0.47	0.66	0.00	0.79	0.86	0.00	0.02
Avail Cap(c_a), veh/h	316	0	1220	556	1250	1395	71	0	322	721	0	994
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	25.6	0.0	15.9	24.6	17.6	6.6	40.7	0.0	33.6	31.1	0.0	17.1
Incr Delay (d2), s/veh	0.0	0.0	0.5	0.8	1.0	0.3	68.2	0.0	8.6	5.9	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.1	0.0	6.8	2.9	10.4	5.3	0.3	0.0	4.6	7.8	0.0	0.2
LnGrp Delay(d),s/veh	25.7	0.0	16.3	25.4	18.5	6.9	108.9	0.0	42.2	37.1	0.0	17.1
LnGrp LOS	C		B	C	B	A	F		D	D		B
Approach Vol, veh/h		427			1215			188			344	
Approach Delay, s/veh		16.5			14.7			44.0			36.2	
Approach LOS		B			B			D			D	

Timer	1	2	3	4	5	6	7

Intersection Summary	
HCM 2010 Ctrl Delay	21.0
HCM 2010 LOS	

HCM 2010 LOS

Notes

User approved pedestrian interval to be less than phase max green.

	$\stackrel{ }{ }$	\rightarrow		7	4	4	4	\dagger	7	+	\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「	*	个4						\uparrow	F
Volume (veh/h)	0	211	697	563	1034	0	0	0	0	229	3	182
Number	5	2	12	1	6	16				7	4	14
Initial $Q(Q b)$, veh	0	0	0	0	0	0				0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00				1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1845	1863	1863	1881	0				1900	1828	1759
Adj Flow Rate, veh/h	0	211	0	563	1034	0				229	3	182
Adj No. of Lanes	0	1	1	1	2	0				0	1	1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Percent Heavy Veh, \%	0	3	2	2	1	0				8	0	8
Cap, veh/h	0	400	344	858	2680	0				261	3	227
Arrive On Green	0.00	0.22	0.00	0.97	1.00	0.00				0.15	0.15	0.15
Sat Flow, veh/h	0	1845	1583	1774	3668	0				1719	23	1495
Grp Volume(v), veh/h	0	211	0	563	1034	0				232	0	182
Grp Sat Flow(s),veh/h/ln	0	1845	1583	1774	1787	0				1742	0	1495
Q Serve(g_s), s	0.0	10.3	0.0	2.9	0.0	0.0				13.2	0.0	11.9
Cycle Q Clear(g_c), s	0.0	10.3	0.0	2.9	0.0	0.0				13.2	0.0	11.9
Prop In Lane	0.00		1.00	1.00		0.00				0.99		1.00
Lane Grp Cap(c), veh/h	0	400	344	858	2680	0				264	0	227
V/C Ratio(X)	0.00	0.53	0.00	0.66	0.39	0.00				0.88	0.00	0.80
Avail Cap(c_a), veh/h	0	400	344	858	2680	0				412	0	354
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	1.00				1.00	1.00	1.00
Upstream Filter(I)	0.00	0.75	0.00	0.78	0.78	0.00				1.00	0.00	1.00
Uniform Delay (d), s/veh	0.0	35.1	0.0	0.9	0.0	0.0				42.1	0.0	41.5
Incr Delay (d2), s/veh	0.0	1.0	0.0	3.1	0.3	0.0				12.6	0.0	7.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.0	5.3	0.0	1.4	0.1	0.0				7.3	0.0	5.4
LnGrp Delay(d),s/veh	0.0	36.0	0.0	4.0	0.3	0.0				54.7	0.0	48.7
LnGrp LOS		D		A	A					D		D
Approach Vol, veh/h		211			1597						414	
Approach Delay, s/veh		36.0			1.6						52.1	
Approach LOS		D			A						D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4		6						
Phs Duration ($G+Y+R c$), s	54.0	27.0		20.4		81.0						
Change Period ($\mathrm{Y}+\mathrm{Rc}$) , s	5.0	5.0		5.0		5.0						
Max Green Setting (Gmax), s	49.0	22.0		24.0		76.0						
Max Q Clear Time (g_c+11), s	4.9	12.3		15.2		2.0						
Green Ext Time (p_c), s	1.9	5.4		0.1		11.2						
Intersection Summary												
HCM 2010 Ctrl Delay			14.3									
HCM 2010 LOS			B									

Intersection									
Int Delay, s/veh	260.7								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	91	727	116	101	478	14	215	8	174
Conflicting Peds, \#/hr	0	0	0	5	0	5	0	0	5
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	200	-	-	200	-	-	200	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	92	92	92	100	92	100	92	100	100
Heavy Vehicles, \%	2	2	2	0	2	17	2	0	50
Mumt Flow	99	790	126	101	520	14	234	8	174
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	539	0	0	921	0	0	1814	1797	863
Stage 1	-	-	-	-	-	-	1056	1056	
Stage 2	-	-	-	-	-	-	758	741	
Critical Hdwy	4.12	-	-	4.1	-	-	7.12	6.5	6.7
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.5	
Follow-up Hdwy	2.218	-	-	2.2	-	-	3.518	4	3.75
Pot Cap-1 Maneuver	1029	-	-	750	-	-	~ 60	81	292
Stage 1	-	-	-	-	-	-	272	305	
Stage 2	-	-	-	-	-	-	399	426	-
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1029	-	-	747	-	-	~ 43	63	290
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 43	63	
Stage 1	-	-	-	-	-	-	245	275	
Stage 2	-	-	-	-	-	-	313	367	

Approach	EB	WB	NB
HCM Control Delay, s	0.9	1.7	$\$ 1248.8$
HCM LOS			F

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
SBLn2									
Capacity (veh/h)	43	250	1029	-	-	747	-	-	16
HCM Lane V/C Ratio	5.435	0.728	0.096	-	-	0.135	-	-	2.25
HCM Control Delay (s)	$\$ 2182.2$	50.2	8.9	-	-	10.6	-	$-\$ 1065.2$	19.8
HCM Lane LOS	F	F	A	-	-	B	-	-	F
HCM 95th \%tile Q(veh)	27.1	5	0.3	-	-	0.5	-	-	5.1

Notes

~: Volume exceeds capacity $\quad \$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad *: All major volume in platoon

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	56	5	40
Conflicting Peds, \#/hr	5	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	200	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	92
Heavy Vehicles, \%	0	0	2
Mvmt Flow	36	5	43

Major/Minor	Minor2		
Conflicting Flow All	1881	1853	532
Stage 1	734	734	-
Stage 2	1147	1119	-
Critical Hdwy	7.1	6.5	6.22
Critical Hdwy Stg 1	6.1	5.5	-
Critical Hdwy Stg 2	6.1	5.5	-
Follow-up Hdwy	3.5	4	3.318
Pot Cap-1 Maneuver	55	75	547
\quad Stage 1	415	429	-
Stage 2	244	285	-
Platoon blocked, \%	~ 16	58	545
Mov Cap-1 Maneuver	~ 16	58	-
Mov Cap-2 Maneuver	374	369	-
Stage 1	85	257	-
Stage 2			

Approach	SB
HCM Control Delay, s	$\$ 465.3$
HCM LOS	F

[^7]
Appendix C 2037 Build Total Intersection Operations Analysis Worksheets

Notes

User approved pedestrian interval to be less than phase max green.

	4			\checkmark	\leftarrow	4	4	4	p	t	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		个个	「	${ }^{17}$	个4						\uparrow	「
Volume（veh／h）	0	225	264	627	445	0	0	0	0	177	3	127
Number	5	2	12	1	6	16				7	4	14
Initial $\mathrm{Q}(\mathrm{Qb})$ ，veh	0	0	0	0	0	0				0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00				1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow，veh／h／ln	0	1583	1863	1827	1863	0				1900	1672	1759
Adj Flow Rate，veh／h	0	225	0	627	445	0				177	3	127
Adj No．of Lanes	0	2	1	2	2	0				0	1	1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Percent Heavy Veh，\％	0	20	2	4	2	0				8	50	8
Cap，veh／h	0	627	330	915	2130	0				242	4	231
Arrive On Green	0.00	0.21	0.00	0.27	0.60	0.00				0.15	0.15	0.15
Sat Flow，veh／h	0	3088	1583	3375	3632	0				1567	27	1495
Grp Volume（v），veh／h	0	225	0	627	445	0				180	0	127
Grp Sat Flow（s），veh／h／ln	0	1504	1583	1688	1770	0				1594	0	1495
Q Serve（g＿s），s	0.0	2.6	0.0	6.8	2.3	0.0				4.4	0.0	3.2
Cycle Q Clear（g＿c），s	0.0	2.6	0.0	6.8	2.3	0.0				4.4	0.0	3.2
Prop In Lane	0.00		1.00	1.00		0.00				0.98		1.00
Lane Grp Cap（c），veh／h	0	627	330	915	2130	0				246	0	231
V／C Ratio（X）	0.00	0.36	0.00	0.68	0.21	0.00				0.73	0.00	0.55
Avail Cap（c＿a），veh／h	0	1615	850	2801	5270	0				1128	0	1059
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Upstream Filter（l）	0.00	0.98	0.00	0.84	0.84	0.00				1.00	0.00	1.00
Uniform Delay（d），s／veh	0.0	13.9	0.0	13.4	3.7	0.0				16.5	0.0	16.0
Incr Delay（d2），s／veh	0.0	0.3	0.0	0.8	0.0	0.0				4.2	0.0	2.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.0	1.1	0.0	3.2	1.1	0.0				2.2	0.0	1.4
LnGrp Delay（d），s／veh	0.0	14.2	0.0	14.1	3.8	0.0				20.7	0.0	18.1
LnGrp LOS		B		B	A					C		B
Approach Vol，veh／h		225			1072						307	
Approach Delay，s／veh		14.2			9.8						19.6	
Approach LOS		B			A						B	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4		6						
Phs Duration（ $G+Y+R \mathrm{c}$ ），s	75.1	13.5		11.3		88.7						
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s	5.0	5.0		5.0		5.0						
Max Green Setting（Gmax），s	34.0	22.0		29.0		61.0						
Max Q Clear Time（ $\mathrm{g}_{\sim} \mathrm{c}+11$ ），s	8.8	4.6		6.4		4.3						
Green Ext Time（p＿c），s	2.3	3.9		0.1		4.8						
Intersection Summary												
HCM 2010 Ctrl Delay			12.3									
HCM 2010 LOS			B									

	\rangle	\rightarrow	7	\checkmark	\leftarrow	4	4	\dagger	$>$	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个 ${ }^{\text {P }}$		\%	个t		\%	F		${ }^{7}$	F	
Volume (veh/h)	96	439	170	147	728	11	78	2	52	47	5	79
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	0.99		0.99	0.99		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1520	1858	1900	1863	1531	1900	1727	1769	1900
Adj Flow Rate, veh/h	104	477	0	147	791	11	85	2	52	47	5	86
Adj No. of Lanes	1	2	0	1	2	0	1	1	0	1	1	0
Peak Hour Factor	0.92	0.92	0.92	1.00	0.92	1.00	0.92	1.00	1.00	1.00	1.00	0.92
Percent Heavy Veh, \%	2	2	2	25	2	2	2	0	0	10	100	100
Cap, veh/h	501	2068	0	619	2157	30	233	8	206	248	14	234
Arrive On Green	0.09	1.00	0.00	0.07	0.61	0.61	0.17	0.17	0.17	0.17	0.17	0.17
Sat Flow, veh/h	1774	3632	0	1448	3565	50	1291	48	1249	1237	83	1421
Grp Volume(v), veh/h	104	477	0	147	392	410	85	0	54	47	0	91
Grp Sat Flow(s),veh/h/ln	1774	1770	0	1448	1765	1849	1291	0	1297	1237	0	1503
Q Serve(g_s), s	1.8	0.0	0.0	3.2	9.1	9.1	5.1	0.0	2.9	2.8	0.0	4.4
Cycle Q Clear(g_c), s	1.8	0.0	0.0	3.2	9.1	9.1	9.4	0.0	2.9	5.7	0.0	4.4
Prop In Lane	1.00		0.00	1.00		0.03	1.00		0.96	1.00		0.95
Lane Grp Cap(c), veh/h	501	2068	0	619	1068	1119	233	0	214	248	0	248
V/C Ratio(X)	0.21	0.23	0.00	0.24	0.37	0.37	0.37	0.00	0.25	0.19	0.00	0.37
Avail Cap(c_a), veh/h	663	2068	0	882	1068	1119	418	0	401	426	0	464
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	5.6	0.0	0.0	5.5	8.1	8.1	34.2	0.0	29.5	31.9	0.0	30.0
Incr Delay (d2), s/veh	0.2	0.3	0.0	0.2	1.0	0.9	1.0	0.0	0.6	0.4	0.0	0.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.9	0.1	0.0	1.3	4.6	4.8	1.9	0.0	1.1	1.0	0.0	1.9
LnGrp Delay(d),s/veh	5.8	0.3	0.0	5.7	9.1	9.0	35.2	0.0	30.1	32.3	0.0	31.0
LnGrp LOS	A	A		A	A	A	D		C	C		C
Approach Vol, veh/h		581			949			139			138	
Approach Delay, s/veh		1.3			8.5			33.2			31.4	
Approach LOS		A			A			C			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s	10.3	71.3		18.4	8.6	73.0		18.4				
Change Period (Y+Rc), s	5.0	5.0		5.0	5.0	5.0		5.0				
Max Green Setting (Gmax), s	20.0	40.0		25.0	11.0	49.0		25.0				
Max Q Clear Time (g_c+l1), s	5.2	2.0		7.7	3.8	11.1		11.4				
Green Ext Time (p_c), s	0.3	9.5		1.1	0.1	9.5		1.0				
Intersection Summary												
HCM 2010 Ctrl Delay			9.8									
HCM 2010 LOS			A									

Intersection: 102: NW 31st Ave/East Access \& NW 319th St

Movement	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	TR	L	T	TR	L	TR	L	TR
Maximum Queue (ft)	33	83	120	161	95	138	33	102	111	36
Average Queue (ft)	4	36	48	75	21	57	4	48	52	9
95th Queue (ft)	21	74	93	132	64	107	20	78	95	32
Link Distance (ft)		649	649		526	526		1509		543
Upstream Blk Time (\%)										
Queuing Penalty (veh)				375			300		300	
Storage Bay Dist (ft)	300									
Storage Blk Time (\%)										

Intersection: 103: I-5 SB On Ramp/l-5 SB Off Ramp \& NW 319th St/NW La Center Rd

Movement	EB	EB	WB	WB	WB	WB	SB	SB
Directions Served	T	T	L	L	T	T	LT	R
Maximum Queue (ft)	218	168	183	204	127	136	244	91
Average Queue (ft)	113	72	33	57	43	52	129	38
95th Queue (ft)	192	138	106	143	102	109	210	73
Link Distance (ft)	526	526			503	503	650	
Upstream Blk Time (\%)								
Queuing Penalty (veh)								400
Storage Bay Dist (ft)			225	225				
Storage Blk Time (\%)			0	0				
Queuing Penalty (veh)			0	0				

Intersection: 104: I-5 NB Off Ramp/l-5 NB On Ramp \& NW La Center Rd

Movement	EB	EB	EB	EB	WB	WB	NB	NB	NB
Directions Served	L	L	T	T	T	TR	L	L	TR
Maximum Queue (ft)	122	140	89	107	204	190	167	201	203
Average Queue (ft)	30	54	26	34	157	68	81	120	89
95th Queue (ft)	86	108	68	88	231	136	150	181	159
Link Distance (ft)			503	503	194	194		800	800
Upstream Blk Time (\%)					4	0			
Queuing Penalty (veh)					17	0			
Storage Bay Dist (ft)	175	175					350		
Storage Blk Time (\%)	0	0							

Intersection: 105: NW Paradise Park Rd \& NW La Center Rd

Movement	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	TR	L	T	TR	L	TR	L	TR
Maximum Queue (ft)	71	144	166	137	163	146	124	125	93	90
Average Queue (ft)	35	29	67	58	63	46	53	35	40	37
95th Queue (ft)	63	88	133	113	132	112	99	84	81	74
Link Distance (ft)		270	270		2579	2579		1296		965
Upstream Blk Time (\%)										
Queuing Penalty (veh)				200			100		150	
Storage Bay Dist (ft)	200				0		2	0		
Storage Blk Time (\%)		0			0		1	0		
Queuing Penalty (veh)		0								

Zone Summary

[^8]| | | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Intersection Summary
HCM 2010 Ctrl Delay
HCM 2010 LOS

Notes

User approved pedestrian interval to be less than phase max green.

	4			\checkmark	\leftarrow	4	4	4	p	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		个个	「	${ }^{17}$	个4						\uparrow	「
Volume（veh／h）	0	211	697	563	1034	0	0	0	0	229	3	182
Number	5	2	12	1	6	16				7	4	14
Initial $\mathrm{Q}(\mathrm{Qb})$ ，veh	0	0	0	0	0	0				0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00				1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow，veh／h／ln	0	1845	1863	1863	1881	0				1900	1828	1759
Adj Flow Rate，veh／h	0	211	0	563	1034	0				229	3	182
Adj No．of Lanes	0	2	1	2	2	0				0	1	1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Percent Heavy Veh，\％	0	3	2	2	1	0				8	0	8
Cap，veh／h	0	816	369	1567	2649	0				263	3	229
Arrive On Green	0.00	0.39	0.00	0.46	0.74	0.00				0.15	0.15	0.15
Sat Flow，veh／h	0	3597	1583	3442	3668	0				1719	23	1495
Grp Volume（v），veh／h	0	211	0	563	1034	0				232	0	182
Grp Sat Flow（s），veh／h／ln	0	1752	1583	1721	1787	0				1742	0	1495
Q Serve（g＿s），s	0.0	3.9	0.0	10.1	10.0	0.0				12.3	0.0	11.1
Cycle Q Clear（g＿c），s	0.0	3.9	0.0	10.1	10.0	0.0				12.3	0.0	11.1
Prop In Lane	0.00		1.00	1.00		0.00				0.99		1.00
Lane Grp Cap（c），veh／h	0	816	369	1567	2649	0				267	0	229
V／C Ratio（X）	0.00	0.26	0.00	0.36	0.39	0.00				0.87	0.00	0.80
Avail Cap（c＿a），veh／h	0	816	369	1567	2649	0				738	0	633
HCM Platoon Ratio	1.00	1.67	1.67	1.00	1.00	1.00				1.00	1.00	1.00
Upstream Filter（l）	0.00	0.80	0.00	0.67	0.67	0.00				1.00	0.00	1.00
Uniform Delay（d），s／veh	0.0	23.3	0.0	16.8	4.5	0.0				39.1	0.0	38.6
Incr Delay（d2），s／veh	0.0	0.6	0.0	0.4	0.3	0.0				8.5	0.0	6.2
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.0	1.9	0.0	4.9	5.0	0.0				6.6	0.0	4.9
LnGrp Delay（d），s／veh	0.0	23.9	0.0	17.2	4.7	0.0				47.6	0.0	44.7
LnGrp LOS		C		B	A					D		D
Approach Vol，veh／h		211			1597						414	
Approach Delay，s／veh		23.9			9.1						46.3	
Approach LOS		C			A						D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4		6						
Phs Duration（ $G+Y+R \mathrm{c}$ ），s	48.0	52.5		19.5		100.5						
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s	5.0	5.0		5.0		5.0						
Max Green Setting（Gmax），s	43.0	22.0		40.0		70.0						
Max Q Clear Time（ $\mathrm{g}_{\sim} \mathrm{c}+11$ ），s	12.1	5.9		14.3		12.0						
Green Ext Time（p＿c），s	2.1	7.5		0.2		11.2						
Intersection Summary												
HCM 2010 Ctrl Delay			17.5									
HCM 2010 LOS			B									

	\rangle	\rightarrow	7	7	4	4	4	\dagger	\pm	*	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	蚛		\%	个 ${ }^{\text {¢ }}$		*	$\stackrel{1}{ }$		\%	F	
Volume (veh/h)	91	727	116	101	478	14	215	8	174	36	5	40
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.99	1.00		0.99	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1900	1856	1900	1863	1864	1900	1900	1867	1900
Adj Flow Rate, veh/h	99	790	0	101	520	14	234	8	174	36	5	43
Adj No. of Lanes	1	2	0	1	2	0	1	1	0	1	1	0
Peak Hour Factor	0.92	0.92	0.92	1.00	0.92	1.00	0.92	1.00	1.00	1.00	1.00	0.92
Percent Heavy Veh, \%	2	2	2	0	2	2	2	0	0	0	0	0
Cap, veh/h	488	1272	0	378	1334	36	487	19	419	368	46	397
Arrive On Green	0.06	0.36	0.00	0.06	0.38	0.38	0.28	0.28	0.28	0.28	0.28	0.28
Sat Flow, veh/h	1774	3632	0	1810	3507	94	1345	70	1517	1217	167	1437
Grp Volume(v), veh/h	99	790	0	101	261	273	234	0	182	36	0	48
Grp Sat Flow(s),veh/h/ln	1774	1770	0	1810	1763	1838	1345	0	1587	1217	0	1604
Q Serve(g_s), s	1.6	9.1	0.0	0.0	5.3	5.3	7.8	0.0	4.6	1.2	0.0	1.1
Cycle Q Clear(g_c), s	1.6	9.1	0.0	0.0	5.3	5.3	8.9	0.0	4.6	5.9	0.0	1.1
Prop In Lane	1.00		0.00	1.00		0.05	1.00		0.96	1.00		0.90
Lane Grp Cap(c), veh/h	488	1272	0	378	670	699	487	0	438	368	0	443
V/C Ratio(X)	0.20	0.62	0.00	0.27	0.39	0.39	0.48	0.00	0.42	0.10	0.00	0.11
Avail Cap(c_a), veh/h	669	3869	0	598	1999	2084	1260	0	1349	1066	0	1364
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	8.5	13.0	0.0	16.9	11.1	11.1	16.6	0.0	14.6	17.0	0.0	13.3
Incr Delay (d2), s/veh	0.2	0.5	0.0	0.4	0.4	0.4	0.7	0.0	0.6	0.1	0.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.8	4.5	0.0	1.3	2.6	2.7	3.0	0.0	2.1	0.4	0.0	0.5
LnGrp Delay(d),s/veh	8.7	13.5	0.0	17.2	11.5	11.5	17.4	0.0	15.2	17.1	0.0	13.4
LnGrp LOS	A	B		B	B	B	B		B	B		B
Approach Vol, veh/h		889			635			416			84	
Approach Delay, s/veh		13.0			12.4			16.4			15.0	
Approach LOS		B			B			B			B	

Timer	1	2	3	4	5	6	7
Assigned Phs	1	2	4	5	6	8	
Phs Duration (G+Y+Rc), s	8.0	22.8	18.6	7.0	23.8	8	
Change Period (Y+Rc), s	5.0	${ }^{2} 5$	5.0	4.0	5.0	18.6	
Max Green Setting (Gmax), s	9.0	${ }^{*} 54$	42.0	8.0	56.0	5.0	
Max Q Clear Time (g_c+11), s	2.0	11.1	7.9	3.6	7.3	42.0	
Green Ext Time (p_c), s	1.8	6.7	2.3	0.1	3.2	10.9	

Intersection Summary	
HCM 2010 Ctrl Delay	13.6
HCM 2010 LOS	B

Notes

* HCM 2010 computational engine requires equal clearance times for the phases crossing the barrier.

Intersection: 102: NW 31st Ave/East Access \& NW 319th St

Movement	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	TR	L	T	TR	L	TR	L	TR
Maximum Queue (ft)	34	172	301	190	298	385	47	206	384	43
Average Queue (ft)	3	67	181	109	105	175	4	86	220	11
95th Queue (ft)	18	137	283	174	215	316	23	169	355	35
Link Distance (ft)		945	945		526	526		1509		789
Upstream Blk Time (\%)						0				
Queuing Penalty (veh)						0			400	
Storage Bay Dist (ft)	300			375			300	0	0	
Storage Blk Time (\%)					0			0	0	
Queuing Penalty (veh)					0				0	

Intersection: 103: I-5 SB On Ramp/l-5 SB Off Ramp \& NW 319th St/NW La Center Rd

Movement	EB	EB	WB	WB	WB	WB	SB	SB
Directions Served	T	T	L	L	T	T	LT	R
Maximum Queue (ft)	208	114	106	120	182	195	290	174
Average Queue (ft)	91	41	5	14	80	112	156	77
95th Queue (ft)	165	93	47	67	152	179	252	141
Link Distance (ft)	526	526			503	503	650	
Upstream Blk Time (\%)								
Queuing Penalty (veh)								400
Storage Bay Dist (ft)			225	225				
Storage Blk Time (\%)				0	0			
Queuing Penalty (veh)				0	0			

Intersection: 104: I-5 NB Off Ramp/l-5 NB On Ramp \& NW La Center Rd

Movement	EB	EB	EB	EB	WB	WB	NB	NB	NB
Directions Served	L	L	T	T	T	TR	L	L	TR
Maximum Queue (ft)	69	102	76	97	211	206	389	522	415
Average Queue (ft)	31	59	33	38	203	131	225	276	155
95th Queue (ft)	71	92	73	81	209	229	342	383	255
Link Distance (ft)			503	503	198	198		985	985
Upstream Blk Time (\%)					37	4		0	0
Queuing Penalty (veh)					168	18		0	0
Storage Bay Dist (ft)	175	175					350		
Storage Blk Time (\%)							0	1	
Queuing Penalty (veh)							1	7	

Intersection: 105: NW Paradise Park Rd \& NW La Center Rd

Movement	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	TR	L	T	TR	L	TR	L	TR
Maximum Queue (ft)	88	220	250	108	190	170	175	120	61	45
Average Queue (ft)	36	87	113	43	69	47	92	49	23	19
95th Queue (ft)	67	166	193	84	148	112	156	95	55	43
Link Distance (ft)		287	287		2579	2579		1296		965
Upstream Blk Time (\%)		0	0							
Queuing Penalty (veh)		0	1				400		400	
Storage Bay Dist (ft)	200			400						
Storage Blk Time (\%)		0								

Zone Summary

[^9]
Appendix G Single-Line Sketches of Interchange Concept Alternatives

Appendix H Detailed Interchange Design Concept Review

APPENDIX H: DETAILED CONCEPT REVIEW

Concept 1 - Signalized Diamond Interchange

Transportation Operations (+1): the existing interchange can accommodate projected traffic volumes by widening the existing bridge structure and adding additional lanes at the ramp terminals.

Land Use (+1): Right-of-way impacts would be minimal with this concept, and existing businesses/land uses within the vicinity of the interchange could be maintained.

Multimodal Accessibility (+1): bike lanes and sidewalks can be provided by improving the existing interchange. Traffic signals at the ramp terminals control high-speed movements from the freeway, helping protect bicyclists and pedestrians.

Cost (+2): improvement costs to the existing interchange would likely be to the lower end compared to the other concepts.

Environmental Impact (+1): the environmental impact would be minimized by not significantly expanding the footprint of the interchange or altering the freeway ramps.

Constructability (+1): construction of this improvement could be done in phases and would have minimal impacts to adjacent land uses and traffic operations during construction. This improvement requires minimal alternations to the existing freeway ramps.

Accessibility \& Connectivity (0): this concept would not inhibit local connectivity. However, accommodating some existing private property accesses along NW La Center Road that would be located within the intersection influence area may be challenging.

Concept 2 - Roundabout Diamond Interchange

Transportation Operations (+2): the existing interchange can accommodate projected traffic volumes by widening the existing bridge structure and adding additional lanes at the ramp terminals. Using roundabouts at the ramp terminals improves operations and requires fewer lanes across the bridge structure.

Land Use (+1): Right-of-way impacts would be minimal with this concept, and existing businesses/land uses within the vicinity of the interchange could be maintained.

Multimodal Accessibility (+1): bike lanes and sidewalks can be provided by improving the existing interchange. Roundabouts at the ramp terminals control high-speed movements from the freeway, helping protect bicyclists and pedestrians.

Cost (+2): improvement costs to the existing interchange would likely be to the lower end compared to the other concepts.

Environmental Impact (+1): the environmental impact would be minimized by not significantly expanding the footprint of the interchange or altering the freeway ramps.

Constructability (+1): construction of this improvement could be done in phases and would have minimal impacts to adjacent land uses during construction. Maintaining traffic operations during construction would be more difficult than under the signalized concepts. This improvement requires minimal alternations to the existing freeway ramps.

Accessibility \& Connectivity (0): this concept would not inhibit local connectivity or access to any property. Accesses between roundabouts can be limited to right-in/right-out, because left-turns can be accommodated at the roundabouts.

CoNcept 3 - Partial Cloverleaf Interchange (Southbound parclo A)

Transportation Operations (+2): a partial cloverleaf interchange would provide additional capacity for the southbound on-ramp during the AM peak.

Land Use (-1): the interchange configuration would have a large footprint to the northwest of the interchange.

Multimodal Accessibility (0): the movements with loop ramp would be potentially high speed, causing potential conflicts for bicycle and pedestrian users. Running the right-turns associated with the loop ramp through a signal would create a controlled environment. The south side of the overpass will have fewer conflicts associated with bicycles and pedestrians through the interchange ramp terminal area.

Cost (-1): construction of this interchange would require reconstruction of the overpass and southbound onand off-ramps.

Environmental Impact (-1): environmental impacts would be significant with the expansion of the footprint of the interchange, particularly on the north side of the interchange.

Constructability (0): construction of this improvement could be done in phases, but could require significant disruption of existing traffic operations, particularly for the impacted ramps.

Accessibility \& Connectivity (0): this concept would not inhibit local connectivity or access to any property. However, accommodating some existing private property accesses along NW La Center Road that would be located within the intersection influence area may be challenging.

Concept 4 - Partial Cloverleaf Interchange (Northbound parclo B)

Transportation Operations (+2): a partial cloverleaf interchange would provide additional capacity for the northbound off-ramp during the PM peak.

Land Use (-1): the interchange configuration would have a large footprint to the northeast of the interchange, which would impact the existing gas station.

Multimodal Accessibility (0): the movements with loop ramp would be potentially high speed, causing significant conflicts for bicycle and pedestrian users. Running the right-turns associated with the loop ramp through a signal would create a controlled environment. The south side of the overpass will have fewer conflicts associated with bicycles and pedestrians through the interchange ramp terminal area.

Cost (-1): construction of this interchange would require reconstruction of the overpass and northbound onand off-ramps.

Environmental Impact (-1): environmental impacts would be significant with the expansion of the footprint of the interchange, particularly on the north side of the interchange.

Constructability ($\mathbf{0}$): construction of this improvement could be done in phases, but could require significant disruption of existing traffic operations, particularly for the impacted ramps.

Accessibility \& Connectivity (0): this concept would impact property and access to the existing gas station northeast of the interchange. Otherwise, it would not inhibit local connectivity. However, accommodating some existing private property accesses along NW La Center Road that would be located within the intersection influence area may be challenging.

Concept 5 - Partial Cloverleaf Interchange (Northbound parclo B and " A " Ramp)

Transportation Operations (+2): a partial cloverleaf interchange would provide additional capacity for the northbound off-ramp during the PM peak.

Land Use (-2): the interchange configuration would have a large footprint to the northeast of the interchange, which would impact the existing gas station.

Multimodal Accessibility (0): the movements with loop ramp would be potentially high speed, causing significant conflicts for bicycle and pedestrian users. Running the right-turns associated with the loop ramp through a signal would create a controlled environment. However, the south side of the overpass will have fewer conflicts associated with bicycles and pedestrians through the interchange ramp terminal area.

Cost (-1): construction of this interchange would require reconstruction of the overpass and northbound onand off-ramps.

Environmental Impact (-1): environmental impacts would be significant with the expansion of the footprint of the interchange, particularly on the north side of the interchange.

Constructability (0): construction of this improvement could be done in phases, but could require significant disruption of existing traffic operations, particularly for the impacted ramps.

Accessibility \& Connectivity ($\mathbf{- 1}$): this concept would impact property and access to the existing gas station northeast of the interchange. Otherwise, it would not inhibit local connectivity.

Concept 6 - Partial Cloverleaf Interchange (Southbound Parclo A, Northbound Parclo B, and "A" Ramp)

Transportation Operations (+2): a partial cloverleaf interchange would provide additional capacity for the southbound on-ramp during the AM peak and northbound off-ramp during the PM peak.

Land Use (-2): the interchange configuration would have a large footprint to the north of the interchange, which would impact the existing gas station.

Multimodal Accessibility (-1): the movements with loop ramps would be potentially high speed, causing significant conflicts for bicycle and pedestrian users. Running the right-turns associated with the loop ramp through a signal would create a controlled environment. However, the south side of the overpass will have fewer conflicts associated with bicycles and pedestrians through the interchange ramp terminal area.

Cost (-2): construction of this interchange would require reconstruction of the overpass and all ramps.
Environmental Impact (-2): environmental impacts would be significant with the expansion of the footprint of the interchange, particularly on the north side of the interchange on both sides of I-5.

Constructability (-1): construction of this improvement could be done in phases, but could require significant disruption of existing traffic operations, particularly for the impacts associated with two new loop ramps.

Accessibility \& Connectivity (-1): this concept would impact property and access to the existing gas station northeast of the interchange. Otherwise, it would not inhibit local connectivity.

Concept 7 - Single-Point Urban Interchange (SPUI) Configuration

Transportation Operations (+2): a SPUI configuration would provide significant additional capacity for the interchange.

Land Use (+2): while the bridge would have a large footprint, impacts to the quadrants of the interchange and existing businesses or land uses are minimal.

Multimodal Accessibility (-2): bicyclists and pedestrians cannot easily be accommodated with a SPUI configuration and will face significant challenges navigating the interchange due to exposure associated with the large intersection footprint.

Cost (-1): construction of this interchange would require significant reconstruction of a large overpass structure and approach realignments.

Environmental Impact (+1): environmental impacts would be minimal, as the interchange does not require significant changes to the freeway ramps.

Constructability (-1): construction of this improvement has challenges constructing it in phases and would require significant disruption of existing traffic operations.

Accessibility \& Connectivity (+1): this concept would not inhibit local connectivity or access to any property.

Concept 8 - Diverging Diamond Interchange (DDI)

Transportation Operations (+2): a diverging diamond would provide significant additional capacity for the interchange.

Land Use (+1): while the bridge would have to be widened, the right-of-way impacts would not be significant with this concept.

Multimodal Accessibility (-1): bicyclists and pedestrians may be unfamiliar with the interchange form.
Cost (+2): construction of this interchange would likely be to the lower end compared to the other concepts, as it only requires minimal alternations to the existing freeway ramps.

Environmental Impact (+1): environmental impact would be minimized by not significantly expanding the footprint of the interchange or the freeway ramps.

Constructability (+1): construction of this improvement could be done in phases, but would require longer disruption of existing traffic operations. This improvement requires minimal alternations to the existing freeway ramps.

Accessibility \& Connectivity (0): this concept would not inhibit local connectivity or access to any property, but would be unfamiliar to users. Additionally, exiting freeway traffic cannot immediately re-enter through the ramp terminals.

Concept 9 - Diamond Interchange with Additional Overcrossing

Transportation Operations (+1): the existing interchange can accommodate projected traffic volumes by widening the existing bridge structure and adding additional lanes at the ramp terminals. The additional overcrossing south of the interchange provides capacity for local trips, but these are relatively low volume.

Land Use (-2): Right-of-way impacts directly adjacent to the interchange would be minimal with this concept. However, the additional overcrossing would significantly impact the properties further southeast of the interchange.

Multimodal Accessibility (+2): bike lanes and sidewalks can be provided by improving the existing interchange and on the additional overcrossing.

Cost (-2): adding an additional overcrossing and improving the existing interchange would have significant costs.

Environmental Impact (-2): the environmental impacts associated with the additional overcrossing would be significant.

Constructability (+1): construction of this improvement could be done in phases and would have minimal impacts to adjacent land uses and traffic operations during construction. This improvement requires minimal alternations to the existing freeway ramps.

Accessibility \& Connectivity (0): this concept would not inhibit local connectivity and is consistent with the City of La Center's plans (developed as part of La Center Junction Subarea Plan).

Concept 10 - Partial Cloverleaf Interchange (Parclo A)

Transportation Operations (+2): a partial cloverleaf interchange would provide additional capacity for the southbound on-ramp during the AM peak, but the northbound loop on-ramp does not serve a dominant movement.

Land Use (-2): the interchange configuration would have a large footprint to the northwest and southeast quadrants of the interchange.

Multimodal Accessibility (-2): the movements with loop ramps would be potentially high speed, causing significant conflicts for bicycle and pedestrian users. Running the right-turns associated with the loop ramp through a signal would create a controlled environment.

Cost (-2): construction of this interchange would require reconstruction of the overpass and all ramps.
Environmental Impact (-2): environmental impacts would be significant with the expansion of the footprint of the interchange and movement of the ramps.

Constructability (-1): construction of this improvement could be done in phases, but could require significant disruption of existing traffic operations, particularly for the impacts associated with two new loop ramps.

Accessibility \& Connectivity (0): this concept would not inhibit local connectivity or access to any property. However, accommodating some existing private property accesses along NW La Center Road that would be located within the intersection influence area may be challenging.

Appendix I Single-Line Sketches of Frontage Road Options

CARLSON/ FUDGE: OPTION A

CARLSON/ BURK/ LANDON/ FUDGE: OPTION B

CARLSON/ LA CENTER ROAD UNDERPASS: OPTION C

LANDON/ LA CENTER ROAD UNDERPASS: OPTION D

BURK/ LANDON: OPTION E1

CARLSON/BURK/ LANDON/FUDGE/3B: OPTION E2

BURK/ LANDON: OPTION E3

BURK/ VANVESSEM: OPTION F

KITTELSON \& ASSOCIATES, INC.
TRANSPORTATION ENGINEERING/PLANNING

Appendix J Cowlitz Reservation Development IJR Analysis
 Methodology

TECHNICAL MEMORANDUM Cowlitz Reservation Development IJR Analysis Methodology

Date: \quad October $16^{\text {th }}, 2014$
Project \#: 12393
To: Ray Shank, Washington Department of Transportation
Rick Keniston, PE, Washington Department of Transportation
Dave Bellinger, PE, Washington Department of Transportation
Matt Hughart, AICP; Marc Butorac, PE, PTOE; Chris Brehmer, PE, \& Kelly Laustsen; Kittelson \& Associates, Inc.

This memorandum documents the freeway analysis methodology proposed for inclusion in the I-5/La Center Interchange Justification Report (IJR) and supplements the information contained in the approved IJR Methods \& Assumptions document, dated October 2013.

This incremental memorandum is being provided to allow WSDOT an opportunity to review and comment on the transportation methodology and assumptions as the IJR is being prepared. Our intent it to secure consensus on the study methodology and findings in an incremental manner that will also allow the Applicant's project team an opportunity to make adjustments as needed prior to submittal of the formal IJR document. This memorandum largely reflects and confirms our email discussions with WSDOT staff, with documentation of these discussions provided in Attachment A.

BACKGROUND \& ANALYSIS METHODOLOGY

Figure 1 illustrates the site vicinity and the study interchange. Kittelson \& Associates, Inc. (KAI) staff visited the study area and inventoried the existing transportation system in September 2012 and in July 2014. In addition, Quality Counts, LLC collected traffic volume data at several locations, as documented later in this memorandum.

The operational methodology presented in this memorandum is consistent with the methods described in the approved IJR Methods and Assumptions document, dated October 2013. As a component of the IJR process, the WSDOT Design Manual requires a 'Methods and Assumptions Document' be developed to record assumptions, criteria, and support team decisions used in the IJR. The Methods and Assumptions document for the I-5/La Center Interchange was approved in October 2013.

In addition to the IJR, a transportation impact analysis (TIA) will be prepared to document the impacts of the proposed Cowlitz Reservation development on the local system. The TIA will incorporate the preferred alternative from the IJR and will report analysis of the IJR study intersections along NW La Center Road/NW 319 ${ }^{\text {th }}$ Street under existing and forecast future conditions as per the IJR.

METHODOLOGY

The freeway mainline and freeway merge/diverge operational analyses presented in this report were prepared following Highway Capacity Manual 2010 (HCM 2010) analysis procedures using Highway Capacity Software (HCS) 2010 traffic analysis software. HCS 2010 is a software package that analyzes ramp merge and diverge areas focusing on an influence area of 1,500 feet, including the acceleration or deceleration lane and adjacent freeway lanes.

Measures of Effectiveness (MOE)

The WSDOT Design Manual, Chapter 320 describes the measure of effectiveness (MOE) used for determining a highway facilities' level of service (LOS) as follows:

- The level of service (LOS) for operating state highway facilities is based upon measures of effectiveness (MOEs), in accordance with the latest version of the Highway Capacity Manual.
- These MOEs (see Table 1 below) describe the measures best suited for analyzing state highway facilities, such as freeway segments and on- or off-ramps. Depending on the facility, WSDOT LOS thresholds are LOS C and LOS D on state highway facilities.

Table 1 WSDOT Measures of Effectiveness by Facility Type

Type of Facility	Measure of Effectiveness (MOE)
Basic Freeway Segments	Density (pc/mi/ln)
Ramps	Density (pc/mi/ln)
Ramp Terminals	Delay (sec/veh)
Multilane Highways	Density (pc/mi/ln)

$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}=$ passenger cars per mile per lane
The level of service (LOS) for freeway merge, diverge, and weave operations is determined by traffic density based on criteria outlined in the Highway Capacity Manual (HCM) 2010, as shown in Table 2.

Table 2 LOS Criteria for Freeway Merge/Diverge/Weave (HCM 2010)

LOS	Maximum Density (pc/mi/ln)	
	Merge/Diverge	Weave
A	≤ 10	$0-10$
B	$>10-20$	$>10-20$
C	$>20-28$	$>20-28$
D	$>28-35$	$>28-35$
E	>35	>35
F	Demand Exceeds Capacity	Demand Exceeds Capacity

Speed (mph) and travel time (minutes) are also indicators of the performance of an individual segment and the overall freeway facility.

WSDOT Operating Standards

WSDOT provides a table of LOS standards for state highways of statewide significance (HSS) based on RCW 47.06.140(2). Regional transportation planning organizations (RTPOs) and WSDOT jointly develop and RTPOs establish LOS standards for regionally significant state highways based on RCW 47.80.030(1)(c). Table 3 presents the WSDOT standards for state facilities in Clark County and Cowlitz County.

Table 3 WSDOT Level of Service Standards for Washington State Highways, January 1, 2010

Regional Organization/County	LOS for Non-HHS ${ }^{1}$		LOS for HSS ${ }^{1}$	
	Urban	Rural	Urban	Rural
(RTC) Southwest Washington Regional Transportation Council - MA/MP/RTPO Clark County Cowlitz County	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \end{aligned}$	C	D	C

${ }^{1}$ HSS=Highway of Statewide Significance
Per WSDOT direction, LOS C will be the standard used for the I-5 mainline and merge/diverge operations for the existing conditions analysis. As noted in the IJR Methods \& Assumptions, LOS C will also be the standard used through the 2017 analysis scenarios, while LOS D will be used for the 2037 scenarios.

Analysis Years/Periods

In order to assess the impact of the proposed Cowlitz Reservation Development, three analysis years (existing 2014, 2017, and 2037) will be required. Conditions were analyzed during the following time periods:

- Weekday morning peak period (7:00-9:00 AM)
- Weekday evening roadway peak period (4:00-6:00 PM)
- Weekend peak period (Friday 3:00-6:00 PM)

The weekend peak period was selected to address the unique trip generating characteristics of the casino and recreational travel on I-5. As recorded in the Cowlitz Reservation Development Trip Generation Memo dated October 2012, the trip generation profile of a casino was reviewed over the weekend, recognizing that casino trip generation typically peaks during the weekend. Traffic volumes in the vicinity of the site and on l-5 were assessed to better understand weekend traffic conditions and peaking characteristics in the area; particularly the distinct recreational directional trip patterns between the Portland and Seattle/Tacoma metropolitan areas. The cumulative impact of the background volumes and development trips is anticipated to typically be highest during the Friday PM peak. The two graphs in Exhibit 1 provide a profile of weekend volumes on l-5 from September 2012 (provided in the Trip Generation Memo ${ }^{1}$) and May 2013. In both cases, l-5 volumes are highest during Friday afternoon in both the northbound and southbound directions.

As described in detail in the October 2013 trip generation memo, trip generation rates anticipated at the casino over the course of a typical weekend were also assessed. Data from a number of other sites were reviewed and showed that the individual casinos peaked at different times and days of the weekend. However, considering both the existing volumes on l-5 and the measured casino generated traffic at other sites, Friday evening was selected to capture the highest cumulative impact from existing l-5 volumes and anticipated casino-generated traffic. Most of the casinos experience a Friday peak near 5:00 PM, indicating that the combination of traffic on the roadway system and produced by the proposed casino is likely to peak near this time as well. As discussed later in this memorandum, the counts were compared to the $30^{\text {th }}$ highest hour volumes on I-5 to ensure they are representative of design hour volumes.

[^10]Exhibit 1: l-5 Weekend Volume Profiles

Note: Data in top graph is from WSDOT for Friday, September $17^{\text {th }}, 2012$ - Sunday, September $19^{\text {th }}, 2012$; data in bottom graph is for Friday, May $24^{\text {th }}, 2013$ - Sunday, May $26^{\text {th }}, 2013$

Analysis Inputs

Where possible, inputs for the freeway mainline and merge/diverge analysis were derived from available data. The lengths of deceleration and acceleration lanes for the merge analysis were measured in Google Maps. All heavy vehicles were entered as "trucks and buses" as the data collected did not specify recreational vehicles. Where data was not available, defaults values from the HCM 2010 were applied. Free-flow speed was assumed as 35 miles per hour (mph) on the ramps and 70 mph on the mainline, based on default values from the HCM 2010.

TRAFFIC VOLUMES DEVELOPMENT

Turning-movement counts were collected at the I-5/La Center Ramp terminals for a typical weekday and Friday in mid-May 2014. At the same time, I-5 mainline counts were collected south of the interchange. Traffic data from the weigh station on northbound I-5 located south of the NW La Center Road interchange was received from WSDOT for June 2014. The turning movement counts and mainline data are provided in Attachments C and D, respectively. Data from the weigh station is provided in Attachment E. The following sub-sections describe the development of traffic volumes for use in the existing and future analysis.

Peak Hour Factor

The ramp volumes at l-5/La Center were derived from the turning movement counts collected at the ramp terminals. In accordance with the HCM 2010 methodology, the peak hour volumes were developed by multiplying the peak 15 minutes by four and a peak hour factor of 1.0 was used for the analysis.

Seasonal Adjustment Factor

The WSDOT automatic traffic recorder (ATR) 045 is located just north of the NW La Center Road interchange with no ingress/egress points in-between. It therefore serves as a good proxy for l-5 mainline volumes at the interchange. Based on 2013 data collected at the ATR, the seasonal adjustment factor for May is 1.04 (2013 Annual Traffic Report, Attachment F). The traffic volumes on the I-5 mainline were multiplied by this factor to be representative of average traffic volumes.

Design Hour Volumes

WSDOT typically uses volumes representative of the $30^{\text {th }}$ highest hour for design hour volumes. In order to ensure that the volumes used in the IJR analysis are representative of the design hour volumes, we compared the seasonally adjusted May 2014 volumes to the $29^{\text {th }}, 30^{\text {th }}$, and $31^{\text {st }}$ highest hours collected at ATR 045 in 2013. The results are shown in Table 4.

Table 4 I-5 Volumes north of La Center Interchange

Location	29 ${ }^{\text {th }}$ Highest Hourly Volume (1 PM, Nov 30, 2013)	$30^{\text {th }}$ Highest Hourly Volume (4 PM, Jul 28, 2013)	31 ${ }^{\text {st }}$ Highest Hourly Volume (3 PM, Dec 1, 2013)	Weekend Counts* (4:45 PM, May 16, 2014)	Weekend Counts* (seasonally adjusted)
NB Mainline	3,295	2,917	3,450	3,141	3,267
SB Mainline	3,196	3,568	3,032	2,933	3,050
Total	6,491	6,485	6,482	6,074	6,317

*Based on $4 \times$ peak 15 minute volume
As seen in the table, the seasonally adjusted weekend peak hour counts (collected on Friday, May $16^{\text {th }}$, 2014) are of similar magnitude to the $30^{\text {th }}$ highest hour counts. Therefore, these volumes are appropriate for use in the existing conditions assessment and as a basis for estimating future volumes.

Truck Percentages and Volumes at the Weigh Station

I-5 mainline counts were collected south of the interchange for a typical weekday and Friday in midMay 2014. Based on the data collection method used, the counts reflect total vehicles and do not differentiate between vehicle classifications. Therefore, I-5 mainline data from 2012 at the ATR station 045 was used to estimate truck percentages on I-5 both northbound and southbound for the analysis periods. The summarized data and truck percentages used for the analysis are provided in Attachment G.

Traffic data from the weigh station on northbound I-5 located south of the NW La Center Road interchange was received from WSDOT for June 2014. The data provides volumes on I-5 and entering the weigh station for the weekday and Friday peak periods of analysis. The average truck volumes at the weigh station for the peak periods were derived from the data for each analysis time period (weekday AM, weekday PM, and weekend peak). The data from WSDOT reflects the number of trucks at the weigh station for the entire peak period (i.e. 7:00 to 9:00 AM). In order to estimate the number of trucks within the peak hour, the total volume was multiplied by the proportion of trucks on l-5 during just the peak hour within the peak period (based on I-5 data from 2013 also provided by WSDOT). The data from the weigh station and calculations performed to estimate the number of trucks entering/exiting the weigh station during the analysis periods are provided in Attachment E.

Future Volumes

Near-term 2017

The 2017 background volumes on the l-5 mainline were developed by applying a 2% linear annual growth rate to the seasonally adjusted volumes used in the existing conditions analysis. The growth rate was developed based on comparison of the Southwest Washington Regional Transportation Council (RTC) travel demand models for the horizon years 2005 and 2035. The 2035 RTC model used in
this analysis does not reflect recently revised (lower) county-wide population growth rate assumptions adopted by Clark County (the County's population growth estimate is now an average 1.12 percent annual growth county-wide). We understand the RTC models will be revised in the future to reflect the County's lower population growth assumptions and, as a result, the future volumes developed for this analysis using two percent annual growth are likely conservatively high.

The ramp volumes were extrapolated from counts at the ramp terminals. The ramp terminal counts were developed by applying an annual growth rate to existing traffic count data and adding the inprocess traffic volumes. Annual growth rates were applied to the existing traffic count data by intersection approach per agency scoping direction. Growth rates were selected by reviewing historical traffic counts around the interchange area, which indicated a rate of 2% at the I-5 on- and off-ramps and approximately 3% along La Center Road. At the interchange, volumes were balanced following the application of annual growth rates.

Long-term 2037

Consistent with the horizon year 2017 model volume development, the 2037 background mainline volumes on I-5 were developed by applying a 2% linear annual growth rate to the seasonally adjusted peak hour volumes. For purposes of the 2037 analysis, the growth rate was applied to the seasonally adjusted ($30^{\text {th }}$ highest hour) peak hour volumes (as opposed to applying the annual growth rate to volumes derived using four times the peak fifteen minute volumes). Use of the actual hourly volume instead of volumes derived by multiplying the peak 15-minute volume by four recognizes that travel demand on $\mathrm{I}-5$ is expected to spread over the hour in the long-term and exhibit less of the existing peaking characteristic. This approach is consistent with applying a peak hour factor of 1.0 in the longterm analysis.

Year 2037 traffic volume projections were developed using existing traffic count data and forecast future volume data provided by RTC's regional travel demand model. A summary of the volume development methodology and assumptions is provided in the following sections.

Travel Demand Model

RTC uses the travel demand forecasting program VISUM to estimate future traffic volumes on primary roadways such as freeways, arterials, and collectors. RTC's travel demand forecast model was developed in part based on the 2011 Metropolitan Transportation Plan for Clark County (MTP). Horizon year 2035 land uses are based on the adopted Comprehensive Growth Management Plan for Clark County (Clark County, September 2007) which has a horizon year of 2024 extended a further eleven years to the MTP's 2035 horizon. The 2035 demographic projections and land use allocations were developed by local jurisdictions working in partnership with RTC.

The model's data input includes population and employment for both "base year" conditions (Year 2010) and future "design year" conditions (Year 2035). The 2035 RTC model used in this analysis does
not reflect recently revised (lower) county-wide population growth rate assumptions adopted by Clark County (as of the time this report was prepared, the County's population growth estimate was reduced to an average 1.12 percent annual growth county-wide). It is understood that the 2035 RTC model will be revised in the future to reflect the County's lower population growth assumptions and, as a result, the future volumes developed for the 2037 analysis using two percent annual growth are likely conservatively high.

2037 Background Traffic Model Post Processing for Weekday PM and Friday PM (Weekend) Peak Hour

The RTC VISUM model provides PM peak hour volumes including directional flows on key roadway links (i.e. road segment between intersections) and turning movement volumes at key intersections. Appendix " P " contains the VISUM output sheets for both the 2010 base year and 2035 design year for the project area roadways and intersections.

Because the RTC model does not include all local streets and driveway connections, the raw forecast turning movements at individual intersections from the model are not typically used for design purposes. Rather, the model is used to identify the order-of-magnitude future growth along the primary travel corridors, based on planned changes to the land use and transportation systems within the region. Output from the model is "post-processed" (manually adjusted) using field traffic data and engineering judgment to identify turning movements at each study intersection. This method of refining the raw traffic volumes is standard practice for planning and forecasting analyses and is discussed further and in more detail below.

The RTC model volumes were refined using techniques outlined in NCHRP Report 255 to "post-process" the data. In this process, the future traffic projections from the model were evaluated with respect to current year 2014 traffic counts and the relative differences between the model scenarios. The results of using both the "ratio" method and the "difference" method, as outlined in the NCHRP report, were compared. In this case, the average of the "ratio" and "difference" methods was used to establish the initial projected volume of through traffic. Manual adjustments were made to the projected turning movements at individual intersections to better reflect the existing traffic counts and the anticipated build-out conditions to achieve 2035 developed volumes. Finally, a two percent growth rate was applied to the 2035 turning movement volumes to estimate year 2037 volumes.

All of the calculations and adjustments described above are provided in Appendix " Q ".

2037 Background Traffic for Weekday AM Peak Hour

Because the RTC regional travel demand model provides forecast volumes only for the weekday PM peak hour, projections for the 2035 weekday AM and weekend peak hours were developed manually assuming similar growth patterns from the PM peak hour projections. The projected growth at the interchange from the weekday PM peak hour was factored according to the ratio of existing AM to PM
peak hour volumes. This factored growth was then applied to the existing weekday AM peak hour counts and distributed according to existing travel patterns. Manual adjustments were made to the projected turning movements at each intersection to reflect the anticipated build-out conditions during the 2035 weekday AM peak hour. Finally, a two percent growth rate was applied to the 2035 turning movement volumes to estimate year 2037 volumes.

For methodology validation purposes, the resultant 2037 projections were compared to the RTC 2035 model volumes and year 2030 volumes derived in the Ridgefield IJR completed in 2009. The results of this comparison are shown in Table 5.

Table 5 Future I-5 Volumes south of La Center Interchange

Location	Ridgefield IJR (2030 Build PM)	RTC Model (2035 PM Peak)	2037 Background Weekend Peak (30
Northbound Mainline	4,485	4,910	4,997
Southbound Mainline	4,330	3,816	4,506
Total	$\mathbf{8 , 8 1 5}$	$\mathbf{8 , 7 2 6}$	$\mathbf{9 , 5 0 3}$

As seen in the table, the weekend peak hour volumes used in the I-5/La Center IJR are significantly higher than those used in the Ridgefield $I J R^{2}$ or forecasted in the RTC model (recognize that the RTC model volumes will likely be reduced in the future due to the revised Clark County population growth projections). Based on the above comparison, we conclude the methodology employed to develop the year 2037 traffic volume projections results in volume projections that are reasonably conservative (high).

NEXT STEPS

The I-5 freeway conditions assessment was presented in Technical Memorandum \#2: Cowlitz Reservation Development Preliminary Interchange Evaluation and discussed in the I-5/La Center Interchange Improvement Project IJR Workshop on July $14^{\text {th }}, 2014$. The analysis will also be incorporated into the draft IJR document being prepared as part of the Cowlitz Reservation Development project. This memorandum will also be referenced in the IJR.

Recognizing that this methodology serves as an essential foundation for the remainder of the study, we request that you review the material presented in this memorandum and provide us with any suggested revisions or questions that you may have.

[^11]
ATTACHMENTS

A. Emails with WSDOT Staff documenting Methods and Assumptions
B. Cowlitz Reservation Development Trip Generation Memo
C. Turning Movement Counts at I-5/La Center Road Ramp Terminals
D. I-5 volumes mainline volumes south of La Center Road
E. Weigh Station Data from June 2014
F. Seasonal Adjustment Factor for R045
G. Truck Percentages for l-5

From:
Sent:
To:
Cc:
Subject:
Shank, Ray ShankR@wsdot.wa.gov
Wednesday, July 09, 2014 4:25 PM
Kelly Laustsen
Matt Hughart; Chris Brehmer; Clark, Mike; Bellinger, Dave; Keniston, Rick
RE: Follow-Up - I-5/La Center Analysis
Kelly,

As mentioned in our phone discussion earlier today, using your proposed methodology of seasonally adjusting the Friday PM counts appears to be acceptable. When comparing the adjusted short count data to our typical design hour methodology, the resulting volumes were very similar (within ~ 15 vehicles for the peak direction). Since we've gone through these steps, we may want to include some discussion that we used data from the adjacent PTR to validate using the adjusted short count data.

After looking at the PTR data, it appears that while the heaviest northbound volumes on I-5 occur during the Friday PM Peak, the heaviest southbound volumes occur on Sunday. We talked about this a little bit on the phone. You mentioned that the cumulative impact of southbound I-5 volumes and new trips generated by the development on the Friday PM Peak may be more than that of the impacts anticipated on Sunday. I think we are still good with our current set of scenarios, but perhaps we should confirm this direction with the rest of the stakeholders at Monday's meeting.

Let us know if you have any questions.
Ray Shank
Transportation Planner
WSDOT - SW Region
11018 NE 51st Circle
Vancouver, WA 98682
(360) 905-2087
shankr@wsdot.wa.gov

From: Kelly Laustsen [mailto:klaustsen@kittelson.com]
Sent: Tuesday, July 08, 2014 11:22 AM
To: Shank, Ray
Cc: Matt Hughart; Chris Brehmer; Clark, Mike; Bellinger, Dave; Keniston, Rick
Subject: RE: Follow-Up - I-5/La Center Analysis
Hi Ray,
Thanks for the additional information. I looked at the ATR data you sent and prepared the table below showing volumes north of the interchange under a number of scenarios. As you can see, the distribution of volumes northbound/southbound varies between the $29^{\text {th }}, 30^{\text {th }}$, and $31^{\text {st }}$ highest hourly volumes, likely influenced by the time of day, week and month or area events. I'd suggest that we maintain the distribution from the counts we collected (based on a review of the ATR data, this is pretty typical of a Friday PM). If we apply the same seasonal factor that we used for the $A M$ and PM counts of 1.04 , the volumes are relatively close to the $30^{\text {th }}$ highest hour.

| $29^{\text {th }}$ Highest |
| :---: | :---: | :---: | :---: | :---: |
| Hourly Vol (1pm, |
| Nov 30, 2013) | | $30^{\text {th }}$ Highest |
| :---: |
| Hourly |
| $(4 \mathrm{pm}$, Jul 28, | | $31^{\text {st }}$ Highest |
| :---: |
| Hourly Vol (3pm, |
| Dec 1, 2013) | | Friday PM Counts* |
| :---: |
| $(4: 45 \mathrm{pm}$, May 16, |
| 2014) | | Friday PM Counts* |
| :---: |
| (seasonally |
| adjusted) |

		2013)			
NB Mainline	3295	2917	3450	3141	3267
SB Mainline	3196	3568	3032	2933	3050
Total	6491	6485	6482	6074	6317

*Based on 4*peak 15 minute volume
We suggest using the Friday PM counts we collected with the seasonal adjustment of 1.04. Although these volumes are slightly lower than the $30^{\text {th }}$ highest hourly volume, we are using the long-term analysis (with a $2 \% /$ year growth rate) for our design, which is conservative. Please let me know if you think this is reasonable.

Thanks!
Kelly

Kelly Laustsen
Engineering Associate
Kittelson \& Associates, Inc.
Transportation Engineering / Planning
503.535.7439 (direct)
214.886.5338 (cell)

From: Shank, Ray [mailto:ShankR@wsdot.wa.gov]
Sent: Monday, July 07, 2014 9:02 AM
To: Kelly Laustsen
Cc: Matt Hughart; Chris Brehmer; Clark, Mike; Bellinger, Dave; Keniston, Rick
Subject: RE: Follow-Up - I-5/La Center Analysis
Kelly,
Thanks for providing the September 2012 count data for comparison. As you mentioned, these counts are relatively similar. The methodology proposed in an earlier e-mail, using May 2014 counts with a 1.04 adjustment factor for interstate volumes, uses the most recent data along with historical temporal trends and will likely provide us with representative peak hour volumes.

Attached you will find the 2013 data for PTR R045 which is located just south of the I-5/SR 503 Interchange near Woodland. Please review and let us know if it meets your needs.

For the Friday PM peak volumes, I'd like to use a volume set that is representative of the $30^{\text {th }}$ highest hour, which is our typical methodology for design hour volumes (DHV). As mentioned in my previous e-mail, historical trends seem to indicate that the $30^{\text {th }}$ highest hour occurs during the Friday PM peak. The amount of information that goes into developing DHV (hourly volume data over an entire year) is much more robust than using short count data (approx. one week of data). Therefore, I would prefer to use this methodology. However, if the derived DHV is similar to that of the adjusted short count data then we can consider using the short count data in the analysis.

Let us know if you need anything else.

Ray Shank

Transportation Planner
WSDOT - SW Region
11018 NE 51st Circle
Vancouver, WA 98682
(360) 905-2087
shankr@wsdot.wa.gov

From: Kelly Laustsen [mailto:klaustsen@kittelson.com]
Sent: Monday, July 07, 2014 5:01 AM
To: Shank, Ray
Cc: Matt Hughart; Chris Brehmer; Clark, Mike; Bellinger, Dave; Keniston, Rick
Subject: RE: Follow-Up - I-5/La Center Analysis
Hi Ray,

Thank you for your quick, thorough responses - I really appreciate all your help. A couple comments/questions:

- You asked for a comparison between the counts we collected in September 2012 and May 2014 - see the table below (note that l've shown the total volume recorded during the peak hour as opposed to 4*peak 15 minute volume). As you can see, our counts are relatively similar (with some increases and decreases of <10\%).

	Weekday AM	Weekday PM	Friday PM
NB Mainline (south of interchange)	$2067(2031)$	$2850(2776)$	$3372(3531)$
SB Mainline (south of interchange)	$2395(2295)$	$2543(2766)$	$2999(3060)$

May 2014 (September 2012)

- You referenced the 2013 data from ATR 045. I received 2010-2012 data for I-5, but don’t believe I have 2013. Could you send along to me when you have an opportunity?
- For the Friday PM peak, you suggested identifying the $30^{\text {th }}$ highest hour volumes as design volumes. Would you suggest using these in place of the actual counts we collected during the Friday PM peak, or comparing to our counts to assess whether they are appropriate?

Thanks again! Hope you enjoyed the holiday.
Kelly
Kelly Laustsen
Engineering Associate
Kittelson \& Associates, Inc.
Transportation Engineering / Planning
503.535.7439 (direct)
214.886.5338 (cell)

From: Shank, Ray [mailto:ShankR@wsdot.wa.gov]
Sent: Thursday, July 03, 2014 2:15 PM
To: Kelly Laustsen
Cc: Matt Hughart; Chris Brehmer; Clark, Mike; Bellinger, Dave; Keniston, Rick
Subject: RE: Follow-Up - I-5/La Center Analysis
Kelly,

Please find my responses to your questions in the e-mail below.
Let us know if you need anything else.

Ray Shank

Transportation Planner
WSDOT - SW Region
11018 NE 51st Circle
Vancouver, WA 98682
(360) 905-2087
shankr@wsdot.wa.gov

From: Kelly Laustsen [mailto:klaustsen@kittelson.com]
Sent: Wednesday, July 02, 2014 8:09 PM
To: Shank, Ray
Cc: Matt Hughart; Chris Brehmer
Subject: Follow-Up - I-5/La Center Analysis
Hi Ray,
Thanks again for talking with Chris, Matt and me this afternoon, particularly on such short notice. I really appreciate your help in our development of traffic volumes for the interchange analysis we are conducting at I-5/La Center Road for the proposed Cowlitz development. I've summarized our discussion points from today and noted in italics where I would appreciate your confirmation or additional information. I've also provided some supplemental background information.

Background Information

- Time periods: weekday AM peak hour, weekday PM peak hour, Friday PM peak hour
- Analysis years: existing, 2017, 2037
- Analyzing l-5 mainline north and south of La Center, merge/diverge at La Center Road and weigh station
- Data collected: we collected counts on the I-5 mainline (just south of La Center Road) on May $16^{\text {th }}$ and $20^{\text {th }}$. For reference, our peak hour volumes are summarized below (note that this reflects a peak hour factor of 1.00 - see Analysis Methodology Question \#1).

	Weekday AM	Weekday PM	Friday PM
NB Off Ramp	312	579	589
NB On Ramp	172	133	162
SB On Ramp	482	364	412
SB Off Ramp	112	208	257
NB Mainline (south of interchange)	2332	2956	3568
SB Mainline (south of interchange)	2628	2672	3088

Analysis Methodology Questions

1. Peak Hour Factor - we have collected volumes on I-5 and at the La Center ramp terminals. We propose to develop peak hour counts by multiplying the peak 15 minutes by four and applying a PHF of 1.00. You indicated that you were likely comfortable with this approach - can you confirm?

I am comfortable with this approach as it should result in a more conservative analysis.
2. Seasonal Adjustment Factor - we collected our traffic counts in mid-May 2014. Our previous counts were collected in September 2012. We did not apply a seasonal adjustment factor to our counts before (since September is typically a higher month). The conversion factor for RO45 (the permanent traffic recorder on I-5 just north of La Center Road) for the month of May is 1.04, as shown in the attached page from the 2013 Annual Traffic Report.
Should we apply an adjustment to our May counts?

AM and PM Peaks

Applying the 1.04 adjustment factor to the counts collected along the interstate in May seems like a practical approach to reach representative peak hour volumes. As a reasonableness check, I would be interested to know how this new volume set relates to the previously collected data back in September of 2012.

Friday PM Peak

We should take advantage of the permanent traffic recorder (R045) as it is located just to the north, without any ingress or egress access points influencing volumes between the recorder and the LaCenter Interchange. I believe that you mentioned during our phone conversation that you received 2013 data for this recorder already (If not, I should be able to supply this information). From this year long data set, we can identify volumes that are representative of the $30^{\text {th }}$ highest hour, which is typically used as our design hour volumes. No adjustment factors will need to be applied using this approach. The peak hour report for this PTR can be located at the following webpage: http://www.wsdot.wa.gov/mapsdata/travel/peakhourreport.htm. Although, the latest report for 2013 has yet to be published, our Traffic Data Office has supplied us with some of the key information.

2013 PTR R045 Data
AADT: 67911
$K 30=9.55$
$K 100=8.99$
$K 200=8.64$
$D 30=50.63$

While the full 2013 report has yet to be published, the 2011 report seems to indicate that the design hour volumes should be representative of the Friday PM Peak Hour.

Local Intersections

For volumes along the local roadway, see my response to question number 3.

- If we do need to apply a seasonal adjustment factor, should we just apply it to the l-5 mainline? I assume based on the uses surrounding La Center Road that volumes on the ramps do not fluctuate significantly during the year. See response above. I would recommend that the ramp volumes use the same approach as that of the Local Intersections.
- If we do need to apply a seasonal adjustment factor, should we grow the seasonally adjusted volumes for our future year (2017 and 2037) analyses? We are applying a 2% annual linear growth rate (based on our assessment of RTC's most updated model). Future volumes will be developed from our base year volumes. Any adjustments made to the base year would thereby be incorporated into the future volumes and further adjustment will not be required.

3. Additional Factors/Adjustments - you indicated that we should apply a factor of 1.3 for the existing conditions analysis as a sensitivity test (to account for the fact that we are using average volumes and not converting for design hour volumes). Can you confirm that we should apply this sensitivity test and just for the existing conditions assessment?

The sensitivity test that applies a factor of 1.3 to the existing conditions was intended for volumes at the local intersections (i.e. ramp terminals as well as any other intersections along La Center Road and 319 Street). We are applying this test since the adjustment factors developed from PTR R045 are not applicable as the temporal trends along l-5 are not similar to that of the local streets. This test, bumping up the volumes by 30\%, takes a high clip look to assess the level of risk we might be taking using the information from the limited short count data. If the higher volume does not have any practical implication for the design, then we can just use the short count data as is. However, if the higher volume does result in an impact to the design, then we will have to discuss possible adjustments to these volumes more thoroughly.

This test was previously suggested by our TDGO office. If you have a different approach that you would like to apply when developing the local volumes, I'd be willing to listen.
4. Weigh station volumes - we are assessing merge/diverge operations at the weigh station on I-5 south of La Center. Can you provide any volumes at the weigh station or estimate of typical volumes?

The attached excel file contains some weigh station data and the attached PDF helps to demonstrate where the counts are located. Please review and let me know if this is what you're looking for.

Please let me know if you have any questions about the information above and thanks again for your help. Kelly

Kelly Laustsen
Engineering Associate
Kittelson \& Associates, Inc.
Transportation Engineering / Planning
503.535.7439 (direct)
214.886.5338 (cell)

Kittelson \& Associates, inc.

 TRANSPORTATIONENGINEERING/PLANNING 610 SW Alder Street, Suite 700, Portland, OR 97205 P 503.228.5230 F 503.273.8169TECHNICAL MEMORANDUM \#3:
Cowlitz Reservation Development Trip Generation

Date: November 12, 2012
To: Jeffrey B. Sarvis, City of La Center Public Works
Tony Cooper, PE, City of La Center Public Works
Rick Keniston, PE, Washington State Department of Transportation
Steve Schulte, PE, Clark County Department of Public Works
David Jardin, Clark County Department of Public Works
Chris Clemow, PE, Group Mackenzie on behalf of the City of La Center
Kelly Laustsen; Marc Butorac, PE, PTOE; \& Chris Brehmer, PE

Project \#: 12393

The memorandum documents proposed trip generation assumptions for the proposed Cowlitz Reservation Development to be located in in La Center, Washington. Pending review agency feedback, the trip rates proposed in this memorandum will be used to prepare a traffic impact analysis and interchange justification report (IJR) for the proposed development. In addition to the traditional morning (7:00-9:00 AM) and evening (4:00-6:00 PM) peak periods, the trip generation assessment identified the need to study Friday evening peak conditions during the 5:00-6:00 PM hour. The assessment includes the directional split of trips to and from the site, as well as an analysis of trip type. The remainder of this document describes the proposed development, the trip assessment methodology, the recommended peak hour analysis periods and the corresponding trip rates.

PROPOSED COWLITZ RESERVATION DEVELOPMENT OVERVIEW

The proposed Cowlitz Reservation Development will be located west of the l-5/La Center interchange in La Center, Washington as shown in Figure 1. The site is located approximately 25 miles north of the Portland, Oregon metropolitan region and is targeted for opening in 2016.

While the final site land uses have yet to be determined, at full build-out the site may include up to:

- 3,500 gaming positions (2,000 slots, 60 banked tables, 15 poker tables as Phase One; 1,000 gaming positions in a future phase);
- 4 interior restaurants;
- 5,000-6,000 square feet of interior retail space;
- Casino bars;
- An event center with seating for up to 1,500 guests; and
- 250 -room hotel with restaurant and retail space.

Up to 3,450 parking spaces are expected on-site and valet parking services will be available.

METHODOLOGY

Typically the City of La Center, the Washington State Department of Transportation (WSDOT), and Clark Country require analysis of weekday morning (7:00-9:00 AM) and evening (4:00-6:00 PM) peak commuter conditions. Other analysis periods may be identified on an as-needed basis. With the agency requirements in mind, trip generation estimates were developed for the site through a series of steps that included:

- Conducting a literary search of available trip generation data to identify analysis periods and available data;
- Synthesizing trip data collected at similar casino facilities;
- Collecting data at a comparable casino facility in Washington;
- Identifying recommended peak hour analysis periods based on the data collected; and
- Identifying recommended trips rates and volumes by analysis period.

LITERATURE REVIEW

Several sources of data were reviewed to determine the appropriate approach for identifying the time periods to analyze the traffic impacts of the proposed Cowlitz development and anticipated trip generation of the development. Consistent with industry practice, weekday AM and PM peak trip data was first sought through the Institute of Transportation Engineers (ITE) Trip Generation.

Review of ITE Trip Generation, $9^{\text {th }}$ Edition identified limited data available for casino-related uses. Specifically, the most comparable land use was found to be ITE Land Use Code 473: Casino/Video Lottery Establishment. Trip Generation indicates the Land Use Code 473 database is limited to weekday p.m. peak hour data only and that the data was collected at six sites that provide electronic or manually-controlled slot machines. Trip Generation further indicates that full food service is generally not provided at the facilities; however, refreshments or alcoholic beverages may be served. ITE states the Trip Generation data does not include full-service casinos or casino/hotel facilities. Based on this information and the proposed development uses, additional trip data was sought.

Consistent with Trip Generation's recommendation to obtain additional data as needed, a literature review of available trip generation studies was conducted (highlights of the literature review results are provided in Appendix A). The literature review offered insights as to information needed to develop a reasonable trip rate for the proposed development while also offering several insights that included:

- Gaming positions correlate well with site trip generation and serve as a recommended independent variable.
- An entertainment venue in which concerts are held can also increase the trip generation potential of a casino.
- Casino/resort facilities located in Las Vegas and Reno are not indicative of trip generation potential for sites similar to the proposed development due to the sheer magnitude in size difference and the area in which they are located.
- Ancillary uses at a casino (i.e. restaurants, retail space) are encompassed in the casino's overall trip generation rate.
- The presence of an on-site hotel may reduce the casino's peak trip generation rate relative to sites without on-site housing.

DATA SOURCES

Previously published trip data was obtained from five tribal casinos in the Northwest and one in the northeast which had qualities similar to the Cowlitz Reservation Development. In addition, trip data was collected as part of this study at a casino in Snoqualmie, Washington. Table 1 presents a summary of the sites considered in developing the final trip rates as well as the key characteristics of each.

Table 1: Summary of Casino Data Used to Develop Site Trip Estimates

Casino	Location		Ancillary Uses	Gaming Positions (when data collected)	Data Collected
Snoqualmie	Snoqualmie, WA	25 miles east of Seattle, WA	Restaurants, Entertainment Venue	2,185	Seven Day Tube Counts (Sept \& Oct 2012)
Mohegan Sun at Pocono Downs	Wilkes-Barre, PA	15 miles southwest of Scranton, PA	Restaurants, Live harness racing, retail	$\begin{aligned} & \hline 2,466(2009) \\ & 1,099(2007) \end{aligned}$	Seven Day Tube Sept 2009)
Spirit Mountain	Grand Ronde, OR	35 miles northwest of Salem, OR	Restaurants, Bingo, Arcade, Children's Area, Entertainment Venue, Hotel	1,994	Weekend Tube Counts (Aug 2005)
Seven Feathers	Canyonville, OR	25 miles south of Roseburg, OR	Restaurants, Bingo, Hotel, Entertainment Venue, Gift Gallery, Hotel	1,198	Weekend Tube Counts (Aug 2005)
Muckleshoot	Auburn, WA	30 miles south of Seattle, WA	Restaurants, Bingo, Retail, Entertainment Venue, Convention and Meeting Space	2,596	Weekend Tube Counts (Aug 2005)
Tulalip Resort Casino	Tulalip, WA	35 miles north of Seattle, WA	Restaurants, Entertainment Venue	1,986	Friday Evening Tube Counts (May 2004)
Northern Quest	Airway Heights, WA	10 miles west of Spokane, WA	Restaurants, Entertainment Venue	995	Friday Evening Turning Movement Counts (May 2004)

TRIP GENERATION ANALYSIS

The trip data was reviewed in steps: first to identify analysis periods that would represent peak conditions; second to derive trip rates within each of the analysis periods; third to determine the directional split of trips to and from the site; and fourth to assess trip type, including any diverted or pass-by trips. This process is described below.

Analysis Study Periods

In addition to typical weekday AM and PM commuter peak hour periods, the trip generation profile of casinos was reviewed over Fridays and weekends recognizing casino trip generation typically peaks during the weekend. Traffic volumes in the site vicinity were reviewed to better understand weekend traffic conditions and peaking characteristics in the area especially the distinct recreational directional trip patterns between the Portland and Seattle/Tacoma metropolitan areas.

System Volume Profile

Traffic volume profiles on I-5 and at the I-5/La Center Road interchange were reviewed to better understand the peaking characteristics of the traffic system in the study area. Traffic volumes on I-5 were assessed using data collected at the WSDOT permanent recorder station R045, which is located north of the La Center/I-5 interchange at milepost 20.14. As shown in Exhibit 1, weekend traffic volumes peak at 4:00 PM on Friday for both northbound and southbound traffic. The directional split on I-5 during this period and throughout the weekend is roughly evenly split between northbound and southbound traffic.

Exhibit 1: I-5 Weekend Volume Profile

[^12]Traffic volumes on I-5 during the week were also reviewed to note any patterns in directional split or volumes. Exhibit 2 illustrates northbound and southbound volumes on I-5 from a Tuesday through Thursday.

Exhibit 2: I-5 Weekday Volume Profile

Note: Data shown is for Tuesday, September $14^{\text {th }}, 2010$ - Thursday, September $16^{\text {th }}, 2010$

As seen in the exhibit, weekday traffic volumes peak between 3:00 and 5:00 PM. Peak volumes increase gradually throughout the week. The directional split between northbound and southbound traffic is approximately even.

Traffic volume profiles in the study area were also assessed using 24-hour tube count data collected in September 2012 at the following locations (Data sheets are provided in Appendix B):

- I-5 southbound off-ramp to La Center Road;
- I-5 southbound on-ramp from La Center Road;
- I-5 northbound off-ramp to La Center Road; and
- I-5 northbound on-ramp from La Center Road.

The location of these sites relative to the proposed Cowlitz development is shown in Figure 2.
Exhibit 3 illustrates the hourly sum of traffic volumes at the four ramps between Friday morning and Sunday night. Based on this volume profile, traffic volumes at the I-5/La Center Road interchange peak at 5:00 PM on Friday afternoon.

Kittelson \& Associates, INC.
TRANSPORTATION ENGINEERING / PLANNING

Exhibit 3: La Center/l-5 Ramps Weekend Volume Profile (Sum of Ramp Volumes)

Most traffic is anticipated to access the site by traveling north on I-5. Therefore, the traffic volume profile at the I-5 northbound off-ramp to La Center Road was assessed independently. The weekend profile is shown in Exhibit 4. As shown in the exhibit, traffic volumes also peak at 5:00 PM on Friday.

Exhibit 4: I-5 NB Off-Ramp to La Center Road Weekend Volume Profile

Based on this assessment, traffic volumes on I-5 in the vicinity of the site peak during the weekend on Friday at 4:00 PM, but are relatively constant between 3:00 and 6:00 PM. During this time, the directional split is approximately even between northbound and southbound traffic. Traffic volumes on the ramps at the I-5/La Center Road interchange peak at 5:00 PM on Friday and area also relatively constant between 3:00 and 6:00 PM.

Casino Weekend Volume Profile

Trip generation rates were also reviewed at each of the casino sites over the course of a typical weekend. Table 2 identifies the day and time when peak trip generation was experienced during the Friday-Sunday period.

Table 2: Casino Weekend Peak Periods

Casino	Peak Day	Peak Hour
Snoqualmie (September 2012) ${ }^{1}$	Friday	7:00-8:00 PM
Snoqualmie (October 2012)	Saturday	5:00-6:00 PM
Pocono Downs (2007 data) ${ }^{2}$	Saturday	9:00-10:00 PM
Pocono Downs (2009 data) ${ }^{2}$	Sunday	4:00-5:00 PM
Spirit Mountain	Sunday	2:00-3:00 PM
Seven Feathers	Saturday	3:00-4:00PM
Muckleshoot	Friday	10:00-11:00 PM
Tulalip ${ }^{3}$	Friday	7:00-8:00 PM
Northern Quest ${ }^{4}$	Friday	7:00-8:00 PM

${ }^{1}$ Data was collected at Snoqualmie in both September and October 2012. The September data was collected from 12:00 AM on Friday to 10:00 AM on Saturday.
${ }^{2}$ Data was collected at Pocono Downs in both 2007 and 2009. The casino underwent a significant expansion between these years.
${ }^{3}$ Data was collected at Tulalip from 4:00-8:00 PM on Friday.
${ }^{4}$ Data was collected at Northern Quest from 2:00-8:00 PM on Friday.

Exhibit 5 illustrates the hourly trip rate at each of the casinos during the same period. As shown in both Table 2 and Exhibit 5, the individual casinos peak at different times and days of the weekend. In part, the peak times reflect the travel distance and level of congestions between the individual site and metropolitan areas in the vicinity. For example, facilities such as Spirit Mountain and Seven Feathers located further from metropolitan areas tend to require greater travel time to reach and thus tend to experience peaks outside typical commuter peak periods.

Exhibit 5: Casino Weekend Trip Rate Profiles

Note: Data collection at Snoqualmie (in September 2012), Pocono (in 2007), Spirit Mountain, Seven Feathers, Muckleshoot, Tulalip, and Northern Quest shown for periods during which data was collected.

Combined Roadway System and Casino Weekend Volumes

The combination of existing roadway network traffic volumes on the system near the Cowlitz site and the measured casino generated traffic at other sites were both considered to determine the most appropriate weekend peak period to study. I-5 peaks between 4:00 and 5:00 PM on Friday afternoon and the ramps at the I-5/La Center Road interchange peak between 5:00 and 6:00 PM on Friday afternoon, while the casinos show a large range of peaking characteristics. Although several of the casinos show weekend peaks on Saturday or Sunday, existing traffic volumes on the La Center area roadway system are notably lower during these days, as seen in Exhibit 1 and 3. Most of the casinos experience a Friday peak near 5:00 PM, so that the combination of traffic on the roadway system and produced by the proposed casino is likely to peak near this time as well.

The directionality of existing traffic and expected trips to the site was also considered to ensure a time period was not selected when traffic on the system and traffic to the site will be traveling in opposite directions. The directionality of traffic on I-5 Friday afternoon is approximately evenly split between northbound and southbound traffic, as shown in Exhibit 1. The majority of trips to the site are expected to arrive by traveling northbound on I-5. Therefore, Friday at 5:00PM is again a conservative analysis period. Based on this review, we propose Friday from 5:00 to 6:00 PM be used as the weekend peak analysis period.

Snoqualmie Site Trip Data Collection

A trip generation study was completed at the Snoqualmie site based on the City of La Center's request to conduct an additional trip generation study at a casino in Washington state that it is directly comparable to the proposed Cowlitz Reservation Development in terms of size, content, and location. As shown in Table 1, the Snoqualmie site is similar in size and amenities, including an entertainment venue. Further, the location of the Snoqualmie site outside of the Seattle metropolitan area on an Interstate facility is akin to the Cowlitz Reservation Developments location north of the Portland metropolitan area. The Snoqualmie site is located immediately north of Interstate 90 and is readily accessible from the Seattle metropolitan area. Although traffic volumes on Interstate 90 are lower than those on Interstate 5 (ADT of 46,00 on I-90 compared to 65,000 on I-5 ${ }^{1}$), the proximity of Snoqualmie to a large metropolitan area is akin to the proposed Cowlitz development's proximity to the Portland metropolitan area.

Twenty-four hour tube count data was collected at the two accesses to the Snoqualmie Casino on Friday, September $21^{\text {st }}, 2012$ and the first full week in October, 2012 (provided in Appendix C for reference). The on-site entertainment venue was operational on both Fridays that data was collected, with the event in September likely drawing more visitors (Drew Carey performed at 8:00 PM on September $21^{\text {st }}$, 2012). The trip generation data from Snoqualmie was used in conjunction to the data

[^13]previously collected at the other six casino sites to develop the rates for the proposed Cowlitz development.

Weekend Trip Generation Rate

After selecting Friday from 5:00 to 6:00 PM as the weekend analysis study period, the available trip data for the seven sites shown in Table 1 was further analyzed to determine the appropriate casino trip generation rate for the weekend period. The peak hour trip generation rate was identified and calculated at each site between the hours of 3:00 and 8:00 PM on a Friday using the trip rate data for each site. This longer time period was selected to produce a conservative analysis recognizing customer travel distance to each site varies and likely influences peak period timing. Table 3 summarizes the corresponding average Friday peak hour trip rates.

Table 3: Casino Trip Generation Rates between 3:00-8:00 PM on Friday

Casino	Peak Time	Trip Rate (trips/gaming position)
Snoqualmie (September 2012)	$7: 00-8: 00 \mathrm{PM}$	0.48
Snoqualmie (October 2012)	$6: 00-7: 00$ PM	0.37
Pocono Downs (2007 data)	$3: 00-4: 00$ PM	0.52
Pocono Downs (2009 data)	$6: 00-7: 00 \mathrm{PM}$	0.51
Spirit Mountain	$3: 00-4: 00$ PM	0.40
Seven Feathers	$3: 00-4: 00$ PM	0.39
Muckleshoot	$6: 00-7: 00$ PM	0.40
Tulalip	$6: 00-7: 00$ PM	0.44
Northern Quest	$7: 00-8: 00$ PM	0.53

The resultant average trip rate of 0.45 trips/gaming position falls between the trip rates observed at the Snoqualmie site for the two dates in September and October (which is judged by the Applicant to be most comparable to the Cowlitz Reservation Development). A rate of 0.48 trips/gaming position was observed at the Snoqualmie site in September. While 0.48 trips/gaming position is lower than the rates reported at Pocono Downs in 2007 and 2009, the proposed Cowlitz Reservation Development is expected to more closely resemble the northwest casino sites and their trip rates. By comparison, Pocono Downs includes live harness racing and is located on the east coast with a large population base to draw from.

Based on this review, we propose to base the trip generation rate for the traffic analysis off the higher observed data at Snoqualmie in September 2012 and use 0.48 trips/gaming position for assessing

Friday 5:00-6:00 PM peak hour conditions. The 0.48 trips/gaming position rate is higher than the average rate shown in Table 3 and all is also higher than any of the other northwest casinos, thus yielding a conservative analysis.

Weekday AM and PM Trip Generation Rates

As previously noted, traffic conditions at the proposed Cowlitz Reservation Development will also be studied during the weekday morning peak period (7:00 AM to 9:00 AM) and weekday evening peak period (4:00 PM to 6:00 PM). Traffic volume data collected at the Snoqualmie site in October, 2012 and Pocono Downs in 2007 was used to develop weekday trip rates given the lack of available weekday data for any of the other northwest sites. The Snoqualmie data was collected on a Wednesday and Thursday (and averaged), while the Pocono data was collected on a Tuesday. The volume profiles throughout the weekday for these two sites are shown in Exhibit 6.

Exhibit 6: Weekday Casino Volume Profiles

The weekday AM and PM peak trip generation rates were derived by averaging the rates from both sites, as shown in Table 4.

Table 4: Casino Weekday Trip Generation Rates

Casino	AM Peak Time	Trip Rate (trips/gaming position)	PM Peak Time	Trip Rate (trips/gaming position)
Snoqualmie (October 2012)	$8: 00 \mathrm{AM}$	0.15	$5: 00 \mathrm{PM}$	0.39
Pocono Downs (2007 data)	$8: 00 \mathrm{AM}$	0.16	$4: 00 \mathrm{PM}$	0.41
	Average	0.15	Average	0.40

Directional Split of Trips to and from Site

After identifying trip generation rates for each time period, the directional split of trips to and from the site during each time period was analyzed using the data collected from the seven casinos. The split of trips in and out of each site during the three analysis periods is provided in Table 5.

Table 5: Casino Weekday Trip Generation Rates

Casino	Time Period					
	Weekend Peak		Weekday AM		Weekday PM	
	In	Out	In	Out	In	Out
Snoqualmie (September 2012)	62\%	38\%				
Snoqualmie (October 2012)	58\%	42\%	54\%	46\%	55\%	45\%
Pocono (2007 data)	45\%	55\%	59\%	41\%	38\%	62\%
Pocono (2009 data)	61\%	39\%				
Spirit Mountain	47\%	53\%				
7 Feathers	53\%	47\%				
Muckleshoot	56\%	44\%				
Tulalip	61\%	39\%				
Northern Quest	59\%	41\%				
Minimum	39\%	39\%	54\%	41\%	38\%	45\%
Maximum	61\%	61\%	59\%	46\%	55\%	62\%
Average (Snoqualmie Data)	60\%	40\%				
Average (All Data)	55\%	45\%	57\%	43\%	47\%	53\%

As seen in the table, the proportion of trips in and out of each casino varies notably from site to site. The directional split of trips at the Snoqualmie site during the weekend peak shows trips in to the casino as the dominant movement. The average directional split calculated from all sites also shows trips in as the dominant movement. Therefore, it is proposed to use the average of the data collected at Snoqualmie (60% in and 40% out) to identify the directional split during the weekend peak period. During the weekday AM peak period, the directional split at Snoqualmie and Pocono both show trips in
to the site as the dominant movement. Therefore, it is proposed to use the average of both sites to develop the weekday AM peak period (57% in and 43% out). During the weekday PM peak period, data at Snoqualmie shows trips in as the dominant movement, while data at Pocono shows the reverse. Given the similarity between Snoqualmie and the proposed Cowlitz Reservation Development in terms of distance from a major metropolitan area, the development is likely to more closely remember Snoqualmie. Therefore, the directional distribution of trips during the weekday PM peak period proposed for the trip generation analysis is 55% in and 45% out (to match the data from Snoqualmie). The proposed directional splits of traffic are shown in Table 6.

Table 6: Proposed Cowlitz Reservation Development Trip Directional Splits

Time Period	Directional Split	
	In	Out
Weekend Peak Period (Friday at 5:00 PM)	60%	40%
Weekday AM Peak Period	57%	43%
Weekday PM Peak Period	55%	45%

Trip Type

Lastly, the trip type was considered for the proposed development. Typically, a portion of trips to a commercial development will be pass-by or diverted trips. Pass-by trips represent patrons (and trips) that are currently traveling on the surrounding roadway network for some other primary purpose (such as a trip from work to home) and stop into the site en route during their normal travel. As such, pass-by trips do not result in a net increase in traffic on the surrounding transportation system and, typically, their only effect occurs at the immediate intersections and site driveways where they become turning movements. Diverted trips represent patrons (and trips) that are currently traveling on the roadway network in the site's vicinity, but must change their travel pattern to access the site. Therefore, diverted trips are not net new trips on the roadway network, but rather altered trips already on the network. All other trips to the site are considered net new trips, because they would not be present on the roadway network without the proposed development.

Traffic volumes and patterns in the vicinity of the site were reviewed to inform the assessment of trip type. Due to the relatively low volumes on NW $319^{\text {th }}$ Street which is immediately adjacent to the site, a small portion of trips generated by the proposed Cowlitz development are likely to be pass-by trips. A more significant portion of trips may be diverted from I-5 and use the interchange at La Center Road to access the site. These trips, although diverted, are still new trips to the local roadway network in the vicinity of the site.

In order to provide a conservative analysis, we are proposing to treat all trips to and from the site as net new trips. No adjustments will be made for pass-by or diverted trips.

CONCLUSIONS

Peak trip generation rates for use in the proposed Cowlitz Reservation Development traffic analysis were derived based on a review of existing literature pertaining to casino trip generation and data collected at seven casinos. The proposed trip rates and directional splits to be used for the three identified peak hour time periods in the transportation impact analysis and IJR are summarized in Table 7.

Table 7: Proposed Cowlitz Reservation Development Trip Generation Rates and Directional Split

Time Period	Trip Rate (trips/gaming position)	Directional Split	
		In	Out
Weekend Peak Period (Friday at 5:00 PM)	0.48	60\%	40\%
Weekday AM Peak Period	0.15	57\%	43\%
Weekday PM Peak Period	0.40	55\%	45s\%

Please review this memorandum and provide us with any questions or comments by November 28, 2012 so that we may proceed with preparation of the respective studies in a timely manner. If you have questions, please contact us at (503) 228-5230.

Appendix A Literature Review

APPENDIX A: LITERATURE REVIEW

The literature review included the following studies:

Ackeret and Hosea. Trip Generation Rates for Las Vegas Area Hotel-Casinos. ITE Journal, May 1992.
This report summarized driveway counts conducted at various Las Vegas area casinos over a five-year period.

Box and Bunte. Gaming Casino Traffic. ITE Journal, March 1998.
This report summarized trip generation rates at the St. Charles Casino and Casino Queen, both located near St. Louis, MO based on the number of gaming positions.

Trueblood and Gude. Trip Generation Characteristics of Small to Medium Sized Casinos. ITE Annual Meeting, 2001.

This report summarized rates at small to medium sized casinos in the Omaha metro area based on the number of slot machines.

Rowe, Kaseko, and Ackeret. Recalibration of Trip Generation Model for Las Vegas Hotel/Casinos. ITE Journal, May 2002.

This report summarized the trip generation of hotel-casinos in Las Vegas based on gaming positions, rooms, employees, and casino floor square footage.

Huntington and Butorac. Review of the Transportation Element of the Environmental Assessment for Cowlitz Indian Tribe. Kittelson \& Associates Report, June 7, 2004.

During the review of a TIA for another casino in the Pacific Northwest, KAI conducted counts at two similar casinos in the region, Northern Quest Casino and Tulalip Casino. Trip generation rates were developed based on the number of gaming machines.

Trip Generation, $9^{\text {th }}$ Edition. Institute of Transportation Engineers (ITE), 2012.
The ITE Trip Generation Manual was reviewed for casino land uses. It was determined that the only land use close to a casino in the manual, Casino/Video Lottery Establishment, was not an appropriate representation of the proposed Cascade Locks casino.

Trip Generation Rates Summary

The following table is a summary of the trip generation rates found in the studies presented above. Specifically, the table summarizes rates for the Friday p.m. peak of the adjacent street using number of
gaming positions as the variable. A summary of Saturday peak hour rates is also included. However, only two of the studies summarized in this memorandum contained Saturday peak hour data and only one of those studies contained rates for the peak of the adjacent street.

	Average Trips per Gaming Position, Friday PM Peak - Adj. Street	Average Trips per Gaming Position, Saturday
Casino St. Charles	0.43	0.64 (Peak of Generator)
Casino Queen	0.57	$\mathrm{~N} / \mathrm{A}$
Omaha Area	0.59	0.64 (Peak of Adj. Street)
Vegas Local Casinos	0.79	$\mathrm{~N} / \mathrm{A}$
Northern Quest	0.49	$\mathrm{~N} / \mathrm{A}$
Tulalip Casino	0.42	$\mathrm{~N} / \mathrm{A}$
Average	$\mathbf{0 . 5 5}$	$\mathbf{0 . 6 4}$
Average w/o Vegas	$\mathbf{0 . 5 0}$	$\mathbf{0 . 6 4}$

As shown in the summary table, the average trip generation rate during the Friday p.m. peak hour is 0.55 vehicles/gaming position. If the Las Vegas casinos, which generally have different trip generation characteristics, are removed from the average, the resulting average is 0.50 vehicles/gaming position during the Friday p.m. peak hour. The Saturday peak hour average rate, although based on very limited data, is 0.64 vehicles/gaming position.

Conclusions

After completing the literature review, we found that much of the national data was either incomplete or for casinos that were not similar in use, size, and geographic location to the Cowlitz Reservation Development (e.g. Las Vegas casinos and riverboat casinos). Although the literature review provided some interesting insights into the general trip generation characteristics of casinos, the rates provided in these studies did not necessarily reflect the rates of a tribal casino as is being proposed by Cowlitz. Some conclusions from the literature review include:

- Gaming positions correlate well with site trip generation and serve as a recommended independent variable.
- An entertainment venue in which concerts are held can also increase the trip generation potential of a casino.
- Casino/resort facilities located in Las Vegas and Reno are not indicative of trip generation potential for sites similar to the proposed development due to the sheer magnitude in size difference and the area in which they are located.
- Ancillary uses at a casino (i.e. restaurants, retail space) are encompassed in the casino's overall trip generation rate.
- The presence of an on-site hotel may reduce the casino's peak trip generation rate relative to sites without on-site housing.

Appendix B Tube Count Volume Data Sheets from I-5/La Center Rd Ramps

LOCATION: NW 319th St west of I-5 SB ramp SPECIFIC LOCATION: 0 ft from CITY/STATE: La Center, WA				QC JOB \#: 10797101DIRECTION: EB/WBDATE:Sep 14 2012-Sep 162012						
Start Time	Mon	Tue	Wed	Thu	$\begin{gathered} \text { Fri } \\ \text { 14-Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	$\begin{gathered} \text { Sat } \\ \text { 15-Sep-12 } \end{gathered}$	$\begin{array}{\|c} \text { Sun-Sep-12 } \end{array}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM					1	1	18	18	12	\square
1:00 AM					2	2	11	22	12	\square
2:00 AM					3	3	6	0	3	-
3:00 AM					2	2	2	8	4]
4:00 AM					9	9	13	2	8	\square
5:00 AM					35	35	19	20	25	\square
6:00 AM					80	80	27	33	47	\square
7:00 AM					117	117	61	35	71	\square
8:00 AM					145	145	83	54	94	\square
9:00 AM					115	115	126	124	122	\square
10:00 AM					107	107	130	109	115	\square
11:00 AM					120	120	145	108	124	\square
12:00 PM					108	108	148	117	124	
1:00 PM					93	93	103	139	112	\square
2:00 PM					148	148	161	116	142 -	
3:00 PM					166	166 -	135	111	137	-
4:00 PM					168	168	141	120	143	
5:00 PM					168	168	116	98	127	-
6:00 PM					139	139	111	76	109]
7:00 PM					90	90	78	62	77]
8:00 PM					70	70	73	48	64]
9:00 PM					33	33	54	21	36	
10:00 PM					35	35	45	12	31	
11:00 PM					15	15	19	5	13	\square
Day Total					1969	1969	1825	1458	1752	
\% Weekday Average					100.0\%					
\% Week Average					112.4\%	112.4\%	104.2\%	83.2\%		
AM Peak Volume					$\begin{gathered} 8: 00 \mathrm{AM} \\ 145 \end{gathered}$	$\begin{gathered} 8: 00 \mathrm{AM} \\ 145 \end{gathered}$	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 145 \end{gathered}$	$\begin{gathered} 9: 00 \mathrm{AM} \\ 124 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 124 \end{gathered}$	
PM Peak					4:00 PM	4:00 PM	2:00 PM	1:00 PM	4:00 PM	
Volume					168	168	161	139	143	
Comments:										

Report generated on 10/8/2012 8:01 AM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: NW 319th St west of I-5 SB ramp SPECIFIC LOCATION: 0 ft from CITY/STATE: La Center, WA									QC JOB \#: 10797101 DIRECTION: EB/WB DATE: Sep 17 2012 - Sep 23 2012	
Start Time	$\begin{gathered} \text { Mon } \\ 17-\text { Sep-12 } \end{gathered}$	Tue 18-Sep-12	Wed 19-Sep-12	Thu 20-Sep-12	$\begin{gathered} \text { Fri } \\ \text { 21-Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	$\begin{gathered} \text { Sat } \\ \text { 22-Sep-12 } \end{gathered}$	$\begin{gathered} \text { Sun } \\ 23-\text { Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	1	6	3	11	11	6	10	30	10	\square
1:00 AM	9	1	2	0	2	3	20	15	7	\square
2:00 AM	6	5	2	4	5	4	3	2	4]
3:00 AM	2	4	5	3	9	5	3	8	5]
4:00 AM	16	11	5	13	18	13	4	1	10	\square
5:00 AM	30	41	31	35	30	33	17	0	26	-
6:00 AM	89	68	74	68	87	77	23	12	60	-
7:00 AM	124	158	145	159	137	145	69	28	117	
8:00 AM	89	105	158	141	116	122	117	73	114	
9:00 AM	97	96	71	77	75	83	88	98	86]
10:00 AM	116	80	97	92	111	99	115	89	100	
11:00 AM	79	131	116	99	132	111	159	125	120	
12:00 PM	87	99	104	83	118	98	136	121	107]
1:00 PM	108	132	102	123	124	118	114	163	124	
2:00 PM	105	111	87	114	149	113	138	104	115	\square
3:00 PM	101	135	147	156	142	136	117	92	127	
4:00 PM	123	134	146	112	136	130	133	98	126	
5:00 PM	117	129	140	129	143	132	116	93	124	
6:00 PM	115	88	102	112	140	111	110	77	106]
7:00 PM	71	80	86	74	77	78	86	73	78]
8:00 PM	44	50	38	59	35	45	76	41	49	\square
9:00 PM	25	39	30	35	46	35	42	44	37	
10:00 PM	31	23	11	26	49	28	33	19	27	
11:00 PM	4	6	7	7	24	10	34	3	12	\square
Day Total	1589	1732	1709	1732	1916	1735	1763	1409	1691	
\% Weekday Average	80.7\%	99.8\%	98.5\%	99.8\%	110.4\%					
\% Week Average	90.7\%	102.4\%	101.1\%	102.4\%	113.3\%	102.6\%	104.3\%	83.3\%		
AM Peak Volume	$\begin{gathered} 7: 00 \text { AM } \\ 124 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 158 \end{gathered}$	$\begin{gathered} \text { 8:00 AM } \\ 158 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 159 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 137 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 145 \end{gathered}$	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 159 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 125 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 120 \end{gathered}$	
PM Peak Volume	$\begin{gathered} \text { 4:00 PM } \\ 123 \end{gathered}$	$\begin{gathered} 3: 00 \text { PM } \\ 135 \end{gathered}$	$\begin{gathered} \text { 3:00 PM } \\ 147 \end{gathered}$	$\begin{gathered} \text { 3:00 PM } \\ 156 \end{gathered}$	$\begin{gathered} \text { 2:00 PM } \\ 149 \end{gathered}$	$\begin{gathered} \text { 3:00 PM } \\ 136 \end{gathered}$	$\begin{gathered} \text { 2:00 PM } \\ 138 \end{gathered}$	$\begin{gathered} 1: 00 \text { PM } \\ 163 \end{gathered}$	$\begin{gathered} 3: 00 \text { PM } \\ 127 \end{gathered}$	
Comments:										

Report generated on 10/8/2012 8:01 AM

Report generated on 10/8/2012 8:01 AM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

Report generated on 10/8/2012 8:01 AM

LOCATION: NW 319th St west of I-5 SB ramp SPECIFIC LOCATION: 0 ft from CITY/STATE: La Center, WA									QC JOB \#: 10797101DIRECTION: EB/WBDATE:Sep 10 2012-Sep 162012	
Start Time	Mon $10-S e p-12$	$\begin{gathered} \text { Tue } \\ \text { 11-Sep-12 } \end{gathered}$	Wed 12-Sep-12	Thu 13-Sep-12	$\begin{gathered} \text { Fri } \\ \text { 14-Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	Sat 15-Sep-12	$\underset{16-\text { Sun-12 }}{ }$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	1	6	3	11	1	4	18	18	8	-
1:00 AM	9	1	2	0	2	3	11	22	7	\square
2:00 AM	6	5	2	4	3	4	6	0	4]
3:00 AM	2	4	5	3	2	3	2	8	4]
4:00 AM	16	11	5	13	9	11	13	2	10	\square
5:00 AM	30	41	31	35	35	34	19	20	30	\square
6:00 AM	89	68	74	68	80	76	27	33	63	
7:00 AM	124	158	145	159	117	141	61	35	114	
8:00 AM	89	105	158	141	145	128	83	54	111	
9:00 AM	97	96	71	77	115	91	126	124	101	\square
10:00 AM	116	80	97	92	107	98	130	109	104	
11:00 AM	79	131	116	99	120	109	145	108	114	
12:00 PM	87	99	104	83	108	96	148	117	107]
1:00 PM	108	132	102	123	93	112	103	139	114	
2:00 PM	105	111	87	114	148	113	161	116	120	-
3:00 PM	101	135	147	156	166	141	135	111	136	
4:00 PM	123	134	146	112	168	137	141	120	135	
5:00 PM	117	129	140	129	168	137	116	98	128	I
6:00 PM	115	88	102	112	139	111	111	76	106]
7:00 PM	71	80	86	74	90	80	78	62	77]
8:00 PM	44	50	38	59	70	52	73	48	55	\square
9:00 PM	25	39	30	35	33	32	54	21	34	
10:00 PM	31	23	11	26	35	25	45	12	26	
11:00 PM	4	6	7	7	15	8	19	5	9	\square
Day Total	1589	1732	1709	1732	1969	1746	1825	1458	1717	
\% Weekday Average	91.0\%	99.2\%	97.9\%	99.2\%	112.8\%					
\% Week Average	92.5\%	100.9\%	99.5\%	100.9\%	114.7\%	101.7\%	106.3\%	84.9\%		
AM Peak Volume	7:00 AM 124	$\begin{gathered} 7: 00 \mathrm{AM} \\ 158 \end{gathered}$	$\begin{gathered} 8: 00 \text { AM } \\ 158 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 159 \end{gathered}$	$\begin{gathered} 8: 00 \mathrm{AM} \\ 145 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 141 \end{gathered}$	$\begin{gathered} \hline 11: 00 \text { AM } \\ 145 \end{gathered}$	$\begin{gathered} 9: 00 \mathrm{AM} \\ 124 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 114 \end{gathered}$	
PM Peak Volume	$\begin{gathered} \text { 4:00 PM } \\ 123 \end{gathered}$	$\begin{gathered} \hline 3: 00 \mathrm{PM} \\ 135 \end{gathered}$	$\begin{gathered} 3: 00 \mathrm{PM} \\ 147 \end{gathered}$	$\begin{gathered} 3: 00 \mathrm{PM} \\ 156 \end{gathered}$	$\begin{gathered} 4: 00 \text { PM } \\ 168 \end{gathered}$	$\begin{gathered} \text { 3:00 PM } \\ 141 \end{gathered}$	$\begin{gathered} \text { 2:00 PM } \\ 161 \end{gathered}$	$\begin{gathered} 1: 00 \mathrm{PM} \\ 139 \end{gathered}$	$\begin{gathered} \text { 3:00 PM } \\ 136 \end{gathered}$	
Comments:										

Report generated on 10/8/2012 8:01 AM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: NW La Center Rd east of Paradise Park Rd SPECIFIC LOCATION: 0 ft from CITY/STATE: La Center, WA					QC JOB \#: 10797102DIRECTION: EB/WBDATE:Sep 14 2012-Sep 162012					
Start Time	Mon	Tue	Wed	Thu	$\begin{gathered} \text { Fri } \\ \text { 14-Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	$\begin{gathered} \text { Sat } \\ \text { 15-Sep-12 } \end{gathered}$	$\begin{array}{\|c} \text { Sun-Sep-12 } \end{array}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM					137	137	173	191	167	\square
1:00 AM					91	91	155	124	123	\square
2:00 AM					89	89	100	89	93	\square
3:00 AM					85	85	88	82	85	\square
4:00 AM					166	166	110	99	125	\square
5:00 AM					277	277	160	100	179	\square
6:00 AM					536	536	182	158	292	
7:00 AM					784	784	308	250	447	
8:00 AM					644	644	417	279	447	
9:00 AM					498	498	507	430	478	
10:00 AM					492	492	579	486	519	\square
11:00 AM					568	568	625	464	552	-
12:00 PM					574	574	677	583	611	
1:00 PM					619	619	675	580	625	
2:00 PM					674	674	667	546	629	\square
3:00 PM					869	869	690	599	719	\square
4:00 PM					848	848	723	630	734	
5:00 PM					895	895	680	586	720	\square
6:00 PM					784	784	599	571	651]
7:00 PM					560	560	567	498	542	I
8:00 PM					470	470	484	384	446	-
9:00 PM					482	482	410	315	402	I
10:00 PM					383	383	316	188	296]
11:00 PM					281	281	268	180	243	
Day Total					11806	11806	10160	8412	10125	
\% Weekday Average					100.0\%					
\% Week Average					116.6\%	116.6\%	100.3\%	83.1\%		
AM Peak Volume					$\begin{gathered} 7: 00 \mathrm{AM} \\ 784 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 784 \end{gathered}$	$\begin{aligned} & 11: 00 \text { AM } \\ & 625 \end{aligned}$	$\begin{gathered} 10: 00 \text { AM } \\ 486 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 552 \end{gathered}$	
PM Peak					5:00 PM	5:00 PM	4:00 PM	4:00 PM	4:00 PM	
Volume					895	895	723	630	734	
Comments:										

Report generated on 10/8/2012 8:02 AM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: NW La Center Rd east of Paradise Park Rd SPECIFIC LOCATION: 0 ft from CITY/STATE: La Center, WA									QC JOB \#: 10797102DIRECTION: EB/WBDATE:Sep 17 2012-Sep 232012	
Start Time	$\begin{gathered} \text { Mon } \\ 17-\text { Sep-12 } \end{gathered}$	Tue 18-Sep-12	Wed 19-Sep-12	Thu 20-Sep-12	$\begin{gathered} \text { Fri } \\ 21-\text { Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	Sat 22-Sep-12	$\begin{gathered} \text { Sun } \\ 23-\text { Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	132	112	98	121	154	123	195	161	139]
1:00 AM	80	71	87	85	90	83	124	127	95	\square
2:00 AM	65	57	92	78	75	73	132	120	88	\square
3:00 AM	88	89	77	80	89	85	101	89	88	\square
4:00 AM	165	133	149	142	137	145	99	87	130	-
5:00 AM	321	308	309	311	267	303	142	91	250	
6:00 AM	575	583	594	554	551	571	209	136	457	\square
7:00 AM	770	827	785	744	735	772	343	263	638	
8:00 AM	592	659	665	624	604	629	424	317	555	\square
9:00 AM	536	460	443	448	521	482	465	436	473	
10:00 AM	440	420	463	419	492	447	571	427	462	
11:00 AM	483	503	457	480	553	495	614	475	509	
12:00 PM	501	448	505	480	556	498	580	533	515	-
1:00 PM	499	506	514	566	600	537	589	563	548	
2:00 PM	545	640	597	624	736	628	635	626	629	-
3:00 PM	764	758	759	817	826	785	669	637	747	
4:00 PM	788	865	886	850	864	851	668	549	781	I
5:00 PM	922	913	945	929	919	926	653	568	836	
6:00 PM	745	705	700	776	838	753	577	509	693]
7:00 PM	505	582	587	578	556	562	460	459	532	-
8:00 PM	394	460	438	435	418	429	441	407	428]
9:00 PM	304	352	304	347	517	365	393	259	354	\square
10:00 PM	200	216	207	248	380	250	331	206	255	\square
11:00 PM	170	184	210	203	297	213	280	184	218	-
Day Total	10584	10851	10871	10939	11775	11005	9695	8229	10420	
\% Weekday Average	89.6\%	98.6\%	98.8\%	99.4\%	107.0\%					
\% Week Average	104.5\%	104.1\%	104.3\%	105.0\%	113.0\%	105.6\%	93.0\%	79.0\%		
AM Peak	7:00 AM	11:00 AM	11:00 AM	7:00 AM						
Volume	770	827	785	744	735	772	614	475	638	
PM Peak Volume	$\begin{gathered} \text { 5:00 PM } \\ 922 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 913 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 945 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 929 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 919 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 926 \end{gathered}$	$\begin{gathered} 3: 00 \text { PM } \\ 669 \end{gathered}$	$\begin{gathered} 3: 00 \text { PM } \\ 637 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 836 \end{gathered}$	
Comments:										

Report generated on 10/8/2012 8:02 AM

Report generated on 10/8/2012 8:02 AM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: NW La Center Rd east of Paradise Park Rd SPECIFIC LOCATION: 0 ft from CITY/STATE: La Center, WA									QC JOB \#: 10797102DIRECTION: EB/WBDATE: $\operatorname{Sep} 10$ 2012 - Sep 162012	
Start Time	$\begin{gathered} \text { Mon } \\ 10-\text { Sep-12 } \end{gathered}$	Tue 11-Sep-12	Wed 12-Sep-12	Thu 13-Sep-12	$\begin{gathered} \text { Fri } \\ \text { 14-Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	Sat 15-Sep-12	$\begin{gathered} \text { Sun } \\ 16-\text { Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	132	112	98	121	137	120	173	191	138	
1:00 AM	80	71	87	85	91	83	155	124	99	-
2:00 AM	65	57	92	78	89	76	100	89	81	\square
3:00 AM	88	89	77	80	85	84	88	82	84]
4:00 AM	165	133	149	142	166	151	110	99	138	\square
5:00 AM	321	308	309	311	277	305	160	100	255	
6:00 AM	575	583	594	554	536	568	182	158	455	\square
7:00 AM	770	827	785	744	784	782	308	250	638	
8:00 AM	592	659	665	624	644	637	417	279	554	\square
9:00 AM	536	460	443	448	498	477	507	430	475	
10:00 AM	440	420	463	419	492	447	579	486	471	\square
11:00 AM	483	503	457	480	568	498	625	464	511	
12:00 PM	501	448	505	480	574	502	677	583	538	
1:00 PM	499	506	514	566	619	541	675	580	566	
2:00 PM	545	640	597	624	674	616	667	546	613	\square
3:00 PM	764	758	759	817	869	793	690	599	751	\square
4:00 PM	788	865	886	850	848	847	723	630	799	\square
5:00 PM	922	913	945	929	895	921	680	586	839	\square
6:00 PM	745	705	700	776	784	742	599	571	697]
7:00 PM	505	582	587	578	560	562	567	498	554	\square
8:00 PM	394	460	438	435	470	439	484	384	438]
9:00 PM	304	352	304	347	482	358	410	315	359	」
10:00 PM	200	216	207	248	383	251	316	188	251	
11:00 PM	170	184	210	203	281	210	268	180	214	\square
Day Total	10584	10851	10871	10939	11806	11010	10160	8412	10518	
\% Weekday Average	96.1\%	98.6\%	98.7\%	99.4\%	107.2\%					
\% Week Average	100.6\%	103.2\%	103.4\%	104.0\%	112.2\%	104.7\%	96.6\%	80.0\%		
AM Peak Volume	$\begin{gathered} \text { 7:00 AM } \\ 770 \end{gathered}$	$\begin{aligned} & 7: 00 \mathrm{AM} \\ & 827 \end{aligned}$	$\begin{aligned} & 7: 00 \mathrm{AM} \\ & 785 \end{aligned}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 744 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 784 \end{gathered}$	$\begin{gathered} \text { 7:00 AM } \\ 782 \end{gathered}$	$\begin{aligned} & 11: 00 \text { AM } \\ & 625 \end{aligned}$	$\begin{gathered} 10: 00 \text { AM } \\ 486 \end{gathered}$	$\begin{gathered} \text { 7:00 AM } \\ 638 \end{gathered}$	
PM Peak Volume	5:00 PM 922	$\begin{gathered} \text { 5:00 PM } \\ 913 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 945 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 929 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 895 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 921 \end{gathered}$	$\begin{gathered} \text { 4:00 PM } \\ 723 \end{gathered}$	$\begin{gathered} \text { 4:00 PM } \\ 630 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 839 \end{gathered}$	
Comments:										

Report generated on 10/8/2012 8:02 AM

LOCATION: I-5 NB on-ramp at La Center Rd SPECIFIC LOCATION: 0 ft from CITY/STATE: La Center, WA									QC JOB \#: 10797105DIRECTION: NBDATE: Sep 182012 - Sep 232012	
Start Time	Mon	Tue 18-Sep-12	Wed 19-Sep-12	Thu 20-Sep-12	$\begin{gathered} \text { Fri } \\ 21-\text { Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	$\begin{gathered} \text { Sat } \\ \text { 22-Sep-12 } \end{gathered}$	$\begin{gathered} \text { Sun } \\ 23-\text { Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM		12	16	10	22	15	14	16	15	\square
1:00 AM		11	16	10	9	12	12	14	12	\square
2:00 AM		18	15	17	14	16	19	10	16	
3:00 AM		29	19	19	21	22	10	10	18	-
4:00 AM		23	36	32	36	32	10	17	26	-
5:00 AM		54	70	60	52	59	31	18	48	\square
6:00 AM		126	115	116	116	118	45	30	91	
7:00 AM		156	153	137	128	144	78	43	116	
8:00 AM		137	113	129	121	125	97	75	112	
9:00 AM		122	105	96	91	104	91	101	101	
10:00 AM		79	109	131	116	109	113	101	108	
11:00 AM		124	118	61	129	108	100	86	103	
12:00 PM		85	80	105	122	98	122	119	106	
1:00 PM		119	113	95	107	109	128	90	109	
2:00 PM		101	116	108	114	110	96	127	110	\square
3:00 PM		143	151	151	170	154	103	84	$134-$	
4:00 PM		152	136	141	155	146	99	105	131	
5:00 PM		118	145	107	137	127	96	86	115	-
6:00 PM		100	84	100	107	98	87	80	93	
7:00 PM		86	58	101	87	83	58	66	76	,
8:00 PM		35	51	58	46	48	55	48	49	\square
9:00 PM		29	49	39	132	62	47	47	57	
10:00 PM		24	18	22	42	27	25	20	25	-
11:00 PM		17	23	14	24	20	26	16	20	
Day Total		1900	1909	1859	2098	1946	1562	1409	1791	
\% Weekday Average		97.6\%	98.1\%	95.5\%	107.8\%					
\% Week Average		106.1\%	106.6\%	103.8\%	117.1\%	108.7\%	87.2\%	78.7\%		
AM Peak Volume		$\begin{gathered} 7: 00 \mathrm{AM} \\ 156 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 153 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 137 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 129 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 144 \end{gathered}$	$\begin{gathered} 10: 00 \mathrm{AM} \\ 113 \end{gathered}$	$\begin{gathered} 9: 00 \mathrm{AM} \\ 101 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 116 \end{gathered}$	
PM Peak Volume		$\begin{gathered} \text { 4:00 PM } \\ 152 \end{gathered}$	$\begin{gathered} \text { 3:00 PM } \\ 151 \end{gathered}$	$\begin{gathered} \hline 3: 00 \text { PM } \\ 151 \\ \hline \end{gathered}$	$\begin{gathered} \text { 3:00 PM } \\ 170 \end{gathered}$	$\begin{gathered} \text { 3:00 PM } \\ 154 \end{gathered}$	$\begin{gathered} 1: 00 \text { PM } \\ 128 \end{gathered}$	$\begin{gathered} \text { 2:00 PM } \\ 127 \end{gathered}$	$\begin{gathered} 3: 00 \text { PM } \\ 134 \end{gathered}$	
Comments:										

Report generated on 10/8/2012 8:02 AM

Report generated on 10/8/2012 8:02 AM

Report generated on 10/8/2012 8:02 AM

Report generated on 10/8/2012 8:02 AM

LOCATION: I-5 NB on-ramp at La Center Rd SPECIFIC LOCATION: 0 ft from CITY/STATE: La Center, WA									QC JOB \#: 10797105 DIRECTION: NB DATE: $\operatorname{Sep} 17$ 2012-Sep 232012	
Start Time	$\begin{gathered} \text { Mon } \\ \text { 17-Sep-12 } \end{gathered}$	Tue 18-Sep-12	Wed 19-Sep-12	Thu 20-Sep-12	$\begin{gathered} \text { Fri } \\ 21-\text { Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	$\begin{gathered} \text { Sat } \\ \text { 22-Sep-12 } \end{gathered}$	$\begin{gathered} \text { Sun } \\ 23-\text { Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	20	12	16	10	22	16	14	16	16]
1:00 AM	9	11	16	10	9	11	12	14	12	\square
2:00 AM	6	18	15	17	14	14	19	10	14	-
3:00 AM	19	29	19	19	21	21	10	10	18	\square
4:00 AM	51	23	36	32	36	36	10	17	29	
5:00 AM	64	54	70	60	52	60	31	18	50	
6:00 AM	105	126	115	116	116	116	45	30	93	
7:00 AM	145	156	153	137	128	144	78	43	120	
8:00 AM	120	137	113	129	121	124	97	75	113	
9:00 AM	104	122	105	96	91	104	91	101	101	,
10:00 AM	106	79	109	131	116	108	113	101	108	-
11:00 AM	117	124	118	61	129	110	100	86	105	,
12:00 PM	102	85	80	105	122	99	122	119	105	,
1:00 PM	83	119	113	95	107	103	128	90	105]
2:00 PM	0	101	116	108	114	88	96	127	95	\square
3:00 PM	0	143	151	151	170	123	103	84	115	-
4:00 PM	120	152	136	141	155	141	99	105	130	
5:00 PM	99	118	145	107	137	121	96	86	113	1
6:00 PM	89	100	84	100	107	96	87	80	92]
7:00 PM	67	86	58	101	87	80	58	66	75	」
8:00 PM	33	35	51	58	46	45	55	48	47	-
9:00 PM	27	29	49	39	132	55	47	47	53	
10:00 PM	23	24	18	22	42	26	25	20	25	
11:00 PM	19	17	23	14	24	19	26	16	20	\square
Day Total	1528	1900	1909	1859	2098	1860	1562	1409	1754	
\% Weekday Average	82.2\%	102.2\%	102.6\%	99.9\%	112.8\%					
\% Week Average	87.1\%	108.3\%	108.8\%	106.0\%	119.6\%	106.0\%	89.1\%	80.3\%		
AM Peak Volume	$\begin{gathered} 7: 00 \text { AM } \\ 145 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 156 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 153 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 137 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 129 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 144 \end{gathered}$	$\begin{gathered} \hline 10: 00 \mathrm{AM} \\ 113 \end{gathered}$	$\begin{gathered} 9: 00 \mathrm{AM} \\ 101 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 120 \end{gathered}$	
PM Peak Volume	$\begin{gathered} \text { 4:00 PM } \\ 120 \end{gathered}$	$\begin{gathered} \text { 4:00 PM } \\ 152 \end{gathered}$	$\begin{gathered} \hline 3: 00 \text { PM } \\ 151 \end{gathered}$	$\begin{gathered} \hline 3: 00 \text { PM } \\ 151 \end{gathered}$	$\begin{gathered} \text { 3:00 PM } \\ 170 \end{gathered}$	$\begin{gathered} 4: 00 \text { PM } \\ 141 \end{gathered}$	$\begin{gathered} 1: 00 \text { PM } \\ 128 \end{gathered}$	$\begin{gathered} \text { 2:00 PM } \\ 127 \end{gathered}$	$\begin{gathered} \text { 4:00 PM } \\ 130 \end{gathered}$	
Comments:										

Report generated on 10/8/2012 8:02 AM

LOCATION: I-5 NB off-ramp at La Center Rd SPECIFIC LOCATION: 0 ft from CITY/STATE: La Center, WA									QC JOB \#: 10797106DIRECTION: NBDATE: Sep 14 2012 - Sep 162012	
Start Time	Mon	Tue	Wed	Thu	$\begin{gathered} \text { Fri } \\ \text { 14-Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	Sat 15-Sep-12	$\underset{16-\text { Sun-12 }}{ }$	Average Week Hourly Traffic	Average Week Profile
12:00 AM					62	62	89	101	84]
1:00 AM					33	33	63	56	51	\square
2:00 AM					46	46	41	33	40	\square
3:00 AM					37	37	35	17	30	-
4:00 AM					31	31	15	21	22	\square
5:00 AM					51	51	36	29	39	\square
6:00 AM					85	85	50	43	59	-
7:00 AM					182	182	105	83	123	
8:00 AM					158	158	120	77	118	
9:00 AM					210	210	142	99	150	\square
10:00 AM					174	174	191	133	166	\square
11:00 AM					217	217	228	199	215	
12:00 PM					273	273	278	242	264	\square
1:00 PM					305	305	285	286	292	
2:00 PM					332	332	340	311	328	\square
3:00 PM					487	487 -	356	248	364	
4:00 PM					471	471	351	257	360	
5:00 PM					524	524	365	242	377	
6:00 PM					448	448	328	225	334]
7:00 PM					313	313	297	214	275	\square
8:00 PM					323	323	272	168	254	-
9:00 PM					282	282	252	137	224]
10:00 PM					218	218	178	128	175]
11:00 PM					157	157	153	73	128	1
Day Total					5419	5419	4570	3422	4472	
\% Weekday Average					100.0\%					
\% Week Average					121.2\%	121.2\%	102.2\%	76.5\%		
AM Peak Volume					$\begin{gathered} 11: 00 \text { AM } \\ 217 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 217 \end{gathered}$	$\begin{gathered} \hline 11: 00 \text { AM } \\ 228 \end{gathered}$	$\begin{gathered} \hline 11: 00 \text { AM } \\ 199 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 215 \end{gathered}$	
PM Peak Volume					$\begin{gathered} \text { 5:00 PM } \\ 524 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 524 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 365 \end{gathered}$	$\begin{gathered} 2: 00 \text { PM } \\ 311 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 377 \end{gathered}$	
Comments:										

Report generated on 10/8/2012 8:02 AM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: I-5 NB off-ramp at La Center Rd SPECIFIC LOCATION: 0 ft from CITY/STATE: La Center, WA				QC JOB \#: 10797106DIRECTION: NBDATE:Sep 17 2012-Sep 232012						
Start Time	Mon 17-Sep-12	$\begin{gathered} \text { Tue } \\ 18 \text {-Sep-12 } \end{gathered}$	Wed 19-Sep-12	$\begin{gathered} \text { Thu } \\ 20-\text { Sep-12 } \end{gathered}$	$\begin{gathered} \text { Fri } \\ 21-\text { Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	Sat 22-Sep-12	$\begin{gathered} \text { Sun } \\ 23-\text { Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	38	50	56	52	71	53	90	90	64]
1:00 AM	34	32	40	37	45	38	57	44	41	\square
2:00 AM	19	34	26	31	25	27	29	56	31	\square
3:00 AM	18	30	21	37	32	28	31	14	26	\square
4:00 AM	30	21	27	27	21	25	25	17	24	-
5:00 AM	39	49	43	52	42	45	35	26	41	\square
6:00 AM	72	89	78	67	97	81	53	32	70	-
7:00 AM	137	180	158	171	176	164	112	93	147	
8:00 AM	141	215	167	221	173	183	91	69	154	
9:00 AM	154	170	159	173	165	164	129	117	152	
10:00 AM	163	143	175	202	185	174	174	115	165	
11:00 AM	195	247	244	230	237	231	265	198	231	
12:00 PM	216	211	246	222	264	232	264	243	238	\square
1:00 PM	264	236	260	282	267	262	252	236	257	
2:00 PM	292	310	299	295	340	307	299	334	310	\square
3:00 PM	379	379	390	425	417	398	362	333	384	I
4:00 PM	448	456	479	506	470	472	294	281	419	-
5:00 PM	585	553	521	529	562	550	331	281	480	
6:00 PM	456	410	435	501	484	457	300	256	406]
7:00 PM	310	372	326	309	380	339	250	246	313	I
8:00 PM	195	292	261	285	241	255	253	208	248	I
9:00 PM	178	256	217	220	249	224	215	159	213	\square
10:00 PM	128	134	152	128	183	145	191	101	145]
11:00 PM	82	78	119	102	144	105	146	103	111	
Day Total	4573	4947	4899	5104	5270	4959	4248	3652	4670	
\% Weekday Average	84.4\%	99.8\%	98.8\%	102.9\%	106.3\%					
\% Week Average	102.3\%	105.9\%	104.9\%	109.3\%	112.8\%	106.2\%	91.0\%	78.2\%		
AM Peak Volume	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 195 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 247 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 244 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 230 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 237 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 231 \end{gathered}$	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 265 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 198 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 231 \end{gathered}$	
PM Peak Volume	$\begin{gathered} \text { 5:00 PM } \\ 585 \end{gathered}$	$\begin{gathered} 5: 00 \mathrm{PM} \\ 553 \end{gathered}$	$\begin{gathered} 5: 00 \mathrm{PM} \\ 521 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 529 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 562 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 550 \end{gathered}$	$\begin{gathered} 3: 00 \text { PM } \\ 362 \end{gathered}$	$\begin{gathered} 2: 00 \mathrm{PM} \\ 334 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 480 \end{gathered}$	
Comments:										

Report generated on 10/8/2012 8:02 AM

Report generated on 10/8/2012 8:02 AM

Report generated on 10/8/2012 8:02 AM

LOCATION: I-5 NB off-ramp at La Center Rd SPECIFIC LOCATION: 0 ft from CITY/STATE: La Center, WA									QC JOB \#: 10797106DIRECTION: NBDATE: Sep 10 2012 - Sep 162012	
Start Time	$\begin{gathered} \text { Mon } \\ 10-\text { Sep-12 } \end{gathered}$	Tue 11-Sep-12	Wed 12-Sep-12	Thu 13-Sep-12	$\begin{gathered} \hline \text { Fri } \\ \text { 14-Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	Sat 15-Sep-12	$\begin{gathered} \text { Sun } \\ 16-\text { Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	38	50	56	52	62	52	89	101	64	$\square \square$
1:00 AM	34	32	40	37	33	35	63	56	42	\square
2:00 AM	19	34	26	31	46	31	41	33	33	\square
3:00 AM	18	30	21	37	37	29	35	17	28	\square
4:00 AM	30	21	27	27	31	27	15	21	25	\square
5:00 AM	39	49	43	52	51	47	36	29	43	\square
6:00 AM	72	89	78	67	85	78	50	43	69	-
7:00 AM	137	180	158	171	182	166	105	83	145	
8:00 AM	141	215	167	221	158	180	120	77	157	
9:00 AM	154	170	159	173	210	173	142	99	158	
10:00 AM	163	143	175	202	174	171	191	133	169	
11:00 AM	195	247	244	230	217	227	228	199	223	-
12:00 PM	216	211	246	222	273	234	278	242	241	-
1:00 PM	264	236	260	282	305	269	285	286	274	\square
2:00 PM	292	310	299	295	332	306	340	311	311	\square
3:00 PM	379	379	390	425	487	412	356	248	381	\square
4:00 PM	448	456	479	506	471	472	351	257	424	\square
5:00 PM	585	553	521	529	524	542	365	242	474	
6:00 PM	456	410	435	501	448	450	328	225	400	
7:00 PM	310	372	326	309	313	326	297	214	306]
8:00 PM	195	292	261	285	323	271	272	168	257]
9:00 PM	178	256	217	220	282	231	252	137	220	,
10:00 PM	128	134	152	128	218	152	178	128	152	
11:00 PM	82	78	119	102	157	108	153	73	109	\square
Day Total	4573	4947	4899	5104	5419	4989	4570	3422	4705	
\% Weekday Average	91.7\%	99.2\%	98.2\%	102.3\%	108.6\%					
\% Week Average	97.2\%	105.1\%	104.1\%	108.5\%	115.2\%	106.0\%	97.1\%	72.7\%		
AM Peak Volume	$\begin{array}{\|c} \hline 11: 00 \mathrm{AM} \\ 195 \end{array}$	$\begin{gathered} \text { 11:00 AM } \\ 247 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 244 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 230 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 217 \end{gathered}$	$\begin{gathered} \text { 11:00 AM } \\ 227 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 228 \end{gathered}$	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 199 \end{gathered}$	$\begin{gathered} \text { 11:00 AM } \\ 223 \end{gathered}$	
PM Peak Volume	$\begin{gathered} \text { 5:00 PM } \\ 585 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 553 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 521 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 529 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 524 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 542 \end{gathered}$	$\begin{gathered} 5: 00 \text { PM } \\ 365 \end{gathered}$	$\begin{gathered} \hline \text { 2:00 PM } \\ 311 \end{gathered}$	$\begin{gathered} 5: 00 \text { PM } \\ 474 \end{gathered}$	
Comments:										

Report generated on 10/8/2012 8:02 AM

Report generated on 10/8/2012 8:02 AM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: I-5 SB on-ramp at La Center Rd SPECIFIC LOCATION: 0 ft from CITY/STATE: La Center, WA									QC JOB \#: 10797107DIRECTION: SBDATE: Sep 17 2012 - Sep 232012	
Start Time	Mon 17-Sep-12	Tue 18-Sep-12	Wed 19-Sep-12	Thu 20-Sep-12	$\begin{gathered} \text { Fri } \\ \text { 21-Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	$\begin{gathered} \text { Sat } \\ \text { 22-Sep-12 } \end{gathered}$	$\begin{gathered} \text { Sun } \\ 23-\text { Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	82	58	50	71	69	66	88	81	71	\square
1:00 AM	52	35	53	51	38	46	61	76	52	\square
2:00 AM	43	37	52	44	55	46	62	59	50	\square
3:00 AM	60	58	68	47	61	59	59	54	58	,
4:00 AM	126	115	130	109	110	118	70	56	102	
5:00 AM	270	273	239	243	218	249	90	58	199	
6:00 AM	434	421	447	417	431	430	122	83	336	
7:00 AM	495	544	494	507	484	505	179	126	404	
8:00 AM	360	361	409	371	358	372	258	187	329	-
9:00 AM	319	257	266	258	319	284	288	219	275	
10:00 AM	245	240	245	244	259	247	263	231	247	-
11:00 AM	248	231	232	225	235	234	310	219	243	
12:00 PM	234	202	214	220	250	224	241	239	229	
1:00 PM	208	222	213	247	233	225	231	215	224	
2:00 PM	237	224	225	238	280	241	233	219	237	\square
3:00 PM	245	227	258	274	293	259	236	239	253	\square
4:00 PM	234	281	267	234	288	261	260	199	252	
5:00 PM	229	234	252	240	230	237	236	211	233	-
6:00 PM	179	187	195	197	204	192	189	178	190	-
7:00 PM	112	122	174	152	160	144	154	161	148]
8:00 PM	99	115	117	99	114	109	140	137	117	\square
9:00 PM	96	104	88	97	138	105	108	103	105	
10:00 PM	73	79	63	98	130	89	130	65	91	
11:00 PM	80	79	79	85	113	87	105	69	87	-
Day Total	4760	4706	4830	4768	5070	4829	4113	3484	4532	
\% Weekday Average	90.8\%	97.5\%	100.0\%	98.7\%	105.0\%					
\% Week Average	107.8\%	103.8\%	106.6\%	105.2\%	111.9\%	106.6\%	90.8\%	76.9\%		
AM Peak Volume	$\begin{gathered} \text { 7:00 AM } \\ 495 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 544 \end{gathered}$	$\begin{gathered} 7: 00 \text { AM } \\ 494 \end{gathered}$	$\begin{gathered} \text { 7:00 AM } \\ 507 \end{gathered}$	$\begin{gathered} \text { 7:00 AM } \\ 484 \end{gathered}$	$\begin{aligned} & \text { 7:00 AM } \\ & 505 \end{aligned}$	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 310 \end{gathered}$	$\begin{gathered} \text { 10:00 AM } \\ 231 \end{gathered}$	$\begin{gathered} \text { 7:00 AM } \\ 404 \end{gathered}$	
PM Peak Volume	3:00 PM 245	4:00 PM 281	4:00 PM 267	3:00 PM 274	$\begin{gathered} 3: 00 \text { PM } \\ 293 \end{gathered}$	$\begin{gathered} \text { 4:00 PM } \\ 261 \end{gathered}$	$\begin{gathered} \text { 4:00 PM } \\ 260 \end{gathered}$	$\begin{gathered} \text { 12:00 PM } \\ 239 \end{gathered}$	$\begin{gathered} 3: 00 \text { PM } \\ 253 \end{gathered}$	
Comments:										

Report generated on 10/8/2012 8:02 AM

Report generated on 10/8/2012 8:02 AM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

Report generated on 10/8/2012 8:02 AM

Type of report:	ube Count -	Volume Data		SUMMARY - Tube Count - Volume Data (Week)						Page 5 of 5
LOCATION: I-5 SB on-ramp at La Center Rd SPECIFIC LOCATION: 0 ft from CITY/STATE: La Center, WA									QC JOB \#: 10797107DIRECTION: SBDATE: Sep 10 2012 - Sep 162012	
Start Time	$\begin{gathered} \text { Mon } \\ 10-\text { Sep-12 } \end{gathered}$	$\begin{gathered} \text { Tue } \\ \text { 11-Sep-12 } \end{gathered}$	Wed 12-Sep-12	Thu 13-Sep-12	$\begin{gathered} \text { Fri } \\ \text { 14-Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	$\begin{gathered} \text { Sat } \\ 15-\text { Sep-12 } \end{gathered}$	$\begin{gathered} \text { Sun } \\ 16-\text { Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	82	58	50	71	63	65	89	96	73	
1:00 AM	52	35	53	51	66	51	72	73	57	-
2:00 AM	43	37	52	44	52	46	57	54	48	\square
3:00 AM	60	58	68	47	56	58	57	53	57	\square
4:00 AM	126	115	130	109	122	120	85	70	108	
5:00 AM	270	273	239	243	220	249	97	56	200]
6:00 AM	434	421	447	417	415	427	124	104	337	\square
7:00 AM	495	544	494	507	497	507	168	123	404	
8:00 AM	360	361	409	371	413	383	248	168	333]
9:00 AM	319	257	266	258	304	281	290	236	276	
10:00 AM	245	240	245	244	300	255	311	277	266	
11:00 AM	248	231	232	225	300	247	295	234	252	I
12:00 PM	234	202	214	220	215	217	316	245	235]
1:00 PM	208	222	213	247	263	231	280	248	240	I
2:00 PM	237	224	225	238	240	233	239	210	230	\square
3:00 PM	245	227	258	274	323	265	255	233	259	-
4:00 PM	234	281	267	234	292	262	274	224	258	I
5:00 PM	229	234	252	240	263	244	223	198	234]
6:00 PM	179	187	195	197	216	195	218	190	197	-
7:00 PM	112	122	174	152	161	144	167	168	151	\square
8:00 PM	99	115	117	99	136	113	166	130	123]
9:00 PM	96	104	88	97	107	98	143	110	106]
10:00 PM	73	79	63	98	116	86	104	67	86	
11:00 PM	80	79	79	85	103	85	87	77	84	I
Day Total	4760	4706	4830	4768	5243	4862	4365	3644	4614	
\% Weekday Average	97.9\%	96.8\%	99.3\%	98.1\%	107.8\%					
\% Week Average	103.2\%	102.0\%	104.7\%	103.3\%	113.6\%	105.4\%	94.6\%	79.0\%		
AM Peak	7:00 AM	10:00 AM	10:00 AM	7:00 AM						
Volume	495	544	494	507	497	507	311	277	404	
PM Peak	3:00 PM	4:00 PM	4:00 PM	3:00 PM	3:00 PM	3:00 PM	12:00 PM	1:00 PM	3:00 PM	
Volume	245	281	267	274	323	265	316	248	259	
Comments:										

Report generated on 10/8/2012 8:02 AM

LOCATION: I-5 SB off-ramp at La Center Rd SPECIFIC LOCATION: 0 ft from CITY/STATE: La Center, WA									QC JOB \#: 10797108DIRECTION: SBDATE: Sep 142012 - Sep 162012	
Start Time	Mon	Tue	Wed	Thu	$\begin{gathered} \text { Fri } \\ \text { 14-Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	$\begin{gathered} \text { Sat } \\ 15-\text { Sep-12 } \end{gathered}$	$\underset{16-\text { Sun-12 }}{ }$	Average Week Hourly Traffic	Average Week Profile
12:00 AM					12	12	12	15	13	\square
1:00 AM					15	15	15	15	15	\square
2:00 AM					7	7	10	9	9	\square
3:00 AM					19	19	10	8	12	\square
4:00 AM					9	9	9	3	7	\square
5:00 AM					28	28	10	6	15	\square
6:00 AM					50	50	25	13	29	\square
7:00 AM					87	87	44	27	53	
8:00 AM					66	66	42	30	46	-
9:00 AM					69	69	97	64	77	\square
10:00 AM					79	79	112	92	94	\square
11:00 AM					115	115	110	105	110	
12:00 PM					106	106	114	115	112	-
1:00 PM					140	140	126	129	132	-
2:00 PM					162	162	108	113	128	
3:00 PM					143	143	112	116	124 -	\square
4:00 PM					167	167	123	115	135	-
5:00 PM					152	152	128	142	141	,
6:00 PM					122	122	110	125	119	-
7:00 PM					94	94	108	115	106	,
8:00 PM					83	83	92	86	87	\square
9:00 PM					128	128	61	54	81	I
10:00 PM					61	61	43	25	43	
11:00 PM					30	30	33	19	27	1
Day Total					1944	1944	1654	1541	1715	
\% Weekday Average					100.0\%					
\% Week Average					113.4\%	113.4\%	96.4\%	89.9\%		
AM Peak Volume					$\begin{gathered} 11: 00 \mathrm{AM} \\ 115 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 115 \end{gathered}$	$\begin{gathered} \hline 10: 00 \mathrm{AM} \\ 112 \end{gathered}$	$\begin{gathered} \text { 11:00 AM } \\ 105 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 110 \end{gathered}$	
PM Peak Volume					$\begin{gathered} 4: 00 \text { PM } \\ 167 \end{gathered}$	$\begin{gathered} \text { 4:00 PM } \\ 167 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 128 \end{gathered}$	$\begin{gathered} 5: 00 \mathrm{PM} \\ 142 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 141 \end{gathered}$	
Comments:										

Report generated on 10/8/2012 8:02 AM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: l-5 SB off-ramp at La Center Rd SPECIFIC LOCATION: 0 ft from CITY/STATE: La Center, WA									QC JOB \#: 10797108DIRECTION:SBDATE:Sep 17 2012-Sep 232012	
Start Time	Mon 17-Sep-12	$\begin{gathered} \text { Tue } \\ 18-\text { Sep-12 } \end{gathered}$	Wed 19-Sep-12	$\begin{gathered} \text { Thu } \\ 20-\text { Sep-12 } \end{gathered}$	$\begin{gathered} \text { Fri } \\ \text { 21-Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	Sat 22-Sep-12	$\begin{gathered} \text { Sun } \\ 23-\text { Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	8	12	5	14	11	10	13	11	11	\square
1:00 AM	7	8	17	7	5	9	17	6	10	\square
2:00 AM	8	4	10	8	9	8	7	4	7	-
3:00 AM	12	7	12	3	16	10	12	8	10	\square
4:00 AM	9	10	15	18	16	14	2	9	11	\square
5:00 AM	21	39	29	25	27	28	12	3	22	\square
6:00 AM	49	42	53	60	59	53	20	16	43	\square
7:00 AM	78	101	90	79	81	86	40	26	71	
8:00 AM	59	60	81	63	68	66	53	43	61	
9:00 AM	72	76	52	64	58	64	59	54	62	
10:00 AM	83	71	75	61	79	74	100	82	79	
11:00 AM	100	85	78	75	97	87	94	89	88	-
12:00 PM	84	91	104	104	108	98	114	106	102	
1:00 PM	107	113	93	99	135	109	118	159	118	
2:00 PM	114	139	117	135	137	128	103	111	122	-
3:00 PM	139	142	160	144	149	147 -	-117	120	139	
4:00 PM	160	132	178	170	167	161	109	111	147]
5:00 PM	174	172	173	216	183	184	129	118	166	
6:00 PM	116	137	101	127	188	134	96	110	125]
7:00 PM	105	102	100	85	95	97	89	96	96]
8:00 PM	74	60	60	54	74	64	67	59	64	,
9:00 PM	52	47	50	47	67	53	71	41	54]
10:00 PM	21	27	23	38	46	31	50	36	34	
11:00 PM	17	23	13	25	32	22	28	14	22	\square
Day Total	1669	1700	1689	1721	1907	1737	1520	1432	1664	
\% Weekday Average	85.9\%	97.9\%	97.2\%	99.1\%	109.8\%					
\% Week Average	97.3\%	102.2\%	101.5\%	103.4\%	114.6\%	104.4\%	91.3\%	86.1\%		
AM Peak Volume	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 100 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 101 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 90 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 79 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 97 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 87 \end{gathered}$	$\begin{gathered} 10: 00 \mathrm{AM} \\ 100 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 89 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 88 \end{gathered}$	
PM Peak Volume	$\begin{gathered} \text { 5:00 PM } \\ 174 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 172 \end{gathered}$	$\begin{gathered} 4: 00 \text { PM } \\ 178 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 216 \end{gathered}$	$\begin{gathered} \text { 6:00 PM } \\ 188 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 184 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 129 \end{gathered}$	$\begin{gathered} 1: 00 \mathrm{PM} \\ 159 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 166 \end{gathered}$	
Comments:										

Report generated on 10/8/2012 8:02 AM

Report generated on 10/8/2012 8:02 AM

Report generated on 10/8/2012 8:02 AM

Type of report:	be Count -	Volume Data		SUMMARY - Tube Count - Volume Data (Week)					Page 5 of 5QC JOB \#: 10797108DIRECTION: SBDATE: Sep 10 2012 - Sep 162012	
LOCATION: I-5 SB off-ramp at La Center Rd SPECIFIC LOCATION: 0 ft from CITY/STATE: La Center, WA										
Start Time	$\begin{gathered} \text { Mon } \\ \text { 10-Sep-12 } \end{gathered}$	Tue 11-Sep-12	Wed 12-Sep-12	Thu 13-Sep-12	$\begin{gathered} \text { Fri } \\ \text { 14-Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	$\begin{gathered} \text { Sat } \\ \text { 15-Sep-12 } \end{gathered}$	$\begin{gathered} \text { Sun } \\ 16-\text { Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	8	12	5	14	12	10	12	15	11	\square
1:00 AM	7	8	17	7	15	11	15	15	12	\square
2:00 AM	8	4	10	8	7	7	10	9	8	-
3:00 AM	12	7	12	3	19	11	10	8	10	\square
4:00 AM	9	10	15	18	9	12	9	3	10	\square
5:00 AM	21	39	29	25	28	28	10	6	23	-
6:00 AM	49	42	53	60	50	51	25	13	42	
7:00 AM	78	101	90	79	87	87	44	27	72	\square
8:00 AM	59	60	81	63	66	66	42	30	57]
9:00 AM	72	76	52	64	69	67	97	64	71	\square
10:00 AM	83	71	75	61	79	74	112	92	82	
11:00 AM	100	85	78	75	115	91	110	105	95	\square
12:00 PM	84	91	104	104	106	98	114	115	103	-
1:00 PM	107	113	93	99	140	110	126	129	115	I
2:00 PM	114	139	117	135	162	133	108	113	127	I
3:00 PM	139	142	160	144	143	146	112	116	137	\square
4:00 PM	160	132	178	170	167	161	123	115	149	-
5:00 PM	174	172	173	216	152	177	128	142	165	
6:00 PM	116	137	101	127	122	121	110	125	120]
7:00 PM	105	102	100	85	94	97	108	115	101]
8:00 PM	74	60	60	54	83	66	92	86	73	-
9:00 PM	52	47	50	47	128	65	61	54	63]
10:00 PM	21	27	23	38	61	34	43	25	34]
11:00 PM	17	23	13	25	30	22	33	19	23	
Day Total	1669	1700	1689	1721	1944	1745	1654	1541	1703	
\% Weekday Average	95.6\%	97.4\%	96.8\%	98.6\%	111.4\%					
\% Week Average	98.0\%	99.8\%	99.2\%	101.1\%	114.2\%	102.5\%	97.1\%	90.5\%		
AM Peak Volume	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 100 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 101 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{AM} \\ 90 \end{gathered}$	$\begin{gathered} \text { 7:00 AM } \\ 79 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 115 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 91 \end{gathered}$	$\begin{array}{\|c\|} \hline 10: 00 \mathrm{AM} \\ 112 \end{array}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 105 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 95 \end{gathered}$	
PM Peak Volume	5:00 PM 174	$\begin{gathered} \text { 5:00 PM } \\ 172 \end{gathered}$	$\begin{gathered} \hline 4: 00 \text { PM } \\ 178 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 216 \end{gathered}$	$\begin{gathered} 4: 00 \text { PM } \\ 167 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 177 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 128 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 142 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 165 \end{gathered}$	
Comments:										

Report generated on 10/8/2012 8:02 AM

Appendix C Tube Count Volume Data Sheets from Snoqualmie

LOCATION: Combined Volume-Main Driveway to Snoqualmie Casino north of roundabout at SE North Bend Way SPECIFIC LOCATION: 100 ft from North Bend Way CITY/STATE: Snoqualmie, WA									DIRECTION: NB DATE: Sep 212012 - Sep 232012	
Start Time	Mon	Tue	Wed	Thu	$\begin{gathered} \text { Fri } \\ 21-\text { Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	Sat 22-Sep-12	$\begin{gathered} \text { Sun } \\ 23-\text { Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM					43	43	77	365	162	\square
1:00 AM					43	43	69	276	129	\square
2:00 AM					16	16	38	222	92	\square
3:00 AM					18	18	21	153	64	
4:00 AM					15	15	19	91	42	\square
5:00 AM					34	34	51	55	47	\square
6:00 AM					47	47	69	60	59	\square
7:00 AM					79	79	164	68	104	-
8:00 AM					101	101	174	124	133	
9:00 AM					153	153	260	55	156	
10:00 AM					210	210	183	0	131	\square
11:00 AM					253	253	192	0	148	\square
12:00 PM					261	261	240	0	167	
1:00 PM					237	237	271	0	169]
2:00 PM					248	248	297	0	182	-
3:00 PM					295	295	470	0	255	
4:00 PM					249	249	303	0	184	\square
5:00 PM					340	340	304	0	215	\square
6:00 PM					449	449	319	0	256	\square
7:00 PM					531	531	310	0	280	
8:00 PM					301	301	281	0	194	I
9:00 PM					271	271	314	0	195	\square
10:00 PM					205	205	537	0	247	
11:00 PM					183	183	382	0	188	1
Day Total					4582	4582	5345	1469	3799	
\% Weekday Average					100.0\%					
\% Week Average					120.6\%	120.6\%	140.7\%	38.7\%		
AM Peak Volume					$\begin{gathered} 11: 00 \text { AM } \\ 253 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 253 \end{gathered}$	$\begin{gathered} 9: 00 \text { AM } \\ 260 \end{gathered}$	$\begin{gathered} 12: 00 \mathrm{AM} \\ 365 \end{gathered}$	$\begin{gathered} 12: 00 \mathrm{AM} \\ 162 \end{gathered}$	
PM Peak Volume					$\begin{gathered} \text { 7:00 PM } \\ 531 \end{gathered}$	$\begin{gathered} \text { 7:00 PM } \\ 531 \end{gathered}$	$\begin{gathered} \text { 10:00 PM } \\ 537 \end{gathered}$	$\begin{gathered} 12: 00 \text { PM } \\ 0 \end{gathered}$	$\begin{gathered} 7: 00 \text { PM } \\ 280 \end{gathered}$	
Comments:										

Report generated on 11/2/2012 1:57 PM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

Report generated on 11/2/2012 1:57 PM

LOCATION: SPECIFIC L CITY/STATE:	Combined OCATION: Snoqualm	olume0 ft fro WA	Drivew orth Be \qquad	Snoqu ay		north of roundabout at		Way	DATE	QC JOB \#: 10822001 DIRECTION: NB Oct 012012 - Oct 012012
Start Time	Mon 01 -Oct-12	Tue	Wed	Thu	Fri	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM	0					0			0	1
1:00 AM	0					0			0	1
2:00 AM	0					0			0	1
3:00 AM	0					0			0	1
4:00 AM	0					0			0	1
5:00 AM	0					0			0	1
6:00 AM	0					0			0	1
7:00 AM	0					0			0	1
8:00 AM	0					0			0	1
9:00 AM	0					0			0	1
10:00 AM	0					0			0	1
11:00 AM	2					2			2	
12:00 PM										
1:00 PM								\bigcirc		
2:00 PM										
3:00 PM										
4:00 PM										
5:00 PM										
6:00 PM										
7:00 PM										
8:00 PM										
9:00 PM										
10:00 PM										
11:00 PM										
Day Total	2					2			2	
\% Weekday										
Average										
\% Week Average						100.0\%				
AM Peak	11:00 AM					11:00 AM				
Volume	2					2			2	
PM Peak										
Volume										
Comments:										

Report generated on 11/2/2012 1:57 PM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: Combined Volume-Main Driveway to Snoqualmie Casino north of roundabout at SE North Bend Way SPECIFIC LOCATION: 100 ft from North Bend Way CITY/STATE: Snoqualmie, WA								QC JOB \#: 10822001DIRECTION: NBDATE:Sep 17 2012-Sep 212012	
Start Time	$\begin{gathered} \text { Mon } \\ 17 \text {-Sep-12 } \end{gathered}$	Tue 18-Sep-12	Wed 19-Sep-12	Thu 20-Sep-12	$\begin{gathered} \text { Fri } \\ \text { 21-Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic			Average Weekday Profile
12:00 AM	0	0	0	0	43	9			\square
1:00 AM	0	0	0	0	43	9			\square
2:00 AM	0	0	0	0	16	3			-
3:00 AM	0	0	0	0	18	4			-
4:00 AM	0	0	0	0	15	3			D
5:00 AM	0	0	0	0	34	7			\square
6:00 AM	0	0	0	0	47	9			\square
7:00 AM	0	0	0	0	79	16			-
8:00 AM	0	0	0	0	101	20			\square
9:00 AM	0	0	0	0	153	31			
10:00 AM	0	0	0	0	210	42			
11:00 AM	0	0	0	0	253	51			
12:00 PM	0	0	0	0	261	52			
1:00 PM	0	0	0	0	237	47			-
2:00 PM	0	0	0	0	248	50			\square
3:00 PM	0	0	0	0	295	59			\square
4:00 PM	0	0	0	0	249	50			\square
5:00 PM	0	0	0	0	340	68			\square
6:00 PM	0	0	0	0	449	90			\square
7:00 PM	0	0	0	0	531	106			
8:00 PM	0	0	0	0	301	60			\square
9:00 PM	0	0	0	0	271	54			
10:00 PM	0	0	0	0	205	41			
11:00 PM	0	0	0	0	183	37			
Day Total	0	0	0	0	4582	918			
\% Weekday Average	0.0\%	0.0\%	0.0\%	0.0\%	499.1\%				
\% Week Average									
AM Peak Volume	$\begin{gathered} 12: 00 \mathrm{AM} \\ 0 \end{gathered}$	$\begin{gathered} 12: 00 \mathrm{AM} \\ 0 \end{gathered}$	$\begin{gathered} 12: 00 \mathrm{AM} \\ 0 \end{gathered}$	$\begin{gathered} 12: 00 \text { AM } \\ 0 \end{gathered}$	$\begin{gathered} \hline 11: 00 \text { AM } \\ 253 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 51 \end{gathered}$			
PM Peak Volume	${ }_{0}^{12: 00 ~ P M}$	$\begin{gathered} 12: 00 \text { PM } \\ 0 \end{gathered}$	$\begin{gathered} 12: 00 \text { PM } \\ 0 \end{gathered}$	$\begin{gathered} 12: 00 ~ P M \\ 0 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{PM} \\ 531 \end{gathered}$	$\begin{gathered} 7: 00 \text { PM } \\ 106 \end{gathered}$			
Comments:									

Report generated on 11/2/2012 1:57 PM

LOCATION: SPECIFIC CITY/STAT	SE North	Bend Way	DATE:	QC JOB \#: 10822001 DIRECTION: NB Sep 222012 - Sep 232012
Start Time	$\begin{gathered} \text { Sat } \\ \text { 22-Sep-12 } \end{gathered}$	$\begin{gathered} \text { Sun } \\ 23-\text { Sep-12 } \end{gathered}$	Average Weekend Hourly Traffic	Average Weekend Profile
12:00 AM	77	365	221	,
1:00 AM	69	276	173	\square
2:00 AM	38	222	130	
3:00 AM	21	153	87	
4:00 AM	19	91	55	\square
5:00 AM	51	55	53	\square
6:00 AM	69	60	65	\square
7:00 AM	164	68	116	\square
8:00 AM	174	124	149	\square
9:00 AM	260	55	158	
10:00 AM	183	0	92	\square
11:00 AM	192	0	96	\square
12:00 PM	240	0	120	
1:00 PM	271	0	136	\square
2:00 PM	297	0	149	-
3:00 PM	470	0	235	
4:00 PM	303	0	152	\square
5:00 PM	304	0	152	?
6:00 PM	319	0	160	\square
7:00 PM	310	0	155	,
8:00 PM	281	0	141	\square
9:00 PM	314	0	157	-
10:00 PM	537	0	269	1
11:00 PM	382	0	191	1
Day Total	5345	1469	3412	
\% Weekday Average				
\% Week Average	156.7\%	43.1\%		
AM Peak Volume	$\begin{gathered} 9: 00 \text { AM } \\ 260 \end{gathered}$	$\begin{gathered} 12: 00 \mathrm{AM} \\ 365 \end{gathered}$	$\begin{gathered} 12: 00 \mathrm{AM} \\ 221 \end{gathered}$	
PM Peak Volume	$\begin{gathered} 10: 00 \text { PM } \\ 537 \end{gathered}$	$\begin{gathered} 12: 00 ~ P M \\ 0 \end{gathered}$	$\begin{gathered} 10: 00 \text { PM } \\ 269 \end{gathered}$	
Comments:				

Report generated on 11/2/2012 1:57 PM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: Combined Volume-Main Driveway to Snoqualmie Casino north of roundabout at SE North Bend Way SPECIFIC LOCATION: 100 ft from North Bend Way CITY/STATE: Snoqualmie, WA									QC JOB \#: 10822001DIRECTION: NBDATE: Sep 17 2012-Sep 232012	
Start Time	$\begin{gathered} \text { Mon } \\ \text { 17-Sep-12 } \end{gathered}$	Tue 18-Sep-12	Wed 19-Sep-12	Thu 20-Sep-12	$\begin{gathered} \text { Fri } \\ \text { 21-Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	Sat 22-Sep-12	$\begin{gathered} \text { Sun } \\ 23 \text {-Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	0	0	0	0	43	9	77	365	69	\square
1:00 AM	0	0	0	0	43	9	69	276	55	-
2:00 AM	0	0	0	0	16	3	38	222	39	
3:00 AM	0	0	0	0	18	4	21	153	27	
4:00 AM	0	0	0	0	15	3	19	91	18	\square
5:00 AM	0	0	0	0	34	7	51	55	20	\square
6:00 AM	0	0	0	0	47	9	69	60	25	\square
7:00 AM	0	0	0	0	79	16	164	68	44	
8:00 AM	0	0	0	0	101	20	174	124	57	
9:00 AM	0	0	0	0	153	31	260	55	67	-
10:00 AM	0	0	0	0	210	42	183	0	56	\square
11:00 AM	0	0	0	0	253	51	192	0	64	
12:00 PM	0	0	0	0	261	52	240	0	72	
1:00 PM	0	0	0	0	237	47	271	0	73]
2:00 PM	0	0	0	0	248	50	297	0	78	-
3:00 PM	0	0	0	0	295	59	470	0	109	-
4:00 PM	0	0	0	0	249	50	303	0	79]
5:00 PM	0	0	0	0	340	68	304	0	92	-
6:00 PM	0	0	0	0	449	90	319	0	110	-
7:00 PM	0	0	0	0	531	106	310	0	120	
8:00 PM	0	0	0	0	301	60	281	0	83	-
9:00 PM	0	0	0	0	271	54	314	0	84]
10:00 PM	0	0	0	0	205	41	537	0	106	
11:00 PM	0	0	0	0	183	37	382	0	81	1
Day Total	0	0	0	0	4582	918	5345	1469	1628	
\% Weekday Average	0.0\%	0.0\%	0.0\%	0.0\%	499.1\%					
\% Week Average	0.0\%	0.0\%	0.0\%	0.0\%	281.4\%	56.4\%	328.3\%	90.2\%		
AM Peak Volume	$\begin{gathered} 12: 00 \mathrm{AM} \\ 0 \end{gathered}$	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 253 \\ \hline \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 51 \end{gathered}$	$\begin{aligned} & 9: 00 \text { AM } \\ & 260 \end{aligned}$	$\begin{gathered} 12: 00 \text { AM } \\ 365 \end{gathered}$	$\begin{gathered} 12: 00 \mathrm{AM} \\ 69 \end{gathered}$				
PM Peak Volume	${ }_{\text {12:00 PM }}^{0}$	$\begin{gathered} 12: 00 \text { PM } \\ 0 \end{gathered}$	$\begin{gathered} 12: 00 ~ P M \\ 0 \end{gathered}$	$\begin{gathered} 12: 00 \text { PM } \\ 0 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{PM} \\ 531 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{PM} \\ 106 \end{gathered}$	$\begin{gathered} \hline 10: 00 \mathrm{PM} \\ 537 \end{gathered}$	$\begin{gathered} 12: 00 \mathrm{PM} \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \text { 7:00 PM } \\ 120 \end{gathered}$	
Comments:										

Report generated on 11/2/2012 1:57 PM

LOCATION: Combined Volume-Main Driveway to Snoqualmie Casino north of roundabout at SE North Bend Way SPECIFIC LOCATION: 100 ft from North Bend Way CITY/STATE: Snoqualmie, WA									DIRECTION: SBDATE: Sep 212012 - Sep 232012	
Start Time	Mon	Tue	Wed	Thu	$\begin{gathered} \text { Fri } \\ 21-\text { Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	Sat 22-Sep-12	$\begin{gathered} \text { Sun } \\ 23-\text { Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM					235	235	307	76	206	\square
1:00 AM					141	141	251	69	154	\square
2:00 AM					117	117	224	31	124	\square
3:00 AM					83	83	127	15	75	\square
4:00 AM					60	60	68	20	49	\square
5:00 AM					40	40	43	37	40	\square
6:00 AM					35	35	56	64	52	\square
7:00 AM					40	40	89	116	82	\square
8:00 AM					71	71	124	134	110	\square
9:00 AM					51	51	172	235	153	\square
10:00 AM					94	94	318	345	252	-
11:00 AM					93	93	345	363	267	\square
12:00 PM					160	160	317	417	298	\square
1:00 PM					216	216	329	459	335	\square
2:00 PM					244	244	324	474	347	-
3:00 PM					222	222	126	443	264]
4:00 PM					236	236	362	423	340]
5:00 PM					262	262	387	422	357	\square
6:00 PM					238	238	432	448	373	\square
7:00 PM					288	288	452	438	393	
8:00 PM					316	316	362	393	357	-
9:00 PM					335	335	288	361	328]
10:00 PM					475	475	253	293	340	-
11:00 PM					333	333	216	234	261	1
Day Total					4385	4385	5972	6310	5557	
\% Weekday Average					100.0\%					
\% Week Average					78.9\%	78.9\%	107.5\%	113.6\%		
AM Peak Volume					$\begin{gathered} 12: 00 \text { AM } \\ 235 \end{gathered}$	$\begin{gathered} 12: 00 \text { AM } \\ 235 \end{gathered}$	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 345 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 363 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 267 \end{gathered}$	
PM Peak					10:00 PM	10:00 PM	7:00 PM	2:00 PM	7:00 PM	
Volume					475	475	452	474	393	
Comments:										

Report generated on 11/2/2012 1:57 PM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: Combined Volume-Main Driveway to Snoqualmie Casino north of roundabout at SE North Bend Way SPECIFIC LOCATION: 100 ft from North Bend Way CITY/STATE: Snoqualmie, WA									$\begin{gathered} \text { QC JOB \#: } 10822001 \\ \text { DIRECTION: SB } \\ \text { DATE: Sep } 24 \text { 2012 - Sep } 302012 \end{gathered}$	
Start Time	$\begin{gathered} \text { Mon } \\ 24-\text { Sep-12 } \end{gathered}$	Tue 25-Sep-12	Wed 26-Sep-12	Thu 27-Sep-12	Fri 28-Sep-12	Average Weekday Hourly Traffic	Sat 29-Sep-12	Sun 30-Sep-12	Average Week Hourly Traffic	Average Week Profile
12:00 AM	197	158	114	121	220	162	342	339	213	\square
1:00 AM	131	170	92	92	157	128	286	262	170	
2:00 AM	93	99	75	89	126	96	219	245	135	
3:00 AM	73	68	62	49	86	68	130	165	90	\square
4:00 AM	44	65	42	40	55	49	93	95	62	\square
5:00 AM	59	59	54	57	76	61	89	103	71	
6:00 AM	132	70	123	128	83	107	144	116	114	-
7:00 AM	215	99	176	208	128	165	214	146	169	
8:00 AM	226	125	215	231	160	191	262	209	204	
9:00 AM	278	128	253	288	214	232	310	255	247	\square
10:00 AM	329	224	290	354	243	288	387	319	307	\square
11:00 AM	383	398	300	388	304	355	476	357	372	
12:00 PM	391	226	339	370	331	331	550	357	366	
1:00 PM	434	354	450	436	344	404	577	459	436	
2:00 PM	439	343	387	403	366	388	570	458	424	
3:00 PM	436	396	418	438	388	415	560	436	439	
4:00 PM	455	497	488	459	384	457	526	471	469	
5:00 PM	426	478	489	440	422	451	505	497	465	
6:00 PM	402	493	479	449	452	455	513	524	473	
7:00 PM	398	399	389	434	503	425	501	399	432	-
8:00 PM	363	327	316	442	498	389	439	541	418	\square
9:00 PM	382	275	277	404	474	362	472	445	390	
10:00 PM	346	218	201	359	417	308	460	336	334]
11:00 PM	237	166	167	302	437	262	452	239	286	\square
Day Total	6869	5835	6196	6981	6868	6549	9077	7773	7086	
\% Weekday Average	156.6\%	89.1\%	94.6\%	106.6\%	104.9\%					
\% Week Average	123.6\%	82.3\%	87.4\%	98.5\%	96.9\%	92.4\%	128.1\%	109.7\%		
AM Peak	11:00 AM									
Volume	383	398	300	388	304	355	476	357	372	
PM Peak	4:00 PM	4:00 PM	5:00 PM	4:00 PM	7:00 PM	4:00 PM	1:00 PM	8:00 PM	6:00 PM	
Volume	455	497	489	459	503	457	577	541	473	
Comments:										

Report generated on 11/2/2012 1:57 PM

LOCATION: SPECIFIC L CITY/STATE	Combined OCATION: Snoqualm	olume00 ft fro WA	Drivew orth Be	Snoqu ay		north of roundabout at	Nort	Way	DATE	QC JOB \#: 10822001 DIRECTION: SB Oct 01 2012-Oct 012012
Start Time	Mon 01 -Oct-12	Tue	Wed	Thu	Fri	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM	213					213			213	\square
1:00 AM	142					142			142	\square
2:00 AM	101					101			101	
3:00 AM	76					76			76	\square
4:00 AM	44					44			44	\square
5:00 AM	76					76			76	\square
6:00 AM	126					126			126	\square
7:00 AM	205					205			205	\square
8:00 AM	207					207			207	
9:00 AM	288					288			288	\square
10:00 AM	334					334			334	
11:00 AM	136					136			136	
12:00 PM										
1:00 PM						\square		0		
2:00 PM										
3:00 PM										
4:00 PM										
5:00 PM										
6:00 PM										
7:00 PM										
8:00 PM										
9:00 PM										
10:00 PM										
11:00 PM										
Day Total	1948					1948			1948	
\% Weekday										
Average	29.7\%									
\% Week										
Average	27.5\%					100.0\%				
AM Peak	10:00 AM					10:00 AM			10:00 AM	
Volume	334					334			334	
PM Peak										
Volume										
Comments:										

Report generated on 11/2/2012 1:57 PM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION SPECIFIC CITY/STAT	Combined OCATION: : Snoqual	Volume-Ma 100 ft from mie, WA	ain Driveway North Bend	y to Snoqual Way	Imie Casino	orth of roundabout at	SE North Bend Way	DATE:	QC JOB \#: 10822001 DIRECTION: SB Sep 172012 - Sep 212012
Start Time	Mon 17-Sep-12	Tue 18-Sep-12	Wed 19-Sep-12	Thu 20-Sep-12	$\begin{gathered} \hline \text { Fri } \\ 21-\text { Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic			Average Weekday Profile
12:00 AM	197	158	114	121	235	165			-
1:00 AM	131	170	92	92	141	125			\square
2:00 AM	93	99	75	89	117	95			
3:00 AM	73	68	62	49	83	67			\square
4:00 AM	44	65	42	40	60	50			\square
5:00 AM	59	59	54	57	40	54			-
6:00 AM	132	70	123	128	35	98			
7:00 AM	215	99	176	208	40	148			
8:00 AM	226	125	215	231	71	174			
9:00 AM	278	128	253	288	51	200			
10:00 AM	329	224	290	354	94	258			
11:00 AM	383	398	300	388	93	312			
12:00 PM	391	226	339	370	160	297			-
1:00 PM	434	354	450	436	216	378	\square		
2:00 PM	439	343	387	403	244	363			
3:00 PM	436	396	418	438	222	382			\square
4:00 PM	455	497	488	459	236	427			
5:00 PM	426	478	489	440	262	419			
6:00 PM	402	493	479	449	238	412			
7:00 PM	398	399	389	434	288	382			0
8:00 PM	363	327	316	442	316	353			\square
9:00 PM	382	275	277	404	335	335			
10:00 PM	346	218	201	359	475	320			
11:00 PM	237	166	167	302	333	241			
Day Total	6869	5835	6196	6981	4385	6055			
\% Weekday Average	113.4\%	96.4\%	102.3\%	115.3\%	72.4\%				
\% Week Average									
AM Peak Volume	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 383 \\ \hline \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 398 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 300 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 388 \end{gathered}$	$\begin{gathered} 12: 00 \mathrm{AM} \\ 235 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 312 \end{gathered}$			
PM Peak Volume	$\begin{gathered} 4: 00 \text { PM } \\ 455 \\ \hline \end{gathered}$	$\begin{gathered} 4: 00 \mathrm{PM} \\ 497 \\ \hline \end{gathered}$	$\begin{gathered} 5: 00 \mathrm{PM} \\ 489 \\ \hline \end{gathered}$	$\begin{gathered} 4: 00 \mathrm{PM} \\ 459 \\ \hline \end{gathered}$	$\begin{gathered} 10: 00 \mathrm{PM} \\ 475 \end{gathered}$	$\begin{gathered} 4: 00 \mathrm{PM} \\ 427 \\ \hline \end{gathered}$			
Comments:									

Report generated on 11/2/2012 1:57 PM

Report generated on 11/2/2012 1:57 PM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: Combined Volume-Main Driveway to Snoqualmie Casino north of roundabout at SE North Bend Way SPECIFIC LOCATION: 100 ft from North Bend Way CITY/STATE: Snoqualmie, WA									QC JOB \#: 10822001DIRECTION: SBDATE:Sep 17 2012-Sep 232012	
Start Time	$\begin{gathered} \text { Mon } \\ 17-\text { Sep-12 } \end{gathered}$	Tue 18-Sep-12	Wed 19-Sep-12	Thu 20-Sep-12	$\begin{gathered} \text { Fri } \\ \text { 21-Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	Sat 22-Sep-12	$\begin{gathered} \text { Sun } \\ 23 \text {-Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	197	158	114	121	235	165	307	76	173	—
1:00 AM	131	170	92	92	141	125	251	69	135	
2:00 AM	93	99	75	89	117	95	224	31	104	
3:00 AM	73	68	62	49	83	67	127	15	68	
4:00 AM	44	65	42	40	60	50	68	20	48	\square
5:00 AM	59	59	54	57	40	54	43	37	50	\square
6:00 AM	132	70	123	128	35	98	56	64	87	-
7:00 AM	215	99	176	208	40	148	89	116	135	
8:00 AM	226	125	215	231	71	174	124	134	161	
9:00 AM	278	128	253	288	51	200	172	235	201	
10:00 AM	329	224	290	354	94	258	318	345	279	
11:00 AM	383	398	300	388	93	312	345	363	324	
12:00 PM	391	226	339	370	160	297	317	417	317	\square
1:00 PM	434	354	450	436	216	378	329	459	383	
2:00 PM	439	343	387	403	244	363	324	474	373	
3:00 PM	436	396	418	438	222	382	126	443	354	
4:00 PM	455	497	488	459	236	427	362	423	417	
5:00 PM	426	478	489	440	262	419	387	422	415	
6:00 PM	402	493	479	449	238	412	432	448	420	
7:00 PM	398	399	389	434	288	382	452	438	400	
8:00 PM	363	327	316	442	316	353	362	393	360	J
9:00 PM	382	275	277	404	335	335	288	361	332	」
10:00 PM	346	218	201	359	475	320	253	293	306)
11:00 PM	237	166	167	302	333	241	216	234	236	1
Day Total	6869	5835	6196	6981	4385	6055	5972	6310	6078	
\% Weekday Average	113.4\%	96.4\%	102.3\%	115.3\%	72.4\%					
\% Week Average	113.0\%	96.0\%	101.9\%	114.9\%	72.1\%	99.6\%	98.3\%	103.8\%		
AM Peak Volume	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 383 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 398 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 300 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 388 \end{gathered}$	$\begin{gathered} 12: 00 \text { AM } \\ 235 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 312 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 345 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 363 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 324 \end{gathered}$	
PM Peak Volume	4:00 PM 455	$\begin{gathered} 4: 00 \mathrm{PM} \\ 497 \end{gathered}$	$\begin{gathered} 5: 00 \mathrm{PM} \\ 489 \end{gathered}$	$\begin{gathered} 4: 00 \text { PM } \\ 459 \end{gathered}$	$\begin{gathered} 10: 00 \mathrm{PM} \\ 475 \end{gathered}$	$\begin{gathered} \hline 4: 00 \mathrm{PM} \\ 427 \end{gathered}$	$\begin{gathered} 7: 00 \text { PM } \\ 452 \end{gathered}$	$\begin{gathered} \text { 2:00 PM } \\ 474 \end{gathered}$	$\begin{gathered} \text { 6:00 PM } \\ 420 \end{gathered}$	
Comments:										

Report generated on 11/2/2012 1:57 PM

LOCATION: Combined Volume-Main Driveway to Snoqualmie Casino north of roundabout at SE North Bend Way SPECIFIC LOCATION: 100 ft from North Bend Way CITY/STATE: Snoqualmie, WA									DIRECTION: NB/SB DATE: Sep 212012 - Sep 232012	
Start Time	Mon	Tue	Wed	Thu	$\begin{gathered} \text { Fri } \\ 21-\text { Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	Sat 22-Sep-12	Sun 23-Sep-12	Average Week Hourly Traffic	Average Week Profile
12:00 AM					278	278	384	441	368	\square
1:00 AM					184	184	320	345	283	\square
2:00 AM					133	133	262	253	216	\square
3:00 AM					101	101	148	168	139	\square
4:00 AM					75	75	87	111	91	\square
5:00 AM					74	74	94	92	87	\square
6:00 AM					82	82	125	124	110	\square
7:00 AM					119	119	253	184	185	\square
8:00 AM					172	172	298	258	243	\square
9:00 AM					204	204	432	290	309	
10:00 AM					304	304	501	345	383	-
11:00 AM					346	346	537	363	415	-
12:00 PM					421	421	557	417	465	\square
1:00 PM					453	453	600	459	504	\square
2:00 PM					492	492	621	474	529	I
3:00 PM					517	517	596	443	519	
4:00 PM					485	485	665	423	524	-
5:00 PM					602	602	691	422	572	-
6:00 PM					687	687	751	448	629	\square
7:00 PM					819	819	762	438	673	
8:00 PM					617	617	643	393	551	?
9:00 PM					606	606	602	361	523	+
10:00 PM					680	680	790	293	588	
11:00 PM					516	516	598	234	449	1
Day Total					8967	8967	11317	7779	9355	
\% Weekday Average					100.0\%					
\% Week Average					95.9\%	95.9\%	121.0\%	83.2\%		
AM Peak Volume					$\begin{gathered} 11: 00 \text { AM } \\ 346 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 346 \end{gathered}$	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 537 \end{gathered}$	$\begin{gathered} 12: 00 \mathrm{AM} \\ 441 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 415 \end{gathered}$	
PM Peak					7:00 PM	7:00 PM	10:00 PM	2:00 PM	7:00 PM	
Volume					819	819	790	474	673	
Comments:										

Report generated on 11/2/2012 1:57 PM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: Combined Volume-Main Driveway to Snoqualmie Casino north of roundabout at SE North Bend Way SPECIFIC LOCATION: 100 ft from North Bend Way CITY/STATE: Snoqualmie, WA									DIRECTION: NB/SBDATE:Sep 24 2012-Sep 302012	
Start Time	Mon 24-Sep-12	Tue 25-Sep-12	Wed 26-Sep-12	Thu 27-Sep-12	$\begin{gathered} \text { Fri } \\ 28-\text { Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	Sat 29-Sep-12	$\begin{gathered} \text { Sun } \\ 30-\text { Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	197	158	114	121	220	162	342	339	213	\square
1:00 AM	131	170	92	92	157	128	286	262	170	-
2:00 AM	93	99	75	89	126	96	219	245	135	
3:00 AM	73	68	62	49	86	68	130	165	90	
4:00 AM	44	65	42	40	55	49	93	95	62	\square
5:00 AM	59	59	54	57	76	61	89	103	71	\square
6:00 AM	132	70	123	128	83	107	144	116	114	\square
7:00 AM	215	99	176	208	128	165	214	146	169	
8:00 AM	226	125	215	231	160	191	262	209	204	
9:00 AM	278	128	253	288	214	232	310	255	247	
10:00 AM	329	224	290	354	243	288	387	319	307	
11:00 AM	383	398	300	388	304	355	476	357	372	-
12:00 PM	391	226	339	370	331	331	550	357	366)
1:00 PM	434	354	450	436	344	404	577	459	436]
2:00 PM	439	343	387	403	366	388	570	458	424	
3:00 PM	436	396	418	438	388	415	560	436	439	\square
4:00 PM	455	497	488	459	384	457	526	471	469	
5:00 PM	426	478	489	440	422	451	505	497	465	
6:00 PM	402	493	479	449	452	455	513	524	473	
7:00 PM	398	399	389	434	503	425	501	399	432	\square
8:00 PM	363	327	316	442	498	389	439	541	418	
9:00 PM	382	275	277	404	474	362	472	445	390	
10:00 PM	346	218	201	359	417	308	460	336	334	-
11:00 PM	237	166	167	302	437	262	452	239	286	1
Day Total	6869	5835	6196	6981	6868	6549	9077	7773	7086	
\% Weekday Average	76.6\%	89.1\%	94.6\%	106.6\%	104.9\%					
\% Week Average	73.4\%	82.3\%	87.4\%	98.5\%	96.9\%	92.4\%	128.1\%	109.7\%		
AM Peak Volume	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 383 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 398 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 300 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 388 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 304 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 355 \end{gathered}$	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 476 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 357 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 372 \end{gathered}$	
PM Peak	4:00 PM 455	4:00 PM 497	5:00 PM	$\begin{gathered} \text { 4:00 PM } \\ 459 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{PM} \\ 503 \end{gathered}$	$\begin{gathered} \text { 4:00 PM } \\ 457 \end{gathered}$	$\begin{gathered} 1: 00 \mathrm{PM} \\ 577 \end{gathered}$	$\begin{gathered} \text { 8:00 PM } \\ 541 \end{gathered}$	$\begin{gathered} \hline \text { 6:00 PM } \\ 473 \end{gathered}$	
Comments:										

Report generated on 11/2/2012 1:57 PM

LOCATION: SPECIFIC L CITY/STATE	Combined OCATION: Snoqualm	lume0 ft fro WA	Drivew orth Be	Snoqu ay		north of roundabout at	$\overline{\mathrm{E} \text { Nort }}$	Way	DATE	QC JOB \#: 10822001 DIRECTION: NB/SB Oct 012012 - Oct 012012
Start Time	$\begin{gathered} \text { Mon } \\ 01 \text {-Oct-12 } \end{gathered}$	Tue	Wed	Thu	Fri	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM	213					213			213	\square
1:00 AM	142					142			142	\square
2:00 AM	101					101			101	
3:00 AM	76					76			76	-
4:00 AM	44					44			44	\square
5:00 AM	76					76			76	\square
6:00 AM	126					126			126	
7:00 AM	205					205			205	
8:00 AM	207					207			207	I
9:00 AM	288					288			288	-
10:00 AM	334					334			334	
11:00 AM	138					138			138	\square
12:00 PM										
1:00 PM						,		0		
2:00 PM						R			1-9	
3:00 PM						ded				
4:00 PM										
5:00 PM										
6:00 PM										
7:00 PM										
8:00 PM										
9:00 PM										
10:00 PM										
11:00 PM										
Day Total	1950					1950			1950	
\% Weekday										
Average	29.8\%									
\% Week Average	27.5\%					100.0\%				
AM Peak	10:00 AM					10:00 AM			10:00 AM	
Volume	334					334			334	
PM Peak										
Volume										
Comments:										

Report generated on 11/2/2012 1:57 PM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION SPECIFIC CITY/STAT	Combined OCATION: : Snoqualm	Volume-Ma 100 ft from mie, WA	ain Driveway North Bend	y to Snoqual Way	Imie Casino	orth of roundabout at	SE North Bend Way	DATE:	QC JOB \#: 10822001 DIRECTION: NB/SB Sep 172012 - Sep 212012
Start Time	Mon 17-Sep-12	Tue 18-Sep-12	Wed 19-Sep-12	Thu 20-Sep-12	$\begin{gathered} \hline \text { Fri } \\ 21-\text { Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic			Average Weekday Profile
12:00 AM	197	158	114	121	278	174			-
1:00 AM	131	170	92	92	184	134			\square
2:00 AM	93	99	75	89	133	98			
3:00 AM	73	68	62	49	101	71			\square
4:00 AM	44	65	42	40	75	53			\square
5:00 AM	59	59	54	57	74	61			\square
6:00 AM	132	70	123	128	82	107			-
7:00 AM	215	99	176	208	119	163			
8:00 AM	226	125	215	231	172	194			
9:00 AM	278	128	253	288	204	230			
10:00 AM	329	224	290	354	304	300			
11:00 AM	383	398	300	388	346	363			
12:00 PM	391	226	339	370	421	349			
1:00 PM	434	354	450	436	453	425	\square		
2:00 PM	439	343	387	403	492	413			\square
3:00 PM	436	396	418	438	517	441			\square
4:00 PM	455	497	488	459	485	477			
5:00 PM	426	478	489	440	602	487	-		\square
6:00 PM	402	493	479	449	687	502			-
7:00 PM	398	399	389	434	819	488			
8:00 PM	363	327	316	442	617	413			-
9:00 PM	382	275	277	404	606	389			\square
10:00 PM	346	218	201	359	680	361			I
11:00 PM	237	166	167	302	516	278			
Day Total	6869	5835	6196	6981	8967	6971			
\% Weekday Average	98.5\%	83.7\%	88.9\%	100.1\%	128.6\%				
\% Week Average									
AM Peak Volume	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 383 \\ \hline \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 398 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 300 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 388 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 346 \\ \hline \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 363 \end{gathered}$			
PM Peak Volume	$\begin{gathered} 4: 00 \text { PM } \\ 455 \\ \hline \end{gathered}$	$\begin{gathered} 4: 00 \mathrm{PM} \\ 497 \\ \hline \end{gathered}$	$\begin{gathered} 5: 00 \mathrm{PM} \\ 489 \\ \hline \end{gathered}$	$\begin{gathered} 4: 00 \mathrm{PM} \\ 459 \\ \hline \end{gathered}$	$\begin{gathered} 7: 00 \text { PM } \\ 819 \\ \hline \end{gathered}$	$\begin{gathered} \text { 6:00 PM } \\ 502 \\ \hline \end{gathered}$			
Comments:									

Report generated on 11/2/2012 1:57 PM

Report generated on 11/2/2012 1:57 PM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: Combined Volume-Main Driveway to Snoqualmie Casino north of roundabout at SE North Bend Way SPECIFIC LOCATION: 100 ft from North Bend Way CITY/STATE: Snoqualmie, WA									QC JOB \#: 10822001DIRECTION: NB/SBDATE: Sep 17 2012-Sep 232012	
Start Time	$\begin{gathered} \text { Mon } \\ \text { 17-Sep-12 } \end{gathered}$	Tue 18-Sep-12	Wed 19-Sep-12	Thu 20-Sep-12	$\begin{gathered} \text { Fri } \\ \text { 21-Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	Sat 22-Sep-12	$\begin{gathered} \text { Sun } \\ 23 \text {-Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	197	158	114	121	278	174	384	441	242	\square
1:00 AM	131	170	92	92	184	134	320	345	191	
2:00 AM	93	99	75	89	133	98	262	253	143	\square
3:00 AM	73	68	62	49	101	71	148	168	96	
4:00 AM	44	65	42	40	75	53	87	111	66	\square
5:00 AM	59	59	54	57	74	61	94	92	70	-
6:00 AM	132	70	123	128	82	107	125	124	112	-
7:00 AM	215	99	176	208	119	163	253	184	179	
8:00 AM	226	125	215	231	172	194	298	258	218	
9:00 AM	278	128	253	288	204	230	432	290	268	
10:00 AM	329	224	290	354	304	300	501	345	335	
11:00 AM	383	398	300	388	346	363	537	363	388	\square
12:00 PM	391	226	339	370	421	349	557	417	389	,
1:00 PM	434	354	450	436	453	425	600	459	455	
2:00 PM	439	343	387	403	492	413	621	474	451	
3:00 PM	436	396	418	438	517	441	596	443	463	\square
4:00 PM	455	497	488	459	485	477	665	423	496	I
5:00 PM	426	478	489	440	602	487	691	422	507	
6:00 PM	402	493	479	449	687	502	751	448	530	
7:00 PM	398	399	389	434	819	488	762	438	520	
8:00 PM	363	327	316	442	617	413	643	393	443]
9:00 PM	382	275	277	404	606	389	602	361	415	I
10:00 PM	346	218	201	359	680	361	790	293	412	,
11:00 PM	237	166	167	302	516	278	598	234	317	1
Day Total	6869	5835	6196	6981	8967	6971	11317	7779	7706	
\% Weekday Average	98.5\%	83.7\%	88.9\%	100.1\%	128.6\%					
\% Week Average	89.1\%	75.7\%	80.4\%	90.6\%	116.4\%	90.5\%	146.9\%	100.9\%		
AM Peak Volume	$\begin{gathered} 11: 00 \mathrm{AM} \\ 383 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 398 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 300 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 388 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 346 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 363 \end{gathered}$	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 537 \\ \hline \end{gathered}$	$\begin{gathered} 12: 00 \text { AM } \\ 441 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 388 \end{gathered}$	
PM Peak Volume	$4: 00 \mathrm{PM}$ 455	$\begin{gathered} 4: 00 \mathrm{PM} \\ 497 \end{gathered}$	$\begin{gathered} 5: 00 \mathrm{PM} \\ 489 \end{gathered}$	$\begin{gathered} 4: 00 \text { PM } \\ 459 \end{gathered}$	$\begin{gathered} 7: 00 \mathrm{PM} \\ 819 \end{gathered}$	$\begin{gathered} \text { 6:00 PM } \\ 502 \end{gathered}$	$\begin{gathered} \hline 10: 00 \text { PM } \\ 790 \end{gathered}$	$\begin{gathered} \text { 2:00 PM } \\ 474 \end{gathered}$	$\begin{gathered} \text { 6:00 PM } \\ 530 \end{gathered}$	
Comments:										

Report generated on 11/2/2012 1:57 PM

LOCATION: West Driveway to Snoqualmie Casino SPECIFIC LOCATION: 100 ft from North Bend Way CITY/STATE: Snoqualmie , WA									QC JOB \#: 10822002DIRECTION: NBDATE: Sep 20 2012 - Sep 232012	
Start Time	Mon	Tue	Wed	Thu 20-Sep-12	$\begin{gathered} \text { Fri } \\ 21-\text { Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	$\begin{gathered} \text { Sat } \\ 22-\text { Sep-12 } \end{gathered}$	Sun 23-Sep-12	Average Week Hourly Traffic	Average Week Profile
12:00 AM					8	8	5	64	26	-
1:00 AM					11	11	14	56	27	-
2:00 AM					1	1	4	80	28	-
3:00 AM					4	4	2	26	11	-
4:00 AM					5	5	3	20	9	-
5:00 AM					20	20	12	16	16	\square
6:00 AM					28	28	26	14	23	-
7:00 AM					54	54	34	14	34	
8:00 AM					64	64	59	29	51	\square
9:00 AM					73	73	84	24	60	
10:00 AM					70	70	62	54	62	
11:00 AM					99	99	55	39	64	
12:00 PM					93	93	46	41	60	\square
1:00 PM					109	109	68	49	75	
2:00 PM					103	103	54	59	72	
3:00 PM				0	120	- 60	68	36	56	\square
4:00 PM				0	119	60	68	61	62	
5:00 PM				0	158	79	95	55	77	
6:00 PM				0	120	60	98	77	74	
7:00 PM				0	121	61	61	42	56	
8:00 PM				0	74	37	61	56	48	\square
9:00 PM				0	63	32	45	26	34	
10:00 PM				0	28	14	99	49	44	
11:00 PM				0	18	9	62	45	31	
Day Total				0	1563	1154	1185	1032	1100	
\% Weekday										
Average				0.0\%	135.4\%					
\% Week Average				0.0\%	142.1\%	104.9\%	107.7\%	93.8\%		
AM Peak					11:00 AM	11:00 AM	9:00 AM	2:00 AM	11:00 AM	
Volume					99	99	84	80	64	
PM Peak				3:00 PM	5:00 PM	1:00 PM	10:00 PM	6:00 PM	5:00 PM	
Volume				0	158	109	99	77	77	
Comments:										

Report generated on 11/2/2012 1:57 PM

LOCATION: West Driveway to Snoqualmie Casino SPECIFIC LOCATION: 100 ft from North Bend Way CITY/STATE: Snoqualmie , WA									QC JOB \#: 10822002DIRECTION: NBDATE: Sep 24 2012 - Sep 302012	
Start Time	$\begin{gathered} \text { Mon } \\ 24-\text { Sep-12 } \end{gathered}$	Tue 25-Sep-12	Wed 26-Sep-12	$\begin{gathered} \text { Thu } \\ \text { 27-Sep-12 } \end{gathered}$	Fri 28-Sep-12	Average Weekday Hourly Traffic	Sat 29-Sep-12	$\begin{array}{\|c} \text { Sun } \\ 30-\text { Sep-12 } \end{array}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	45	33	25	31	39	35	76	74	46	
1:00 AM	33	18	13	22	19	21	44	39	27	\square
2:00 AM	23	30	21	27	28	26	61	69	37	-
3:00 AM	8	16	7	7	18	11	26	41	18	\square
4:00 AM	16	4	10	7	16	11	19	20	13	\square
5:00 AM	6	7	8	6	8	7	5	12	7	-
6:00 AM	14	9	13	18	11	13	17	15	14	\square
7:00 AM	26	21	18	23	8	19	18	20	19	\square
8:00 AM	48	26	33	38	28	35	34	30	34	
9:00 AM	32	18	21	27	32	26	27	29	27	\square
10:00 AM	42	16	35	52	22	33	50	39	37	-
11:00 AM	42	16	37	37	23	31	45	33	33	\square
12:00 PM	40	20	48	41	32	36	68	38	41	\square
1:00 PM	47	50	55	51	41	49	94	58	57	\square
2:00 PM	84	46	45	59	47	56	127	66	68	-
3:00 PM	62	54	67	63	44	58	101	35	61	\square
4:00 PM	86	82	81	104	63	83	74	66	79	\square
5:00 PM	65	615	83	79	47	178	86	48	146	
6:00 PM	85	345	100	98	88	143	100	80	128	-
7:00 PM	55	90	66	69	92	74	68	47	70	\square
8:00 PM	54	57	50	68	74	61	60	86	64	\square
9:00 PM	39	48	43	58	46	47	51	36	46	
10:00 PM	61	45	66	66	61	60	66	38	58	
11:00 PM	34	26	41	33	53	37	57	56	43	1
Day Total	1047	1692	986	1084	940	1150	1374	1075	1173	
\% Weekday Average	90.7\%	147.1\%	85.7\%	94.3\%	81.7\%					
\% Week Average	95.2\%	144.2\%	84.1\%	92.4\%	80.1\%	98.0\%	117.1\%	91.6\%		
AM Peak Volume	$\begin{gathered} 8: 00 \mathrm{AM} \\ 48 \end{gathered}$	$\begin{gathered} 12: 00 \mathrm{AM} \\ 33 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 37 \end{gathered}$	$\begin{gathered} \text { 10:00 AM } \\ 52 \end{gathered}$	$\begin{gathered} 12: 00 \mathrm{AM} \\ 39 \end{gathered}$	$\begin{gathered} 12: 00 \mathrm{AM} \\ 35 \end{gathered}$	$\begin{gathered} 12: 00 \mathrm{AM} \\ 76 \end{gathered}$	$\begin{gathered} 12: 00 \mathrm{AM} \\ 74 \end{gathered}$	$\begin{gathered} 12: 00 \mathrm{AM} \\ 46 \end{gathered}$	
PM Peak Volume	$\begin{gathered} 4: 00 \text { PM } \\ 86 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 615 \end{gathered}$	$\begin{gathered} 6: 00 \mathrm{PM} \\ 100 \end{gathered}$	$\begin{gathered} \text { 4:00 PM } \\ 104 \end{gathered}$	$\begin{gathered} \text { 7:00 PM } \\ 92 \end{gathered}$	$\begin{gathered} 5: 00 \text { PM } \\ 178 \end{gathered}$	$\begin{gathered} \text { 2:00 PM } \\ 127 \end{gathered}$	$\begin{gathered} 8: 00 \text { PM } \\ 86 \end{gathered}$	$\begin{gathered} 5: 00 \text { PM } \\ 146 \end{gathered}$	
Comments:										

Report generated on 11/2/2012 1:57 PM

LOCATION: SPECIFIC L CITY/STATE	West Drive OCATION: E: Snoqualm	ay to 00 ft fr , WA	ualmie orth Be						DAT	QC JOB \#: 10822002 DIRECTION: NB Oct 012012 - Oct 012012
Start Time	$\begin{gathered} \text { Mon } \\ 01-O c t-12 \end{gathered}$	Tue	Wed	Thu	Fri	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM	38					38			38	\square
1:00 AM	30					30			30	
2:00 AM	29					29			29	\square
3:00 AM	14					14			14	\square
4:00 AM	13					13			13	-
5:00 AM	8					8			8	\square
6:00 AM	12					12			12	\square
7:00 AM	21					21			21	
8:00 AM	34					34			34	
9:00 AM	27					27			27	\square
10:00 AM	42					42			42	
11:00 AM	14					14			14	\square
12:00 PM										
1:00 PM								$=$		
2:00 PM										
3:00 PM										
4:00 PM										
5:00 PM										
6:00 PM										
7:00 PM										
8:00 PM										
9:00 PM										
10:00 PM										
11:00 PM										
Day Total	282					282			282	
\% Weekday										
Average	24.5\%									
\% Week										
Average	24.0\%					100.0\%				
AM Peak	10:00 AM					10:00 AM			10:00 AM	
Volume	42					42			42	
PM Peak										
Volume										
Comments:										

Report generated on 11/2/2012 1:57 PM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: SPECIFIC L CITY/STATE	West Drive OCATION: E: Snoqualm	eway to Sno 100 ft from mie, WA	qualmie Ca North Bend					DATE	QC JOB \#: 10822002 DIRECTION: NB Sep 172012 - Sep 212012
Start Time	Mon 17-Sep-12	Tue 18-Sep-12	Wed 19-Sep-12	Thu 20-Sep-12	$\begin{gathered} \hline \text { Fri } \\ \text { 21-Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic			Average Weekday Profile
12:00 AM	45	33	25	31	8	28			-
1:00 AM	33	18	13	22	11	19			\square
2:00 AM	23	30	21	27	1	20			\square
3:00 AM	8	16	7	7	4	8			-
4:00 AM	16	4	10	7	5	8			-
5:00 AM	6	7	8	6	20	9			\square
6:00 AM	14	9	13	18	28	16			\square
7:00 AM	26	21	18	23	54	28			\square
8:00 AM	48	26	33	38	64	42			
9:00 AM	32	18	21	27	73	34			\square
10:00 AM	42	16	35	52	70	43			\square
11:00 AM	42	16	37	37	99	46			
12:00 PM	40	20	48	41	93	48			\square
1:00 PM	47	50	55	51	109	62	n		\square
2:00 PM	84	46	45	59	103	67			,
3:00 PM	62	54	67	0	120	61			\square
4:00 PM	86	82	81	0	119	74			-
5:00 PM	65	615	83	0	158	184			
6:00 PM	85	345	100	0	120	130			
7:00 PM	55	90	66	0	121	66			
8:00 PM	54	57	50	0	74	47			
9:00 PM	39	48	43	0	63	39			\square
10:00 PM	61	45	66	0	28	40			
11:00 PM	34	26	41	0	18	24			,
Day Total	1047	1692	986	446	1563	1143			
\% Weekday Average	91.6\%	148.0\%	86.3\%	39.0\%	136.7\%				
\% Week Average									
AM Peak Volume	$\begin{gathered} 8: 00 \mathrm{AM} \\ 48 \\ \hline \end{gathered}$	$\begin{gathered} 12: 00 \mathrm{AM} \\ 33 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 37 \end{gathered}$	$\begin{gathered} 10: 00 \mathrm{AM} \\ 52 \\ \hline \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 99 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 46 \end{gathered}$			
PM Peak Volume	$\begin{gathered} 4: 00 \text { PM } \\ 86 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5: 00 \mathrm{PM} \\ 615 \\ \hline \end{gathered}$	$\begin{gathered} 6: 00 \mathrm{PM} \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} \text { 2:00 PM } \\ 59 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5: 00 \text { PM } \\ 158 \\ \hline \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 184 \\ \hline \end{gathered}$			
Comments:									

Report generated on 11/2/2012 1:57 PM

Report generated on 11/2/2012 1:57 PM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: West Driveway to Snoqualmie Casino SPECIFIC LOCATION: 100 ft from North Bend Way CITY/STATE: Snoqualmie, WA									QC JOB \#: 10822002DIRECTION: NBDATE: $\operatorname{Sep} 17$ 2012-Sep 232012	
Start Time	$\begin{gathered} \text { Mon } \\ \text { 17-Sep-12 } \\ \hline \end{gathered}$	Tue 18-Sep-12	Wed 19-Sep-12	Thu 20-Sep-12	$\begin{gathered} \text { Fri } \\ 21-\text { Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	Sat 22-Sep-12	$\begin{gathered} \text { Sun } \\ 23-\text { Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	45	33	25	31	8	28	5	64	30	-
1:00 AM	33	18	13	22	11	19	14	56	24	\square
2:00 AM	23	30	21	27	1	20	4	80	27	\square
3:00 AM	8	16	7	7	4	8	2	26	10	\square
4:00 AM	16	4	10	7	5	8	3	20	9	\square
5:00 AM	6	7	8	6	20	9	12	16	11	\square
6:00 AM	14	9	13	18	28	16	26	14	17	\square
7:00 AM	26	21	18	23	54	28	34	14	27	\square
8:00 AM	48	26	33	38	64	42	59	29	42	
9:00 AM	32	18	21	27	73	34	84	24	40	
10:00 AM	42	16	35	52	70	43	62	54	47	
11:00 AM	42	16	37	37	99	46	55	39	46	
12:00 PM	40	20	48	41	93	48	46	41	47	\square
1:00 PM	47	50	55	51	109	62	68	49	61	I
2:00 PM	84	46	45	59	103	67	54	59	64	
3:00 PM	62	54	67	0	120	61	68	36	58	\square
4:00 PM	86	82	81	0	119	74	68	61	71	\square
5:00 PM	65	615	83	0	158	184	95	55	153	
6:00 PM	85	345	100	0	120	130	98	77	118	」
7:00 PM	55	90	66	0	121	66	61	42	62	-
8:00 PM	54	57	50	0	74	47	61	56	50	\square
9:00 PM	39	48	43	0	63	39	45	26	38	\square
10:00 PM	61	45	66	0	28	40	99	49	50	-
11:00 PM	34	26	41	0	18	24	62	45	32	
Day Total	1047	1692	986	446	1563	1143	1185	1032	1134	
\% Weekday Average	91.6\%	148.0\%	86.3\%	39.0\%	136.7\%					
\% Week Average	92.3\%	149.2\%	86.9\%	39.3\%	137.8\%	100.8\%	104.5\%	91.0\%		
AM Peak Volume	$\begin{gathered} 8: 00 \mathrm{AM} \\ 48 \end{gathered}$	$\begin{gathered} 12: 00 \mathrm{AM} \\ 33 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 37 \end{gathered}$	$\begin{gathered} 10: 00 \mathrm{AM} \\ 52 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 99 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 46 \end{gathered}$	$\begin{gathered} 9: 00 \mathrm{AM} \\ 84 \end{gathered}$	$\begin{gathered} 2: 00 \mathrm{AM} \\ 80 \end{gathered}$	$\begin{gathered} 10: 00 \mathrm{AM} \\ 47 \end{gathered}$	
PM Peak Volume	$\begin{gathered} \text { 4:00 PM } \\ 86 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 615 \\ \hline \end{gathered}$	$\begin{gathered} \text { 6:00 PM } \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 2: 00 \mathrm{PM} \\ 59 \\ \hline \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 158 \\ \hline \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 184 \end{gathered}$	$\begin{gathered} 10: 00 \text { PM } \\ 99 \\ \hline \end{gathered}$	$\begin{gathered} \text { 6:00 PM } \\ \quad 77 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5: 00 \mathrm{PM} \\ 153 \\ \hline \end{gathered}$	
Comments:										

Report generated on 11/2/2012 1:57 PM

Report generated on 11/2/2012 1:57 PM

LOCATION: West Driveway to Snoqualmie Casino SPECIFIC LOCATION: 100 ft from North Bend Way CITY/STATE: Snoqualmie , WA									QC JOB \#: 10822002DIRECTION:SBDATE: 24 2012 - Sep 302012	
Start Time	Mon 24-Sep-12	Tue 25-Sep-12	Wed 26-Sep-12	$\begin{gathered} \text { Thu } \\ \text { 27-Sep-12 } \end{gathered}$	$\begin{gathered} \text { Fri } \\ 28-\text { Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	Sat 29-Sep-12	$\begin{array}{\|c} \text { Sun } \\ 30-\text { Sep-12 } \end{array}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	3	5	3	7	3	4	13	7	6	\square
1:00 AM	14	13	15	13	14	14	13	15	14	\square
2:00 AM	2	1	2	1	2	2	2	1	2	,
3:00 AM	3	2	3	0	4	2	3	2	2	,
4:00 AM	4	4	1	0	2	2	2	3	2	,
5:00 AM	12	12	13	15	18	14	13	13	14	\square
6:00 AM	22	19	25	23	17	21	26	14	21	\square
7:00 AM	42	38	39	44	35	40	25	25	35	\square
8:00 AM	44	34	36	47	50	42	43	31	41	
9:00 AM	75	45	67	66	61	63	81	59	65	
10:00 AM	67	55	65	63	54	61	76	45	61	-
11:00 AM	65	89	64	58	71	69	100	67	73	
12:00 PM	56	25	67	57	53	52	116	58	62	\square
1:00 PM	84	60	111	70	75	80	132	83	88	-
2:00 PM	84	76	74	78	73	77	134	69	84	\square
3:00 PM	96	98	78	108	90	94	85	76	90	-
4:00 PM	102	101	98	98	70	94	79	83	90	-
5:00 PM	99	134	126	117	117	119	90	90	110	
6:00 PM	58	99	94	62	96	82	74	45	75	\square
7:00 PM	60	51	47	83	88	66	70	45	63	-
8:00 PM	34	17	26	51	64	38	50	27	38	\square
9:00 PM	45	33	23	49	50	40	68	32	43	
10:00 PM	21	11	9	26	28	19	24	9	18	\square
11:00 PM	16	15	13	21	23	18	25	9	17	\square
Day Total	1108	1037	1099	1157	1158	1113	1344	908	1114	
\% Weekday Average	114.0\%	93.2\%	98.7\%	104.0\%	104.0\%					
\% Week Average	101.8\%	93.1\%	98.7\%	103.9\%	103.9\%	99.9\%	120.6\%	81.5\%		
AM Peak Volume	$\begin{gathered} 9: 00 \mathrm{AM} \\ 75 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 89 \end{gathered}$	$\begin{gathered} 9: 00 \mathrm{AM} \\ 67 \end{gathered}$	$\begin{gathered} 9: 00 \mathrm{AM} \\ 66 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 71 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 69 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 100 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 67 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 73 \end{gathered}$	
PM Peak	4:00 PM 102	5:00 PM 134	5:00 PM 126	5:00 PM 117	5:00 PM	$\begin{gathered} \text { 5:00 PM } \\ 119 \end{gathered}$	$\begin{gathered} \text { 2:00 PM } \\ 134 \end{gathered}$	$\begin{gathered} 5: 00 \mathrm{PM} \\ 90 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 110 \end{gathered}$	
Comments:										

Report generated on 11/2/2012 1:57 PM

LOCATION: SPECIFIC L CITY/STATE	West Drive OCATION: : Snoqualm	ay to 00 ft fr , WA	ualmie orth Be						DATE	QC JOB \#: 10822002 DIRECTION: SB Oct 012012 - Oct 012012
Start Time	$\begin{gathered} \text { Mon } \\ 01-\text { Oct-12 } \end{gathered}$	Tue	Wed	Thu	Fri	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM	0					0			0	1
1:00 AM	15					15			15	\square
2:00 AM	4					4			4	\square
3:00 AM	0					0			0	
4:00 AM	6					6			6	\square
5:00 AM	11					11			11	\square
6:00 AM	16					16			16	\square
7:00 AM	46					46			46	
8:00 AM	35					35			35	\square
9:00 AM	78					78			78	
10:00 AM	66					66			66]
11:00 AM	17					17			17	\square
12:00 PM										
1:00 PM								0		
2:00 PM										
3:00 PM										
4:00 PM										
5:00 PM										
6:00 PM										
7:00 PM										
8:00 PM										
9:00 PM										
10:00 PM										
11:00 PM										
Day Total	294					294			294	
\% Weekday										
Average	26.4\%									
\% Week										
Average	26.4\%					100.0\%				
AM Peak	9:00 AM					9:00 AM			9:00 AM	
Volume	78					78			78	
PM Peak										
Volume										
Comments:										

Report generated on 11/2/2012 1:57 PM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: West Driveway to Snoqualmie Casino SPECIFIC LOCATION: 100 ft from North Bend Way CITY/STATE: Snoqualmie, WA							QC JOB \#: 10822002DIRECTION: SBDATE: $\operatorname{Sep} 172012$ - Sep 212012		
Start Time	$\begin{gathered} \text { Mon } \\ \text { 17-Sep-12 } \end{gathered}$	Tue 18-Sep-12	Wed 19-Sep-12	Thu 20-Sep-12	$\begin{gathered} \text { Fri } \\ 21-\text { Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic			Average Weekday Profile
12:00 AM	3	5	3	7	41	12			-
1:00 AM	14	13	15	13	22	15			-
2:00 AM	2	1	2	1	40	9			\square
3:00 AM	3	2	3	0	14	4			
4:00 AM	4	4	1	0	17	5			
5:00 AM	12	12	13	15	8	12			\square
6:00 AM	22	19	25	23	14	21			
7:00 AM	42	38	39	44	26	38			
8:00 AM	44	34	36	47	50	42			
9:00 AM	75	45	67	66	51	61			
10:00 AM	67	55	65	63	38	58			-
11:00 AM	65	89	64	58	59	67			
12:00 PM	56	25	67	57	54	52			\square
1:00 PM	84	60	111	70	70	79	0		
2:00 PM	84	76	74	78	69	76			\square
3:00 PM	96	98	78	0	90	72			,
4:00 PM	102	101	98	0	98	80			\square
5:00 PM	99	134	126	0	102	92			
6:00 PM	58	99	94	0	100	70			\square
7:00 PM	60	51	47	0	111	54]
8:00 PM	34	17	26	0	77	31			\square
9:00 PM	45	33	23	0	60	32			
10:00 PM	21	11	9	0	97	28			
11:00 PM	16	15	13	0	59	21			
Day Total	1108	1037	1099	542	1367	1031			
\% Weekday Average	107.5\%	100.6\%	106.6\%	52.6\%	132.6\%				
\% Week Average									
AM Peak Volume	$\begin{gathered} 9: 00 \mathrm{AM} \\ 75 \\ \hline \end{gathered}$	$\begin{gathered} \text { 11:00 AM } \\ 89 \end{gathered}$	$\begin{gathered} 9: 00 \mathrm{AM} \\ 67 \\ \hline \end{gathered}$	$\begin{gathered} 9: 00 \mathrm{AM} \\ 66 \end{gathered}$	$\begin{gathered} \text { 11:00 AM } \\ 59 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 67 \\ \hline \end{gathered}$			
PM Peak Volume	$\begin{gathered} \hline 4: 00 \text { PM } \\ 102 \\ \hline \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 134 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5: 00 \text { PM } \\ 126 \\ \hline \end{gathered}$	$\begin{gathered} 2: 00 \text { PM } \\ 78 \\ \hline \end{gathered}$	$\begin{gathered} \hline 7: 00 \mathrm{PM} \\ 111 \\ \hline \end{gathered}$	$\begin{gathered} 5: 00 \text { PM } \\ 92 \\ \hline \end{gathered}$			
Comments:									

Report generated on 11/2/2012 1:57 PM

Report generated on 11/2/2012 1:57 PM

LOCATION: West Driveway to Snoqualmie Casino SPECIFIC LOCATION: 100 ft from North Bend Way CITY/STATE: Snoqualmie , WA									QC JOB \#: 10822002DIRECTION: SBDATE: Sep 172012 - Sep 232012	
Start Time	$\begin{gathered} \text { Mon } \\ \text { 17-Sep-12 } \end{gathered}$	Tue 18-Sep-12	Wed 19-Sep-12	Thu $20-\text { Sep-12 }$	$\begin{gathered} \text { Fri } \\ 21-\text { Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	$\begin{gathered} \text { Sat } \\ \text { 22-Sep-12 } \end{gathered}$	Sun 23-Sep-12	Average Week Hourly Traffic	Average Week Profile
12:00 AM	3	5	3	7	41	12	58	9	18	-
1:00 AM	14	13	15	13	22	15	36	15	18	\square
2:00 AM	2	1	2	1	40	9	66	1	16	\square
3:00 AM	3	2	3	0	14	4	38	4	9	\square
4:00 AM	4	4	1	0	17	5	17	3	7	\square
5:00 AM	12	12	13	15	8	12	9	12	12	-
6:00 AM	22	19	25	23	14	21	14	15	19	
7:00 AM	42	38	39	44	26	38	35	24	35	
8:00 AM	44	34	36	47	50	42	58	34	43	
9:00 AM	75	45	67	66	51	61	52	66	60	
10:00 AM	67	55	65	63	38	58	57	62	58	
11:00 AM	65	89	64	58	59	67	66	85	69	
12:00 PM	56	25	67	57	54	52	65	59	55	\square
1:00 PM	84	60	111	70	70	79	93	75	80	-
2:00 PM	84	76	74	78	69	76	89	69	77	I
3:00 PM	96	98	78	0	90	72	100	75	77	\square
4:00 PM	102	101	98	0	98	80	100	72	82	\square
5:00 PM	99	134	126	0	102	92	129	87	97	
6:00 PM	58	99	94	0	100	70	104	36	70]
7:00 PM	60	51	47	0	111	54	84	50	58	」
8:00 PM	34	17	26	0	77	31	53	28	34	\square
9:00 PM	45	33	23	0	60	32	70	38	38	
10:00 PM	21	11	9	0	97	28	15	9	23	
11:00 PM	16	15	13	0	59	21	21	12	19	
Day Total	1108	1037	1099	542	1367	1031	1429	940	1074	
\% Weekday Average	107.5\%	100.6\%	106.6\%	52.6\%	132.6\%					
\% Week Average	103.2\%	96.6\%	102.3\%	50.5\%	127.3\%	96.0\%	133.1\%	87.5\%		
AM Peak Volume	$\begin{gathered} 9: 00 \mathrm{AM} \\ 75 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 89 \end{gathered}$	9:00 AM	$\begin{gathered} 9: 00 \mathrm{AM} \\ 66 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 59 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 67 \end{gathered}$	$\begin{gathered} 2: 00 \mathrm{AM} \\ 66 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 85 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 69 \end{gathered}$	
PM Peak Volume	$\begin{gathered} \hline 4: 00 \mathrm{PM} \\ 102 \\ \hline \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 134 \\ \hline \end{gathered}$	$\begin{gathered} 5: 00 \mathrm{PM} \\ 126 \\ \hline \end{gathered}$	$\begin{gathered} 2: 00 \mathrm{PM} \\ 78 \\ \hline \end{gathered}$	$\begin{gathered} 7: 00 \text { PM } \\ 111 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 92 \\ \hline \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 129 \\ \hline \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 87 \end{gathered}$	$\begin{gathered} 5: 00 \mathrm{PM} \\ 97 \\ \hline \end{gathered}$	
Comments:										

Report generated on 11/2/2012 1:57 PM

LOCATION: West Driveway to Snoqualmie Casino SPECIFIC LOCATION: 100 ft from North Bend Way CITY/STATE: Snoqualmie , WA									QC JOB \#: 10822002DIRECTION: NB/SBDATE: Sep 20 2012 - Sep 232012	
Start Time	Mon	Tue	Wed	Thu 20-Sep-12	$\begin{gathered} \text { Fri } \\ 21-\text { Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	$\begin{gathered} \text { Sat } \\ 22-\text { Sep-12 } \end{gathered}$	$\begin{gathered} \text { Sun } \\ 23-\text { Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM					49	49	63	73	62	\square
1:00 AM					33	33	50	71	51	\square
2:00 AM					41	41	70	81	64	\square
3:00 AM					18	18	40	30	29	\square
4:00 AM					22	22	20	23	22	\square
5:00 AM					28	28	21	28	26	\square
6:00 AM					42	42	40	29	37	\square
7:00 AM					80	80	69	38	62	
8:00 AM					114	114	117	63	98	\square
9:00 AM					124	124	136	90	117	-
10:00 AM					108	108	119	116	114	\square
11:00 AM					158	158	121	124	134	
12:00 PM					147	147	111	100	119	\square
1:00 PM					179	179	161	124	155	
2:00 PM					172	172	143	128	148	
3:00 PM				0	210	105	168	111	122 -]
4:00 PM				0	217	109	168	133	130	I
5:00 PM				0	260	130	224	142	157	
6:00 PM				0	220	110	202	113	134	\square
7:00 PM				0	232	116	145	92	117]
8:00 PM				0	151	76	114	84	87	-
9:00 PM				0	123	62	115	64	76	\square
10:00 PM				0	125	63	114	58	74	\square
11:00 PM				0	77	39	83	57	54	
Day Total				0	2930	2125	2614	1972	2189	
\% Weekday Average				0.0\%	137.9\%					
\% Week Average				0.0\%	133.9\%	97.1\%	119.4\%	90.1\%		
AM Peak Volume					$\begin{gathered} 11: 00 \text { AM } \\ 158 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 158 \end{gathered}$	$\begin{gathered} 9: 00 \mathrm{AM} \\ 136 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 124 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 134 \end{gathered}$	
PM Peak Volume				$\begin{gathered} 3: 00 \text { PM } \\ 0 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 260 \end{gathered}$	$\begin{gathered} 1: 00 \text { PM } \\ 179 \end{gathered}$	$\begin{gathered} 5: 00 \text { PM } \\ 224 \end{gathered}$	$\begin{gathered} 5: 00 \mathrm{PM} \\ 142 \end{gathered}$	$\begin{gathered} 5: 00 \text { PM } \\ 157 \end{gathered}$	
Comments:										

Report generated on 11/2/2012 1:57 PM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: West Driveway to Snoqualmie Casino SPECIFIC LOCATION: 100 ft from North Bend Way CITY/STATE: Snoqualmie, WA									QC JOB \#: 10822002DIRECTION: NB/SBDATE: Sep 242012 - Sep 302012	
Start Time	Mon 24-Sep-12	Tue 25-Sep-12	Wed 26-Sep-12	Thu 27-Sep-12	Fri 28-Sep-12	Average Weekday Hourly Traffic	Sat 29-Sep-12	$\begin{gathered} \text { Sun } \\ 30-\text { Sep-12 } \end{gathered}$	Average Week Hourly Traffic	Average Week Profile
12:00 AM	48	38	28	38	42	39	89	81	52]
1:00 AM	47	31	28	35	33	35	57	54	41	\square
2:00 AM	25	31	23	28	30	27	63	70	39	-
3:00 AM	11	18	10	7	22	14	29	43	20	\square
4:00 AM	20	8	11	7	18	13	21	23	15	\square
5:00 AM	18	19	21	21	26	21	18	25	21	\square
6:00 AM	36	28	38	41	28	34	43	29	35	\square
7:00 AM	68	59	57	67	43	59	43	45	55	
8:00 AM	92	60	69	85	78	77	77	61	75	
9:00 AM	107	63	88	93	93	89	108	88	91	
10:00 AM	109	71	100	115	76	94	126	84	97	
11:00 AM	107	105	101	95	94	100	145	100	107	
12:00 PM	96	45	115	98	85	88	184	96	103	\square
1:00 PM	131	110	166	121	116	129	226	141	144	
2:00 PM	168	122	119	137	120	133	261	135	152	-
3:00 PM	158	152	145	171	134	152	186	111	151	\square
4:00 PM	188	183	179	202	133	177	153	149	170	-
5:00 PM	164	749	209	196	164	296	176	138	257	
6:00 PM	143	444	194	160	184	225	174	125	203	」
7:00 PM	115	141	113	152	180	140	138	92	133	\square
8:00 PM	88	74	76	119	138	99	110	113	103	-
9:00 PM	84	81	66	107	96	87	119	68	89	-
10:00 PM	82	56	75	92	89	79	90	47	76	
11:00 PM	50	41	54	54	76	55	82	65	60	1
Day Total	2155	2729	2085	2241	2098	2262	2718	1983	2289	
\% Weekday Average	101.4\%	120.6\%	92.2\%	99.1\%	92.7\%					
\% Week Average	98.4\%	119.2\%	91.1\%	97.9\%	91.7\%	98.8\%	118.7\%	86.6\%		
AM Peak Volume	$\begin{gathered} 10: 00 \mathrm{AM} \\ 109 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 105 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 101 \end{gathered}$	$\begin{gathered} 10: 00 \mathrm{AM} \\ 115 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 94 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 100 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 145 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 100 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 107 \end{gathered}$	
PM Peak Volume	$\begin{gathered} \text { 4:00 PM } \\ 188 \end{gathered}$	$\begin{gathered} 5: 00 \mathrm{PM} \\ 749 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 209 \end{gathered}$	$\begin{gathered} \text { 4:00 PM } \\ 202 \end{gathered}$	$\begin{gathered} \text { 6:00 PM } \\ 184 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 296 \end{gathered}$	$\begin{gathered} 2: 00 \text { PM } \\ 261 \end{gathered}$	$\begin{gathered} \text { 4:00 PM } \\ 149 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 257 \end{gathered}$	
Comments:										

Report generated on 11/2/2012 1:57 PM

LOCATION: SPECIFIC L CITY/STATE	West Drive OCATION: E: Snoqualm	ay to 00 ft fr , WA	ualmie orth Be						DAT	QC JOB \#: 10822002 DIRECTION: NB/SB Oct 012012 - Oct 012012
Start Time	$\begin{gathered} \text { Mon } \\ 01-O c t-12 \end{gathered}$	Tue	Wed	Thu	Fri	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM	38					38			38	\square
1:00 AM	45					45			45	\square
2:00 AM	33					33			33	\square
3:00 AM	14					14			14	\square
4:00 AM	19					19			19	-
5:00 AM	19					19			19	\square
6:00 AM	28					28			28	_
7:00 AM	67					67			67	
8:00 AM	69					69			69	\square
9:00 AM	105					105			105	
10:00 AM	108					108			108	
11:00 AM	31					31			31	
12:00 PM										
1:00 PM								$=$		
2:00 PM										
3:00 PM										
4:00 PM										
5:00 PM										
6:00 PM										
7:00 PM										
8:00 PM										
9:00 PM										
10:00 PM										
11:00 PM										
Day Total	576					576			576	
\% Weekday										
Average	25.5\%									
\% Week										
Average	25.2\%					100.0\%				
AM Peak	10:00 AM					10:00 AM			10:00 AM	
Volume	108					108			108	
PM Peak										
Volume										
Comments:										

Report generated on 11/2/2012 1:57 PM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: SPECIFIC L CITY/STATE	West Drive OCATION: Snoqualm	eway to Sno 100 ft from nie, WA	qualmie Cas North Bend \qquad	sino Way				DATE	$\begin{array}{\|c\|} \hline \text { QC JOB \#: } 10822002 \\ \text { DIRECTION: } \\ \text { NB/SB } \\ \text { Sep } 17 \text { 2012 - Sep } 212012 \\ \hline \end{array}$
Start Time	Mon 17-Sep-12	Tue 18-Sep-12	Wed 19-Sep-12	Thu 20-Sep-12	$\begin{gathered} \text { Fri } \\ 21-\text { Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic		DATE	Average Weekday Profile
12:00 AM	48	38	28	38	49	40]
1:00 AM	47	31	28	35	33	35			\square
2:00 AM	25	31	23	28	41	30			
3:00 AM	11	18	10	7	18	13			\square
4:00 AM	20	8	11	7	22	14			\square
5:00 AM	18	19	21	21	28	21			\square
6:00 AM	36	28	38	41	42	37			\square
7:00 AM	68	59	57	67	80	66			
8:00 AM	92	60	69	85	114	84			
9:00 AM	107	63	88	93	124	95			\square
10:00 AM	109	71	100	115	108	101			
11:00 AM	107	105	101	95	158	113			
12:00 PM	96	45	115	98	147	100			
1:00 PM	131	110	166	121	179	141			
2:00 PM	168	122	119	137	172	144			-
3:00 PM	158	152	145	0	210	133		¢	
4:00 PM	188	183	179	0	217	153			\square
5:00 PM	164	749	209	0	260	276			
6:00 PM	143	444	194	0	220	200			-
7:00 PM	115	141	113	0	232	120			
8:00 PM	88	74	76	0	151	78			
9:00 PM	84	81	66	0	123	71			
10:00 PM	82	56	75	0	125	68			
11:00 PM	50	41	54	0	77	44			
Day Total	2155	2729	2085	988	2930	2177			
\% Weekday Average	99.0\%	125.4\%	95.8\%	45.4\%	134.6\%				
\% Week Average									
AM Peak Volume	$\begin{gathered} \hline 10: 00 \mathrm{AM} \\ 109 \end{gathered}$	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 105 \end{gathered}$	$\begin{gathered} \hline 11: 00 \text { AM } \\ 101 \end{gathered}$	$\begin{gathered} 10: 00 \text { AM } \\ 115 \end{gathered}$	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 158 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 113 \end{gathered}$			
PM Peak Volume	$\begin{gathered} \text { 4:00 PM } \\ 188 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 749 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 209 \end{gathered}$	$\begin{gathered} \text { 2:00 PM } \\ 137 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 260 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 276 \end{gathered}$			
Comments:									

Report generated on 11/2/2012 1:57 PM

Report generated on 11/2/2012 1:57 PM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: West Driveway to Snoqualmie Casino SPECIFIC LOCATION: 100 ft from North Bend Way CITY/STATE: Snoqualmie, WA									QC JOB \#: 10822002 DIRECTION: NB/SB DATE: Sep 172012 - Sep 232012	
Start Time	$\begin{gathered} \text { Mon } \\ \text { 17-Sep-12 } \\ \hline \end{gathered}$	Tue 18-Sep-12	$\begin{gathered} \text { Wed } \\ \text { 19-Sep-12 } \end{gathered}$	Thu 20-Sep-12	$\begin{gathered} \text { Fri } \\ 21-\text { Sep-12 } \end{gathered}$	Average Weekday Hourly Traffic	$\begin{gathered} \text { Sat } \\ \text { 22-Sep-12 } \end{gathered}$	Sun 23-Sep-12	Average Week Hourly Traffic	Average Week Profile
12:00 AM	48	38	28	38	49	40	63	73	48	\square
1:00 AM	47	31	28	35	33	35	50	71	42	\square
2:00 AM	25	31	23	28	41	30	70	81	43	\square
3:00 AM	11	18	10	7	18	13	40	30	19	\square
4:00 AM	20	8	11	7	22	14	20	23	16	\square
5:00 AM	18	19	21	21	28	21	21	28	22	\square
6:00 AM	36	28	38	41	42	37	40	29	36	-
7:00 AM	68	59	57	67	80	66	69	38	63	\square
8:00 AM	92	60	69	85	114	84	117	63	86	
9:00 AM	107	63	88	93	124	95	136	90	100	
10:00 AM	109	71	100	115	108	101	119	116	105	-
11:00 AM	107	105	101	95	158	113	121	124	116]
12:00 PM	96	45	115	98	147	100	111	100	102	\square
1:00 PM	131	110	166	121	179	141	161	124	142	
2:00 PM	168	122	119	137	172	144	143	128	141	,
3:00 PM	158	152	145	0	210	133	168	111	135	-
4:00 PM	188	183	179	0	217	153	168	133	153	
5:00 PM	164	749	209	0	260	276	224	142	250	
6:00 PM	143	444	194	0	220	200	202	113	188	」
7:00 PM	115	141	113	0	232	120	145	92	120	1
8:00 PM	88	74	76	0	151	78	114	84	84	-
9:00 PM	84	81	66	0	123	71	115	64	76	
10:00 PM	82	56	75	0	125	68	114	58	73	
11:00 PM	50	41	54	0	77	44	83	57	52	-
Day Total	2155	2729	2085	988	2930	2177	2614	1972	2212	
\% Weekday Average	99.0\%	125.4\%	95.8\%	45.4\%	134.6\%					
\% Week Average	97.4\%	123.4\%	94.3\%	44.7\%	132.5\%	98.4\%	118.2\%	89.2\%		
AM Peak Volume	$\begin{gathered} \hline 10: 00 \mathrm{AM} \\ 109 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 105 \end{gathered}$	$\begin{gathered} \hline 11: 00 \mathrm{AM} \\ 101 \end{gathered}$	$\begin{gathered} 10: 00 \mathrm{AM} \\ 115 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 158 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 113 \end{gathered}$	$\begin{gathered} 9: 00 \mathrm{AM} \\ 136 \end{gathered}$	$\begin{gathered} 11: 00 \text { AM } \\ 124 \end{gathered}$	$\begin{gathered} 11: 00 \mathrm{AM} \\ 116 \end{gathered}$	
PM Peak Volume	$\begin{gathered} 4: 00 \mathrm{PM} \\ 188 \\ \hline \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 749 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5: 00 \text { PM } \\ 209 \\ \hline \end{gathered}$	$\begin{gathered} 2: 00 \mathrm{PM} \\ 137 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 260 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 5:00 PM } \\ 276 \\ \hline \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 224 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 142 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5: 00 \mathrm{PM} \\ 250 \\ \hline \end{gathered}$	
Comments:										

Report generated on 11/2/2012 1:57 PM

Type of peak hour being reported: Intersection Peak
Method for determining peak hour: Total Entering Volume

QC JOB \#: 12598926 DATE: Tue, May 202014

Type of report: Tube Count - Volume Data

LOCATION: I-5 Mainline Counts South of La Center Rd Friday SPECIFIC LOCATION: 0 ft from CITY/STATE: La Center, WA									QC JOB \#: 12598966DIRECTION: NBDATE: May 16 2014 - May 162014	
Start Time	Mon	Tue	Wed	Thu	Fri 16-May-14	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM					404	404			404	\square
1:00 AM					328	328			328	\square
2:00 AM					293	293			293	
3:00 AM					330	330			330	\square
4:00 AM					508	508			508	\square
5:00 AM					1017	1017			1017	\square
6:00 AM					1579	1579			1579	-
7:00 AM					2032	2032			2032	
8:00 AM					1842	1842			1842	\square
9:00 AM					2070	2070			2070	\square
10:00 AM					2279	2279			2279	\square
11:00 AM					2511	2511			2511	\square
12:00 PM					2744	2744			2744	
1:00 PM					2748	2748		\square	2748	-
2:00 PM					2857	2857			2857	-
3:00 PM					3124	3124			3124	-
4:00 PM					3080	3080			3080	\square
5:00 PM					3374	3374			3374	
6:00 PM					2794	2794			2794	-
7:00 PM					2276	2276			2276	-
8:00 PM					1726	1726			1726	\square
9:00 PM					1286	1286			1286]
10:00 PM					1000	1000			1000]
11:00 PM					758	758			758	\square
Day Total					42960	42960			42960	
\% Weekday Average					100.0\%					
\% Week Average					100.0\%	100.0\%				
AM Peak Volume					$\begin{gathered} \hline 11: 00 \text { AM } \\ 2511 \end{gathered}$	$\begin{gathered} \hline 11: 00 \text { AM } \\ 2511 \\ \hline \end{gathered}$			$\begin{gathered} \hline 11: 00 \text { AM } \\ 2511 \\ \hline \end{gathered}$	
PM Peak Volume					$\begin{gathered} 5: 00 \text { PM } \\ 3374 \end{gathered}$	$\begin{gathered} \text { 5:00 PM } \\ 3374 \end{gathered}$			$\begin{gathered} \text { 5:00 PM } \\ 3374 \end{gathered}$	
Comments:										

Report generated on 6/4/2014 8:32 AM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: SPECIFIC L CITY/STATE	5 Main LaTION La Cen	counts ft from WA	h of La	er Rd	iday				DAT	QC JOB \#: 12598966 DIRECTION: SB May 162014 - May 162014
Start Time	Mon	Tue	Wed	Thu	Fri 16-May-14	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM					423	423			423	\square
1:00 AM					314	314			314	\square
2:00 AM					252	252			252	\square
3:00 AM					347	347			347	\square
4:00 AM					625	625			625	\square
5:00 AM					1245	1245			1245	\square
6:00 AM					2020	2020			2020	\square
7:00 AM					2285	2285			2285	
8:00 AM					2251	2251			2251	
9:00 AM					2172	2172			2172	
10:00 AM					2267	2267			2267	\square
11:00 AM					2607	2607			2607	\square
12:00 PM					2803	2803			2803	\square
1:00 PM					2756	2756			2756	-
2:00 PM					3061	3061			3061	
3:00 PM					3312	3312			3312	
4:00 PM					3255	3255			3255	
5:00 PM					2945	2945			2945	
6:00 PM					2417	2417			2417	-
7:00 PM					2190	2190			2190]
8:00 PM					1962	1962			1962	\square
9:00 PM					1680	1680			1680]
10:00 PM					1183	1183			1183	-
11:00 PM					734	734			734	1
Day Total					45106	45106			45106	
\% Weekday Average					100.0\%					
\% Week Average					100.0\%	100.0\%				
AM Peak Volume					$\begin{gathered} \hline \text { 11:00 AM } \\ 2607 \\ \hline \end{gathered}$	$\begin{gathered} \text { 11:00 AM } \\ 2607 \end{gathered}$			$\begin{gathered} \text { 11:00 AM } \\ 2607 \\ \hline \end{gathered}$	
PM Peak Volume					$\begin{gathered} \text { 3:00 PM } \\ 3312 \end{gathered}$	$\begin{gathered} \text { 3:00 PM } \\ 3312 \end{gathered}$			$\begin{gathered} \text { 3:00 PM } \\ 3312 \end{gathered}$	
Comments:										

LOCATION: SPECIFIC L CITY/STATE	5 Main LaTION La Cen	e Counts So 0 ft from , WA	h of La	er Rd					DAT	QC JOB \#: 12598967 DIRECTION: NB May 202014 - May 202014
Start Time	Mon	Tue 20-May-14	Wed	Thu	Fri	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM		347				347			347	\square
1:00 AM		258				258			258	\square
2:00 AM		285				285			285	\square
3:00 AM		324				324			324	\square
4:00 AM		459				459			459	\square
5:00 AM		997				997			997	\square
6:00 AM		1645				1645			1645	\square
7:00 AM		2020				2020			2020	
8:00 AM		1847				1847			1847	-
9:00 AM		1783				1783			1783	
10:00 AM		1877				1877			1877	
11:00 AM		1958				1958			1958	\square
12:00 PM		2100				2100			2100	\square
1:00 PM		2045				2045		\sim	2045	+
2:00 PM		2247				2247			2247	-
3:00 PM		2274				2274			2274 -	
4:00 PM		2577				2577			2577	\square
5:00 PM		2835				2835			2835	
6:00 PM		2199				2199			2199]
7:00 PM		1824				1824			1824]
8:00 PM		1386				1386			1386	\square
9:00 PM		1027				1027			1027	\square
10:00 PM		745				745			745	
11:00 PM		572				572			572	
Day Total		35631				35631			35631	
\% Weekday Average		100.0\%								
\% Week Average		100.0\%				100.0\%				
AM Peak Volume		$\begin{gathered} \text { 7:00 AM } \\ 2020 \end{gathered}$				$\begin{aligned} & \text { 7:00 AM } \\ & 2020 \end{aligned}$			$\begin{aligned} & \text { 7:00 AM } \\ & 2020 \end{aligned}$	
PM Peak Volume		$\begin{gathered} \text { 5:00 PM } \\ 2835 \end{gathered}$				$\begin{gathered} \hline \text { 5:00 PM } \\ 2835 \end{gathered}$			$\begin{gathered} \text { 5:00 PM } \\ 2835 \end{gathered}$	
Comments:										

Report generated on 6/4/2014 8:32 AM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

LOCATION: SPECIFIC L CITY/STATE	5 Main LaTION La Cen	e Counts So 0 ft from , WA	h of La	er Rd					DAT	QC JOB \#: 12598967 DIRECTION: SB May 202014 - May 202014
Start Time	Mon	Tue 20-May-14	Wed	Thu	Fri	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM		323				323			323	\square
1:00 AM		267				267			267	\square
2:00 AM		262				262			262	\square
3:00 AM		344				344			344	\square
4:00 AM		624				624			624	\square
5:00 AM		1390				1390			1390	\square
6:00 AM		2069				2069			2069	
7:00 AM		2370				2370			2370	
8:00 AM		2240				2240			2240	
9:00 AM		1924				1924			1924]
10:00 AM		1951				1951			1951	\square
11:00 AM		1942				1942			1942	
12:00 PM		2014				2014			2014	\square
1:00 PM		2077				2077		\sim	2077	\square
2:00 PM		2235				2235			2235	\square
3:00 PM		2503				2503 -			2503 -	
4:00 PM		2582				2582			2582	
5:00 PM		2521				2521			2521	
6:00 PM		1704				1704			1704]
7:00 PM		1247				1247			1247	\square
8:00 PM		1144				1144			1144	\square
9:00 PM		813				813			813]
10:00 PM		582				582			582	
11:00 PM		453				453			453	\square
Day Total		35581				35581			35581	
\% Weekday Average		100.0\%								
\% Week Average		100.0\%				100.0\%				
AM Peak Volume		$\begin{gathered} 7: 00 \mathrm{AM} \\ 2370 \end{gathered}$				$\begin{gathered} \text { 7:00 AM } \\ 2370 \end{gathered}$			$\begin{gathered} \text { 7:00 AM } \\ 2370 \end{gathered}$	
PM Peak		4:00 PM				4:00 PM			4:00 PM	
Volume		2582				2582			2582	
Comments:										

Report generated on 6/4/2014 8:32 AM
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

Attachment E: Weigh Station Data from June 2014

I-5/Ridgefield Weigh Station Data
Source: WSDOT Commercial Vehicle Services

dayStrBgn	dayStrEnd	Day of the Week (KAI)	Time Period (KAI)	Day and Time (KAI)	lane	vehicle Count
20140613 15:00:00	20140613 18:00:00	Friday	3:00-6:00 PM	Friday 3:00-6:00 PM	Mainline 1 Bypass	27
20140613 15:00:00	20140613 18:00:00	Friday	3:00-6:00 PM	Friday 3:00-6:00 PM	Mainline 2 Bypass	330
20140613 15:00:00	20140613 18:00:00	Friday	3:00-6:00 PM	Friday 3:00-6:00 PM	Unknown Lane	48
20140613 15:00:00	20140613 18:00:00	Friday	3:00-6:00 PM	Friday 3:00-6:00 PM	Weigh Station East Lane	164
20140613 15:00:00	20140613 18:00:00	Friday	3:00-6:00 PM	Friday 3:00-6:00 PM	Weigh Station West Lane	8
20140614 15:00:00	20140614 18:00:00	Saturday	3:00-6:00 PM	Saturday 3:00-6:00 PM	Mainline 1 Bypass	10
20140614 15:00:00	20140614 18:00:00	Saturday	3:00-6:00 PM	Saturday 3:00-6:00 PM	Mainline 2 Bypass	145
20140614 15:00:00	20140614 18:00:00	Saturday	3:00-6:00 PM	Saturday 3:00-6:00 PM	Unknown Lane	34
20140614 15:00:00	20140614 18:00:00	Saturday	3:00-6:00 PM	Saturday 3:00-6:00 PM	Weigh Station East Lane	139
20140614 15:00:00	20140614 18:00:00	Saturday	3:00-6:00 PM	Saturday 3:00-6:00 PM	Weigh Station West Lane	18
20140615 15:00:00	20140615 18:00:00	Sunday	3:00-6:00 PM	Sunday 3:00-6:00 PM	Mainline 1 Bypass	21
20140615 15:00:00	20140615 18:00:00	Sunday	3:00-6:00 PM	Sunday 3:00-6:00 PM	Mainline 2 Bypass	183
20140615 15:00:00	20140615 18:00:00	Sunday	3:00-6:00 PM	Sunday 3:00-6:00 PM	Unknown Lane	5
20140615 15:00:00	20140615 18:00:00	Sunday	3:00-6:00 PM	Sunday 3:00-6:00 PM	Weigh Station East Lane	177
20140615 15:00:00	20140615 18:00:00	Sunday	3:00-6:00 PM	Sunday 3:00-6:00 PM	Weigh Station West Lane	99
20140620 15:00:00	20140620 18:00:00	Friday	3:00-6:00 PM	Friday 3:00-6:00 PM	Mainline 1 Bypass	39
20140620 15:00:00	20140620 18:00:00	Friday	3:00-6:00 PM	Friday 3:00-6:00 PM	Mainline 2 Bypass	348
20140620 15:00:00	20140620 18:00:00	Friday	3:00-6:00 PM	Friday 3:00-6:00 PM	Unknown Lane	55
20140620 15:00:00	20140620 18:00:00	Friday	3:00-6:00 PM	Friday 3:00-6:00 PM	Weigh Station East Lane	3
20140620 15:00:00	20140620 18:00:00	Friday	3:00-6:00 PM	Friday 3:00-6:00 PM	Weigh Station West Lane	84
20140621 15:00:00	20140621 18:00:00	Saturday	3:00-6:00 PM	Saturday 3:00-6:00 PM	Mainline 1 Bypass	9
20140621 15:00:00	20140621 18:00:00	Saturday	3:00-6:00 PM	Saturday 3:00-6:00 PM	Mainline 2 Bypass	174
20140621 15:00:00	20140621 18:00:00	Saturday	3:00-6:00 PM	Saturday 3:00-6:00 PM	Unknown Lane	32
20140621 15:00:00	20140621 18:00:00	Saturday	3:00-6:00 PM	Saturday 3:00-6:00 PM	Weigh Station East Lane	102
20140621 15:00:00	20140621 18:00:00	Saturday	3:00-6:00 PM	Saturday 3:00-6:00 PM	Weigh Station West Lane	31
20140622 15:00:00	20140622 18:00:00	Sunday	3:00-6:00 PM	Sunday 3:00-6:00 PM	Mainline 1 Bypass	37
20140622 15:00:00	20140622 18:00:00	Sunday	3:00-6:00 PM	Sunday 3:00-6:00 PM	Mainline 2 Bypass	304
20140622 15:00:00	20140622 18:00:00	Sunday	3:00-6:00 PM	Sunday 3:00-6:00 PM	Unknown Lane	59
20140622 15:00:00	20140622 18:00:00	Sunday	3:00-6:00 PM	Sunday 3:00-6:00 PM	Weigh Station East Lane	143
20140622 15:00:00	20140622 18:00:00	Sunday	3:00-6:00 PM	Sunday 3:00-6:00 PM	Weigh Station West Lane	41
20140627 15:00:00	20140627 18:00:00	Friday	3:00-6:00 PM	Friday 3:00-6:00 PM	Mainline 1 Bypass	295
20140627 15:00:00	20140627 18:00:00	Friday	3:00-6:00 PM	Friday 3:00-6:00 PM	Mainline 2 Bypass	38
20140627 15:00:00	20140627 18:00:00	Friday	3:00-6:00 PM	Friday 3:00-6:00 PM	Unknown Lane	35
20140627 15:00:00	20140627 18:00:00	Friday	3:00-6:00 PM	Friday 3:00-6:00 PM	Weigh Station East Lane	113
20140627 15:00:00	20140627 18:00:00	Friday	3:00-6:00 PM	Friday 3:00-6:00 PM	Weigh Station West Lane	88
20140628 15:00:00	20140628 18:00:00	Saturday	3:00-6:00 PM	Saturday 3:00-6:00 PM	Mainline 1 Bypass	147
20140628 15:00:00	20140628 18:00:00	Saturday	3:00-6:00 PM	Saturday 3:00-6:00 PM	Mainline 2 Bypass	25
20140628 15:00:00	20140628 18:00:00	Saturday	3:00-6:00 PM	Saturday 3:00-6:00 PM	Unknown Lane	37
20140628 15:00:00	20140628 18:00:00	Saturday	3:00-6:00 PM	Saturday 3:00-6:00 PM	Weigh Station East Lane	129
20140628 15:00:00	20140628 18:00:00	Sunday	3:00-6:00 PM	Sunday 3:00-6:00 PM	Weigh Station West Lane	53
20140629 15:00:00	20140629 18:00:00	Sunday	3:00-6:00 PM	Sunday 3:00-6:00 PM	Mainline 1 Bypass	207
20140629 15:00:00	20140629 18:00:00	Sunday	3:00-6:00 PM	Sunday 3:00-6:00 PM	Mainline 2 Bypass	41
20140629 15:00:00	20140629 18:00:00	Sunday	3:00-6:00 PM	Sunday 3:00-6:00 PM	Unknown Lane	63
20140629 15:00:00	20140629 18:00:00	Sunday	3:00-6:00 PM	Sunday 3:00-6:00 PM	Weigh Station East Lane	132
20140629 15:00:00	20140629 18:00:00	Sunday	3:00-6:00 PM	Sunday 3:00-6:00 PM	Weigh Station West Lane	131

Ridgefield North Bound Traffic Flow

Piezo

Weigh-in-Motion (WIM)

Static Scale

AVI Reader	
In Cab Notification	
(ICN)	
IRD Lane	
Designation	$\#-\#$

I-5/Ridgefield Weigh Station Data Assessment
Source: WSDOT Commercial Vehicle Services

Average of vehicleCount Row Labels	Column Labels Mainline 1	Mainline 2		Unknown Lane	Weigh Station	Weigh Station	Grand Total
Monday 7:00-9:00 AM	117	297	38	85	97	127	
Monday 4:00-6:00 PM	160	141	24	80	84	98	
Tuesday 7:00-9:00 AM	126	311	44	76	94	130	
Tuesday 4:00-6:00 PM	179	183	18	86	73	108	
Wednesday 7:00-9:00 AM	115	336	30	94	81	131	
Wednesday 4:00-6:00 PM	179	191	13	69	73	105	
Thursday 7:00-9:00 AM	97	309	44	128	113	138	
Thursday 4:00-6:00 PM	143	166	25	98	94	107	
Friday 7:00-9:00 AM	75	288	40	100	96	120	
Friday 3:00-6:00 PM	120	239	46	123	63	118	
Friday 4:00-6:00 PM	24	228	36	84	53	80	
Saturday 3:00-6:00 PM	55	115	34	123	25	74	
Sunday 3:00-6:00 PM	88	176	56	151	81	109	
Grand Total	$\mathbf{1 1 6}$	$\mathbf{2 2 9}$	$\mathbf{3 5}$	$\mathbf{1 0 0}$	$\mathbf{7 9}$	$\mathbf{1 1 2}$	

Period	Average \# of Trucks to Weigh	\% trucks in peak hour*	Peak Hour Truck Volume
Friday 3:00-6:00 PM	181	38%	69
Weekday 7:00-9:00 AM	192	51%	98
Weekday 4:00-6:00PM	164	53%	87

*Based on I-5 mainline data from 2013, see sheet labled "R045 2013 Data - Vehicle Classification by Hour"

R045 2013 Data - Vehicle Classification by Hour

Pivot tables based on data provided by WSDOT
Calculations to determine \% of trucks in peak hour (out of trucks in peak p

Row Labels	Average of Hour 7	Average of Hour 8	Average of Hour 16	Average of Hour 17
Monday	529	612	793	801
Double-unit Truck	230	244	304	268
Motorcycle, Car, Van and Pickup	1743	2054	2717	2800
Single-unit Truck	107	119	124	112
Triple-unit Truck	36	31	27	23
Tuesday	524	616	769	793
Double-unit Truck	255	258	297	266
Motorcycle, Car, Van and Pickup	1687	2046	2624	2769
Single-unit Truck	113	127	131	116
Triple-unit Truck	42	34	25	22
Wednesday	527	620	790	813
Double-unit Truck	272	271	310	278
Motorcycle, Car, Van and Pickup	1686	2046	2695	2834
Single-unit Truck	107	128	127	114
Triple-unit Truck	45	37	29	25
Thursday	518	622	825	840
Double-unit Truck	265	267	303	267
Motorcycle, Car, Van and Pickup	1655	2061	2836	2948
Single-unit Truck	107	121	135	121
Triple-unit Truck	44	38	25	24
Grand Total	524	618	794	812

Weekday Totals:

Double-unit Truck	1022	1040	1216	1079
Motorcycle, Car, Van and Pickup	6771	8207	10872	11350
Single-unit Truck	435	495	517	464
Triple-unit Truck	166	139	106	95

Total Trucks	1622	1675	1838	1638
	51\%	53\%		
	weekday AM peak hour	Weekday PM peak hour		

Row Labels	Average of Hour 16	Average of Hour 17	Average of Hour 18
Friday	956	968	912
Double-unit Truck	256	229	189
Motorcycle, Car, Van and Pickup	3412	3505	3345
Single-unit Truck	136	122	101
Triple-unit Truck	22	19	15
Grand Total	956	968	912
Total Trucks	413	369	305
	38\%		
	Friday peak hour		

STATE OF WASHINGTON - DEPARTMENT OF TRANSPORTATION
 T R I P S S Y S T E M

PERMANENT TRAFFIC RECORDERS*
CONVERSION FACTORS: AVERAGE WEEKDAY TRAFFIC (AWDT) TO ANNUAL AVERAGE DAILY TRAFFIC (AADT)
URBAN STATIONS

MONTH	AWDT FACTOR													
	R021		R036		R039		R044		R045		R046		R050	
JANUARY	38033	1.06	108001	1.04	23239	1.46	74545	1.04	56055	1.21	197444	1.04	42807	1.01
FEBRUARY	42002	. 96	118361	. 95	23383	1.45	78393	. 99	58999	1.15	207554	. 99	45810	. 94
MARCH	41959	. 96	120273	. 93	23639	1.43	79150	. 98	62917	1.08	209104	. 98	45557	. 94
APRIL	42740	. 94	124406	. 90	25450	1.33	80803	. 96	64488	1.05	211599	. 97	45462	. 95
MAY	42791	. 94	126935	. 88	28790	1.18	83185	. 93	65426	1.04	213648	. 96	47930	. 90
JUNE	44429	. 91	126943	. 88	31384	1.08	85417	. 91	69713	. 97	214990	. 95	48629	. 89
JULY	42765	. 94	127329	. 88	35182	. 96	85823	. 90	73437	. 92	212771	. 96	48469	. 89
AUGUST	44104	. 91	130313	. 86	36347	. 93	86461	. 90	75460	. 90	213631	. 96	49468	. 87
SEPTEMBER	43506	. 93	126887	. 88	29869	1.14	84322	. 92	69104	. 98	210406	. 97	48260	. 89
OCTOBER	42683	. 94	124859	. 90	26741	1.27	81759	. 95	64634	1.05	206650	. 99	47156	. 91
NOVEMBER	40155	1.00	116789	. 96	26197	1.29	80918	. 96	68070	1.00	201126	1.02	45899	. 94
DECEMBER	40151	1.00	120480	. 93	23347	1.45	79799	. 97	62072	1.09	199120	1.03	43735	. 98
AADT	40316		112060		33917		77396		67911		204459		43040	
	R051		R052		R053		R059		R062		R069		R081	
JANUARY	107795	1.04	75221	1.01	18063	1.20	4462	1.51	69158	1.00	19782	1.08	55375	1.04
FEBRUARY	115115	. 98	80417	. 94	20082	1.08	4937	1.36	75796	. 91	21226	1.01	60538	. 95
MARCH	117814	. 96	80733	. 94	20957	1.03	5389	1.25	76830	. 90	21878	. 98	61460	. 94
APRIL	119448	. 94	82362	. 92	22392	. 97	6201	1.08	76114	. 91	22744	. 94	62399	. 92
MAY	120400	. 94	83166	. 91	24153	. 90	6837	. 98	78936	. 88	23396	. 91	65040	. 88
JUNE	123441	. 91	83293	. 91	24986	. 87	7418	. 91	78412	. 88	23678	. 90	63692	. 90
JULY	122843	. 92	83958	. 90	25809	. 84	8896	. 76	75021	. 92	25277	. 85	60347	. 95
AUGUST	125159	. 90	84168	. 90	25408	. 85	8493	. 79	77546	. 89	25316	. 84	62055	. 93
SEPTEMBER	121693	. 93	82181	. 92	24821	. 87	7314	. 92	77420	. 89	24206	. 88	63564	. 90
OCTOBER	119692	. 94	82237	. 92	23805	. 91	6614	1.02	76812	. 90	22628	. 94	63772	. 90
NOVEMBER	116367	. 97	78868	. 96	21420	1.01	5496	1.22	72861	. 95	21359	1.00	61459	. 94
DECEMBER	111575	1.01	76448	. 99	20543	1.05	5011	1.34	71270	. 97	20327	1.05	57223	1.00
AADT	112581		75598		21659		6726		69115		21373		57494	
	R082		R087		R089		R091		R097		R098		R101	
JANUARY	165073	1.06	55585	1.06	15021	1.08	112547	1.07	59847	1.15	96089	. 99	61352	. 98
FEBRUARY	174879	1.00	61566	. 96	15841	1.03	119677	1.00	63228	1.09	99024	. 96	65725	. 91
MARCH	177823	. 99	62222	. 95	16102	1.01	121801	. 98	65900	1.05	98654	. 96	66309	. 90
APRIL	182417	. 96	63648	. 93	16750	. 97	122949	. 98	67149	1.03	101309	. 94	66728	. 90
MAY	182008	. 96	64355	. 92	17271	. 94	124707	. 96	68301	1.01	102634	. 93	68650	. 87
JUNE	184680	. 95	64264	. 92	17766	. 92	129858	. 92	72437	. 95	103019	. 92	70596	. 85
JULY	187429	. 94	63766	. 92	18687	. 87	131249	. 91	75022	. 92	103347	. 92	68058	. 88
AUGUST	192942	. 91	64254	. 92	18479	. 88	132850	. 90	76633	. 90	104119	. 91	70643	. 85
SEPTEMBER	185953	. 94	62274	. 95	17691	. 92	125768	. 95	69119	1.00	102414	. 93	67168	. 89
OCTOBER	181470	. 97	63722	. 93	17118	. 95	120776	. 99	65664	1.05	103310	. 92	66098	. 91
NOVEMBER	177641	. 99	60521	. 97	16331	1.00	120652	. 99	68033	1.01	98433	. 97	62567	. 96
DECEMBER	174756	1.00	56323	1.05	15493	1.05	114148	1.05	64629	1.07	95597	1.00	59322	1.01
AADT	1755		589		162		1199		690		951		599	
* OREGON-O	ED RECOR	DERS	ERRY TER	RMINAL	UUDED									

* OREGON-OWNED RECORDERS AND FERRY TERMINALS EXCLUDED

Attachment G: Truck Percentages for I-5

Washington State Department of Transportation

2012 4-BIN CLASSIFICATION by Hour Report for Woodland
Permanent Traffic Recorder R045 on I-5 @ mile post 20.14

Statewide Travel \& Collision Data Office
Travel Data \& Analysis Branch
Automated Data Collection \& Processing Section
360-570-2392 or 360-570-2394

Pivot tables below created by KAI from data provided by WSDOT, contact above

Weekday AM Peak Hour

Average of Truck Percentage	Column Labels			
	700		700 Total	Grand Total
Row Labels	NORTH	SOUTH		
Monday	0.177326416	0.145665153	0.163133436	0.163133436
Tuesday	0.180604721	0.159704461	0.171235639	0.171235639
Wednesday	0.186982354	0.17125927	0.179934075	0.179934075
Thursday	0.186770075	0.16687609	0.177166082	0.177166082
Grand Total	18\%	16\%	0.172867308	0.172867308

Weekday PM Peak Hour

Average of Truck Percentage	Column Labels			
	1700		1700 Total	Grand Total
Row Labels	NORTH	SOUTH		
Monday	0.104518881	0.136570675	0.118886927	0.118886927
Tuesday	0.106122381	0.136227937	0.119617975	0.119617975
Wednesday	0.112648119	0.136050345	0.123138772	0.123138772
Thursday	0.108674719	0.128221009	0.118110859	0.118110859
Grand Total	11\%	13\%	0.119938633	0.119938633

Friday Peak Hour

Average of Truck Percentage	Column Labels				
	1700			1700 Total	Grand Total
Row Labels	NORTH				
Friday		0.083186501	0.105737658	0.094073267	0.094073267
Grand Total		8\%	11\%	0.094073267	0.094073267

Appendix K Existing Conditions Worksheets
 - Freeway Mainline

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		\|Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	```KML KAI 6/24/2014 Weekday AM Peak Period```	Highway/Direction of Travel l-5 SB From/To SR 501 to La Center Jurisdiction WSDOT Analysis Year Existing	
Project Description 12393			
\checkmark Oper.(LOS) \square		Des.(N) \square	\square Planning Data
Flow Inputs			
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	2733 veh/h veh/day veh/h	Peak-Hour Factor, PHF 1.00 \%Trucks and Buses, P_{T} 16 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi 	
Calculate Flow Adjustments			
$\begin{array}{\|l\|} \hline \mathrm{f}_{\mathrm{p}} \\ \mathrm{E}_{\mathrm{T}} \end{array}$	1.00	$\begin{aligned} & E_{R} \quad 1.2 \\ & f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.926 \end{aligned}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	12.0 ft 6.0 ft 3 1.33 $\mathrm{ramps} / \mathrm{mi}$ mph 75.4 mph	f_{Lw} 0.0 f_{LC} 0.0 TRD Adjustment 4.1 FFS 71.3	mph mph mph mph
LOS and Performance Measures		Design (N)	
Operational (LOS)		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	E_{R} - Exhibits 11-10, 11-12 $\mathrm{f}_{\mathrm{LW}}-$ Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $\mathrm{f}_{\mathrm{LC}}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

Appendix L Existing Conditions Worksheets - Merge/Diverge Locations

RAMPS AND RAMP JUNCTIONS WORKSHEET											
General Information				Site Information							
Analyst Agency or Company Date Performed Analysis Time Period	KML KAI 6/24/2014 Weekday PM Peak Period			Freeway/Dir of Travel Junction Jurisdiction Analysis Year		I-5 NB Off Ramp La Center WSDOT Existing					
Project Description 12393											
Inputs											
Upstream Adj R Yes No $\begin{aligned} & \mathrm{L}_{\mathrm{up}}= \\ & \mathrm{V}_{\mathrm{u}}= \end{aligned}$		Freeway Ramp N Accelera Decelera Freeway Ramp Vo Freeway Ramp F	of Lanes, N Lanes, N Length, L_{A} Length L_{D} V_{F} w Speed, S_{FF} Speed, $\mathrm{S}_{\text {FR }}$	$\begin{aligned} & \hline 3 \\ & 1 \\ & 250 \\ & 3074 \\ & 579 \\ & 70.0 \\ & 35.0 \\ & \hline \end{aligned}$						Downstrea Ramp Yes No $\mathrm{L}_{\text {down }}=$ $V_{D}=$	m Adj On Off 2500 ft 133 veh/h
Conversion to pc/h Under Base Conditions											
(pc/h)	$\begin{gathered} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv		f_{HV}		f_{p}	$\mathrm{v}=\mathrm{V} / \mathrm{PHF} \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$	
Freeway	3074	1.00	Level	11	0		0.948		1.00	3243	
Ramp	579	1.00	Level	4	0		0.980		1.00	591	
UpStream											
DownStream	133	1.00	Level	8	0		0.962		1.00		
Merge Areas					Diverge Areas						
Estimation of \boldsymbol{v}_{12}					Estimation of \mathbf{v}_{12}						
Capacity Checks					Capacity Checks						
V_{FO}	Actual	Capacity		LOS F?			Actual		Capacity		LOS F?
		Exhibit 13			$\mathrm{V}_{\text {F }}$			3243	Exhibit 13-8	枯 7200	No
					$V_{\text {FO }}=V^{\prime}$	$V_{F}-V_{R}$		2652	Exhibit 13-8	7200	No
					V_{R}	R		591	Exhibit 13-10	0 2000	No
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area						
	Actual	Max Desirable		Violation?			Actua		Max Desirabl		Violation?
$\mathrm{V}_{\mathrm{R} 12}$		Exhibit			V_{12}		2319			4400:All	No
Level of Service Determination (if not F)					Level of Service Determination (if not F)						
$\begin{aligned} & \mathrm{D}_{\mathrm{R}}=5.475+0.00734 \mathrm{v}_{\mathrm{R}}+0.0078 \mathrm{~V}_{12}-0.00627 \mathrm{~L}_{\mathrm{A}} \\ & \mathrm{D}_{\mathrm{R}}=\quad(\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \\ & \mathrm{LO}= \\ & \quad \text { (Exhibit 13-2) } \end{aligned}$					$\begin{array}{ll} & D_{R}=4.252+0.0086 \mathrm{~V}_{12}-0.009 \mathrm{~L}_{\mathrm{D}} \\ \mathrm{D}_{\mathrm{R}}= & 21.9 \text { (pc/mi/ln) } \\ \text { LOS }= & C \text { (Exhibit 13-2) } \end{array}$						
Speed Determination					Speed Determination						
$\begin{array}{ll} \hline \mathrm{M}_{\mathrm{S}}= & \text { (Exibit 13-11) } \\ \mathrm{S}_{\mathrm{R}}= & \text { mph (Exhibit 13-11) } \\ \mathrm{S}_{0}= & \text { mph (Exhibit 13-11) } \\ \mathrm{S}= & \text { mph (Exhibit 13-13) } \end{array}$					$\begin{array}{ll} \mathrm{D}_{\mathrm{S}}= & 0.481(\text { Exhibit } 13-12) \\ \mathrm{S}_{\mathrm{R}}= & 56.5 \mathrm{mph}(\text { Exhibit } 13-12) \\ \mathrm{S}_{0}= & 76.8 \mathrm{mph} \text { (Exhibit 13-12) } \\ \mathrm{S}= & 61.1 \mathrm{mph} \text { (Exhibit 13-13) } \end{array}$						

RAMPS AND RAMP JUNCTIONS WORKSHEET																	
General Information				Site Information													
Analyst KML				Freeway/Dir of TravelJunction		NB Off Weigh Station											
Agency or Company KAl						Canter											
				Jurisdiction		DO											
Analysis Time Period Friday PM Peak Period	Friday PM Peak Period			Analysis Year		Existing											
Project Description 12393																	
Inputs																	
UnstremAdi R		Freeway Number of Lanes, N		3					Downstream Adj								
		Ramp Number of Lanes, N															
$\square \mathrm{Yes} \square$ On											\checkmark Yes \triangle On						
VNo		Deceleration Lane Length L_{D}															
				3711					\square No \square Off								
		Ramp Volume, V_{R}		69					$L_{\text {down }}=2525 \mathrm{ft}$								
	W/h	Freeway Free-Flow Speed, $\mathrm{S}_{\text {FF }}$		70.0					$\mathrm{V}_{\mathrm{D}}=$	$69 \mathrm{veh} / \mathrm{h}$							
		Ramp Free	Speed, $\mathrm{S}_{\text {FR }}$	35.0													
Conversion to pc/h Under Base Conditions																	
(poch)	$\begin{aligned} & \text { V } \\ & (\text { Veh/hr) } \end{aligned}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}		f_{p}	$\mathrm{v}=\mathrm{V} / \mathrm{PHF} \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$								
Freeway	3711	1.00	Level	8	0			1.00	38								
Ramp	69	1.00	Level	100	0		67	1.00	10								
UpStream																	
DownStream	69	1.00	Level	100	0			1.00	10								
Merge Areas					Diverge Areas												
Estimation of v_{12}					Estimation of \mathbf{v}_{12}												
Capacity Checks					Capacity Checks												
V_{FO}	Actual	Capacity		LOS F?		Actual		Capacity		LOS F?							
		Exhibit 13-8			V_{F}		3859	Exhibit 13-8	7200	No							
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}$		3756	Exhibit 13-8	7200	No							
					V_{R}		103	Exhibit 13-10	10200	No							
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area												
	Actual	Max Desirable		Violation?			ctual	Max Desirable		Violation?							
$\mathrm{V}_{\text {R12 }}$		Exhibit 13-8			V_{12}		577	Exhibit 13-8	4400:All	No							
Level of Service Determination (if not F)					Level of Service Determination (if not F)												
$\begin{array}{ll} \mathrm{D}_{\mathrm{R}}=5.475+0.00734 \mathrm{v}_{\mathrm{R}}+0.0078 \mathrm{~V}_{12}-0.00627 \mathrm{~L}_{\mathrm{A}} \\ \mathrm{D}_{\mathrm{R}}= & (\text { (pc/mi/ln }) \\ \text { LOS }= & \text { (Exhibit } 13-2) \end{array}$					$\begin{array}{ll} \hline & D_{R}=4.252+0.0086 \mathrm{~V}_{12}-0.009 \mathrm{~L}_{\mathrm{D}} \\ \mathrm{D}_{\mathrm{R}}= & 17.6(\text { pc/mil/n) }) \\ \text { LOS }= & B \text { (Exhibit 13-2) } \end{array}$												
Speed Determination					Speed Determination												
$M_{\mathrm{S}}=$ (Exibit 13-11) $\mathrm{S}_{\mathrm{R}}=$ mph (Exhibit 13-11) $\mathrm{S}_{0}=$ mph (Exhibit 13-11) $\mathrm{S}=$ mph (Exhibit 13-13)					$\begin{array}{ll} \hline \mathrm{D}_{\mathrm{S}}= & 0.437(\text { Exhibit 13-12) } \\ \mathrm{S}_{\mathrm{R}}= & 57.8 \mathrm{mph}(\text { Exhibit 13-12) } \\ \mathrm{S}_{0}= & 75.7 \mathrm{mph} \text { (Exhibit 13-12) } \\ \mathrm{S}^{2}= & 62.7 \mathrm{mph}(\text { Exhibit 13-13) } \end{array}$												

Appendix M Existing Conditions Worksheets
 - Study Intersections

Intersection						
Int Delay, s/veh	4.7					
Movement	44	16	EBT	EBR	WBT	NBL

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	60	0	164	52
Stage 1	-	-	-	-	52	-
Stage 2	-	-	-	-	112	-
Critical Hdwy	-	-	4.21	-	6.4	6.43
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.299	-	3.5	3.507
Pot Cap-1 Maneuver	-	-	1488	-	831	959
Stage 1	-	-	-	-	976	-
Stage 2	-	-	-	-	918	
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1488	-	809	959
Mov Cap-2 Maneuver	-	-	-	-	809	-
Stage 1	-	-	-	-	976	-
Stage 2	-	-	-	-	893	-

Approach	EB	WB	NB
HCM Control Delay, s	0	4.2	9.1
HCM LOS			A

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	949	-	-	1488	-
HCM Lane V/C Ratio	0.076	-	-	0.027	-
HCM Control Delay (s)	9.1	-	-	7.5	0
HCM Lane LOS	A	-	-	A	A
HCM 95th \%tile Q(veh)	0.2	-	-	0.1	-

	\Rightarrow	\rightarrow	\geqslant	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		F			\uparrow						\uparrow	F
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		0	0		25
Storage Lanes	0		0	0		0	0		0	0		1
Taper Length (tt)	0			0			0			0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.964										0.850
Flt Protected					0.958						0.954	
Satd. Flow (prot)	0	1567	0	0	1746	0	0	0	0	0	1584	1442
Flt Permitted					0.958						0.954	
Satd. Flow (perm)	0	1567	0	0	1746	0	0	0	0	0	1584	1442
Link Speed (mph)		40			40			50			50	
Link Distance (ft)		144			502			626			699	
Travel Time (s)		2.5			8.6			8.5			9.5	
Intersection Summary												

Intersection									
Int Delay, s/veh	13.7								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	0	82	30	448	64	0	0	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	0	22	3	4	6	0	0	0	0
Mvmt Flow	0	82	30	448	64	0	0	0	0
Major/Minor	Major1			Major2					
Conflicting Flow All	64	0	0	112	0	0			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Critical Hdwy	4.1	-	-	4.14	-	-			
Critical Hdwy Stg 1	-	-	-	-	-	-			
Critical Hdwy Stg 2	-	-	-	-	-	-			
Follow-up Hdwy	2.2	-	-	2.236	-	-			
Pot Cap-1 Maneuver	1551	-	-	1465	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1551	-	-	1465	-	-			
Mov Cap-2 Maneuver	-	-	-	-	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			

Approach	EB	WB
HCM Control Delay, s	0	7.5
HCM LOS		

Minor Lane/Major Mvmt	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2
Capacity (veh/h)	1551	-	-	1465	-	-	163	973
HCM Lane V/C Ratio	-	-	-	0.306	-	-	0.638	0.008
HCM Control Delay (s)	0	-	-	8.5	0	-	59.5	8.7
HCM Lane LOS	A	-	-	A	A	-	F	A
HCM 95th \%tile Q(veh)	0	-	-	1.3	-	-	3.6	0

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	4	8
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	-	-	25
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	13	50	12
Heavy Vehicles, \%	100	4	8
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	1057	1072	64
Stage 1	960	960	-
\quad Stage 2	97	112	-
Critical Hdwy	6.53	7	6.32
Critical Hdwy Stg 1	5.53	6	-
Critical Hdwy Stg 2	5.53	6	-
Follow-up Hdwy	3.617	4.45	3.408
Pot Cap-1 Maneuver	238	182	973
\quad Stage 1	355	279	-
$\quad 900$	719	-	
Stage 2			
Platoon blocked, \%	163	0	973
Mov Cap-1 Maneuver	163	0	-
Mov Cap-2 Maneuver	242	0	-
Stage 1	900	0	-
Stage 2			

Approach	SB
HCM Control Delay, s	55.9
HCM LOS	F

[^14]| | * | \rightarrow | \rangle | \checkmark | \leftarrow | 4 | 4 | \uparrow | p | \checkmark | \downarrow | \checkmark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | | \uparrow | | | F | | | \uparrow | 7 | | | |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| Grade (\%) | | 0\% | | | 0\% | | | 0\% | | | 0\% | |
| Storage Length (ft) | 0 | | 0 | 0 | | 0 | 0 | | 50 | 0 | | 0 |
| Storage Lanes | 0 | | 0 | 0 | | 0 | 0 | | 1 | 0 | | 0 |
| Taper Length (tt) | 0 | | | 0 | | | 0 | | | 0 | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Ped Bike Factor | | | | | | | | | | | | |
| Frt | | | | | 0.976 | | | | 0.850 | | | |
| FIt Protected | | 0.984 | | | | | | 0.959 | | | | |
| Satd. Flow (prot) | 0 | 1598 | 0 | 0 | 1744 | 0 | 0 | 1692 | 1509 | 0 | 0 | 0 |
| Flt Permitted | | 0.984 | | | | | | 0.959 | | | | |
| Satd. Flow (perm) | 0 | 1598 | 0 | 0 | 1744 | 0 | 0 | 1692 | 1509 | 0 | 0 | 0 |
| Link Speed (mph) | | 40 | | | 40 | | | 50 | | | 50 | |
| Link Distance (ft) | | 502 | | | 143 | | | 542 | | | 648 | |
| Travel Time (s) | | 8.6 | | | 2.4 | | | 7.4 | | | 8.8 | |
| Intersection Summary | | | | | | | | | | | | |

Intersection									
Int Delay, s/veh	3.7								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	60	122	0	0	490	108	22	4	286
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	50
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, $\%$	17	17	0	0	4	17	0	50	7
Mvmt Flow	60	122	0	0	490	108	22	4	286

Major/Minor	Major1		Major2			Minor1			
Conflicting Flow All	598	0	0	122	0	0	786	840	122
Stage 1	-	-	-	-	-	-	242	242	
Stage 2	-	-	-		-	-	544	598	
Critical Hdwy	4.27	-	-	4.1	-	-	6.4	7	6.27
Critical Hdwy Stg 1	-	-	-	-	-	-	5.4	6	
Critical Hdwy Stg 2	-	-	-	-	-	-	5.4	6	
Follow-up Hdwy	2.353	-	-	2.2	-	-	3.5	4.45	3.363
Pot Cap-1 Maneuver	909	-	-	1478	-	-	364	254	916
Stage 1	-	-	-	-	-	-	803	625	
Stage 2	-	-	-	-	-	-	586	422	
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	909	-	-	1478	-	-	338	0	916
Mov Cap-2 Maneuver	-	-	-	-	-	-	338	0	
Stage 1	-	-	-	-	-	-	746	0	
Stage 2	-	-	-	-	-	-	586	0	

Approach	EB	WB	NB
HCM Control Delay, s	3	0	11.2
HCM LOS			B

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR
Capacity (veh/h)	338	916	909	-	-	1478	-	-
HCM Lane V/C Ratio	0.077	0.312	0.066	-	-	-	-	-
HCM Control Delay (s)	16.5	10.7	9.2	0	-	0	-	-
HCM Lane LOS	C	B	A	A	-	A	-	-
HCM 95th \%tile Q(veh)	0.2	1.3	0.2	-	-	0	-	-

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	0	0
Conflicting Peds, \#/hr	0	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	-	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	100
Heavy Vehicles, \%	0	0	0
Mvmt Flow	0	0	0

Major/Minor
Conflicting Flow All
\quad Stage 1
\quad Stage 2
Critical Hdwy
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy
Pot Cap-1 Maneuver
\quad Stage 1
\quad Stage 2
Platoon blocked, \%
Mov Cap-1 Maneuver
Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach

HCM Control Delay, s
HCMLOS

Minor Lane/Major Mvmt

	\rangle	\rightarrow	7	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	F			${ }_{\dagger}$			${ }_{\dagger}$			¢	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	1		0	0		0	0		0	0		0
Taper Length (ft)	0			0			0			0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.998			0.999			0.955			0.890	
Flt Protected	0.950				0.999			0.968			0.994	
Satd. Flow (prot)	1150	1725	0	0	1827	0	0	1493	0	0	1137	0
Flt Permitted	0.950				0.999			0.968			0.994	
Satd. Flow (perm)	1150	1725	0	0	1827	0	0	1493	0	0	1137	0
Link Speed (mph)		40			50			40			40	
Link Distance (ft)		143			173			583			174	
Travel Time (s)		2.4			2.4			9.9			3.0	
Intersection Summary												

Area Type:

Other

Intersection									
Int Delay, s/veh 1.5									
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	12	392	4	8	538	4	8	0	4
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	0	-	-	-	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	57	10	0	25	3	67	14	0	25
Mvmt Flow	12	392	4	8	538	4	8	0	4
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	542	0	0	396	0	0	1002	976	394
Stage 1	-	-	-	-	-	-	418	418	
Stage 2	-	-	-	-	-	-	584	558	
Critical Hdwy	4.67	-	-	4.35	-	-	7.24	6.5	6.45
Critical Hdwy Stg 1	-	-	-	-	-	-	6.24	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.24	5.5	
Follow-up Hdwy	2.713	-	-	2.425	-	-	3.626	4	3.525
Pot Cap-1 Maneuver	800	-	-	1048	-	-	210	253	608
Stage 1	-	-	-	-	-	-	589	594	
Stage 2	-	-	-	-	-	-	477	515	
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	800	-	-	1048	-	-	180	246	608
Mov Cap-2 Maneuver	-	-	-	-	-	-	180	246	-
Stage 1	-	-	-	-	-	-	580	585	
Stage 2	-	-	-	-	-	-	416	509	

Approach	EB	WB	NB
HCM Control Delay, s	0.3	0.1	21.1
HCM LOS			C

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	235	800	-	-	1048	-	-	351
HCM Lane V/C Ratio	0.051	0.015	-	-	0.008	-	-	0.182
HCM Control Delay (s)	21.1	9.6	-	-	8.5	0	-	17.5
HCM Lane LOS	C	A	-	-	A	A	-	C
HCM 95th \%tile Q(veh)	0.2	0	-	-	0	-	-	0.7

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	8	4	52
Conflicting Peds, \#/hr	0	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	-	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	100
Heavy Vehicles, \%	86	100	38
Mvmt Flow	8	4	52

Major/Minor	Minor2		
Conflicting Flow All	976	976	540
Stage 1	556	556	-
Stage 2	420	420	-
Critical Hdwy	7.96	7.5	6.58
Critical Hdwy Stg 1	6.96	6.5	-
Critical Hdwy Stg 2	6.96	6.5	-
Follow-up Hdwy	4.274	4.9	3.642
Pot Cap-1 Maneuver	164	174	478
\quad Stage 1	393	384	-
Stage 2	475	452	-
Platoon blocked, \%	160	170	478
Mov Cap-1 Maneuver	160	170	-
Mov Cap-2 Maneuver	387	380	-
Stage 1	465	445	-
Stage 2			

Approach	SB
HCM Control Delay, s	17.5
HCM LOS	C

[^15]Area Type: Other

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	78	0	357	76
Stage 1	-	-	-	-	76	-
Stage 2	-	-	-	-	281	-
Critical Hdwy	-	-	4.12	-	6.4	6.27
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.218	-	3.5	3.363
Pot Cap-1 Maneuver	-	-	1520	-	645	971
Stage 1	-	-	-	-	952	-
Stage 2	-	-	-	-	771	
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1520	-	602	971
Mov Cap-2 Maneuver	-	-	-	-	602	-
Stage 1	-	-	-	-	952	-
Stage 2	-	-	-	-	719	-

Approach	EB	WB	NB
HCM Control Delay, s	0	4	9.6
HCM LOS			A

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	889	-	-	1520	-
HCM Lane V/C Ratio	0.127	-	-	0.064	-
HCM Control Delay (s)	9.6	-	-	7.5	0
HCM Lane LOS	A	-	-	A	A
HCM 95th \%tile Q(veh)	0.4	-	-	0.2	-

	\Rightarrow	\rightarrow	\geqslant	\checkmark	\leftarrow	4	4	\uparrow	P	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		F			\uparrow						\uparrow	F
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		0	0		25
Storage Lanes	0		0	0		0	0		0	0		1
Taper Length (tt)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.973										0.850
Flt Protected					0.963						0.953	
Satd. Flow (prot)	0	1725	0	0	1735	0	0	0	0	0	1632	1583
Flt Permitted					0.963						0.953	
Satd. Flow (perm)	0	1725	0	0	1735	0	0	0	0	0	1632	1583
Link Speed (mph)		30			30			30			30	
Link Distance (t)		144			502			626			699	
Travel Time (s)		3.3			11.4			14.2			15.9	
Intersection Summary												

Intersection									
Int Delay, s/veh	23.3								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	0	135	34	374	116	0	0	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	0	9	0	5	7	0	0	0	0
Mvmt Flow	0	135	34	374	116	0	0	0	0
Major/Minor	Major1			Major2					
Conflicting Flow All	116	0	0	169	0	0			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Critical Hdwy	4.1	-	-	4.15	-	-			
Critical Hdwy Stg 1	-	-	-	-	-	-			
Critical Hdwy Stg 2	-	-	-	-	-	-			
Follow-up Hdwy	2.2	-	-	2.245	-	-			
Pot Cap-1 Maneuver	1485	-	-	1390	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1485	-	-	1390	-	-			
Mov Cap-2 Maneuver	-	-	-	-	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			

Approach	EB	WB
HCM Control Delay, s	0	6.5
HCM LOS		

Minor Lane/Major Mvmt	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2
Capacity (veh/h)	1485	-	-	1390	-	-	182	936
HCM Lane V/C Ratio	-	-	-	0.269	-	-	0.929	0.073
HCM Control Delay (s)	0	-	-	8.5	0	-	101	9.1
HCM Lane LOS	A	-	-	A	A	-	F	A
HCM 95th \%tile Q(veh)	0	-	-	1.1	-	-	7.2	0.2

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	4	68
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	-	-	25
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	10	50	2
Heavy Vehicles, \%	165	4	68
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	1016	1033	116
\quad Stage 1	864	864	-
\quad Stage 2	152	169	-
Critical Hdwy	6.5	7	6.22
Critical Hdwy Stg 1	5.5	6	-
Critical Hdwy Stg 2	5.5	6	-
Follow-up Hdwy	3.59	4.45	3.318
Pot Cap-1 Maneuver	255	192	936
\quad Stage 1	400	312	-
\quad Stage 2	857	676	-
Platoon blocked, \%			
Mov Cap-1 Maneuver	182	0	936
Mov Cap-2 Maneuver	182	0	-
Stage 1	285	0	-
Stage 2	857	0	-

Approach	SB
HCM Control Delay, s	74.6
HCM LOS	F

Minor Lane/Major Mvmt

	*	\rightarrow	\rangle	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			F			\uparrow	7			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		50	0		0
Storage Lanes	0		0	0		0	0		1	0		0
Taper Length (tt)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.971				0.850			
FIt Protected		0.995						0.958				
Satd. Flow (prot)	0	1741	0	0	1770	0	0	1630	1568	0	0	0
Flt Permitted		0.995						0.958				
Satd. Flow (perm)	0	1741	0	0	1770	0	0	1630	1568	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (t)		502			143			542			648	
Travel Time (s)		11.4			3.3			12.3			14.7	
Intersection Summary												

Major/Minor	Major1		Major2			Minor1			
Conflicting Flow All	555	0	0	268	0	0	828	887	268
Stage 1	-	-	-	-	-	-	332	332	
Stage 2	-	-	-		-	-	496	555	
Critical Hdwy	4.15	-	-	4.1	-	-	6.46	7	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	5.46	6	
Critical Hdwy Stg 2	-	-	-	-	-	-	5.46	6	
Follow-up Hdwy	2.245	-	-	2.2	-	-	3.554	4.45	3.327
Pot Cap-1 Maneuver	1001	-	-	1307	-	-	336	237	768
Stage 1	-	-	-	-	-	-	718	567	
Stage 2	-	-	-	-	-	-	604	443	
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1001	-	-	1307	-	-	323	0	768
Mov Cap-2 Maneuver	-	-	-	-	-	-	323	0	
Stage 1	-	-	-	-	-	-	691	0	
Stage 2	-	-	-	-	-	-	604	0	

Approach	EB	WB	NB
HCM Control Delay, s	0.9	0	23.1
HCM LOS			C

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR
Capacity (veh/h)	323	768	1001	-	-	1307	-	-
HCM Lane V/C Ratio	0.192	0.77	0.032	-	-	-	-	-
HCM Control Delay (s)	18.8	23.5	8.7	0	-	0	-	-
HCM Lane LOS	C	C	A	A	-	A	-	-
HCM 95th \%tile Q(veh)	0.7	7.5	0.1	-	-	0	-	-

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	0	0
Conflicting Peds, \#/hr	0	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	-	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	100
Heavy Vehicles, \%	0	0	0
Mvmt Flow	0	0	0

Major/Minor
Conflicting Flow All
\quad Stage 1
\quad Stage 2
Critical Hdwy
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy
Pot Cap-1 Maneuver
\quad Stage 1
\quad Stage 2
Platoon blocked, \%
Mov Cap-1 Maneuver
Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach

HCM Control Delay, s
HCM LOS

Minor Lane/Major Mvmt

	\rangle	\rightarrow	\rangle	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	F			¢			${ }_{4}$			${ }_{\dagger}$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	1		0	0		0	0		0	0		0
Taper Length (t)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.998			0.998			0.932			0.879	
Flt Protected	0.950				0.999			0.976			0.997	
Satd. Flow (prot)	1308	1818	0	0	1829	0	0	1728	0	0	1381	0
Flt Permitted	0.950				0.999			0.976			0.997	
Satd. Flow (perm)	1308	1818	0	0	1829	0	0	1728	0	0	1381	0
Link Speed (mph)		30			30			30			30	
Link Distance (t)		143			173			583			174	
Travel Time (s)		3.3			3.9			13.3			4.0	
Intersection Summary												

Area Type:

Other

Intersection									
Int Delay, s/veh 1.8									
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	32	815	12	5	448	8	5	0	5
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	0	-	-	-	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	38	4	25	25	2	77	0	0	0
Mvmt Flow	32	815	12	5	448	8	5	0	5
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	456	0	0	827	0	0	1401	1351	821
Stage 1	-	-	-	-	-	-	885	885	
Stage 2	-	-	-	-	-	-	516	466	
Critical Hdwy	4.48	-	-	4.35	-	-	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	
Follow-up Hdwy	2.542	-	-	2.425	-	-	3.5	4	3.3
Pot Cap-1 Maneuver	939	-	-	713	-	-	119	152	378
Stage 1	-	-	-	-	-	-	342	366	-
Stage 2	-	-	-	-	-	-	546	566	-
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	939	-	-	713	-	-	92	145	378
Mov Cap-2 Maneuver	-	-	-	-	-	-	92	145	
Stage 1	-	-	-	-	-	-	330	354	
Stage 2	-	-	-	-	-	-	439	561	

Approach	EB	WB	NB
HCM Control Delay, s	0.3	0.1	31.1
HCM LOS			D

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	148	939	-	-	713	-	-	419
HCM Lane V/C Ratio	0.068	0.034	-	-	0.007	-	-	0.274
HCM Control Delay (s)	31.1	9	-	-	10.1	0	-	16.8
HCM Lane LOS	D	A	-	-	B	A	-	C
HCM 95th \%tile Q(veh)	0.2	0.1	-	-	0	-	-	1.1

Intersection			
Int Delay, s/veh			
Movement	8	4	103
Vol, veh/h	0	0	0
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	-	-	-
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	0	0	23
Heavy Vehicles, \%	8	4	103
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	1350	1353	452
\quad Stage 1	462	462	-
\quad Stage 2	888	891	-
Critical Hdwy	7.1	6.5	6.43
Critical Hdwy Stg 1	6.1	5.5	-
Critical Hdwy Stg 2	6.1	5.5	-
Follow-up Hdwy	3.5	4	3.507
Pot Cap-1 Maneuver	129	151	566
\quad Stage 1	584	568	-
\quad Stage 2	341	363	-
Platoon blocked, \%			
Mov Cap-1 Maneuver	123	145	566
Mov Cap-2 Maneuver	123	145	-
Stage 1	564	563	-
Stage 2	325	351	-

Approach	SB
HCM Control Delay, s	16.8
HCM LOS	C

Minor Lane/Major Mvmt

Approach	EB	WB	NB
HCM Control Delay, s	0	4.1	9
HCM LOS			A

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	967	-	-	1513	-
HCM Lane V/C Ratio	0.058	-	-	0.044	-
HCM Control Delay (s)	9	-	-	7.5	0
HCM Lane LOS	A	-	-	A	A
HCM 95th \%tile Q(veh)	0.2	-	-	0.1	-

	\Rightarrow	\rightarrow	\geqslant	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		F			\uparrow						\uparrow	F
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		0	0		25
Storage Lanes	0		0	0		0	0		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Fit		0.948										0.850
Flt Protected					0.958						0.954	
Satd. Flow (prot)	0	1673	0	0	1774	0	0	0	0	0	1745	1429
Flt Permitted					0.958						0.954	
Satd. Flow (perm)	0	1673	0	0	1774	0	0	0	0	0	1745	1429
Link Speed (mph)		30			30			30			30	
Link Distance (t)		144			502			626			699	
Travel Time (s)		3.3			11.4			14.2			15.9	
Intersection Summary												

Approach	EB	WB
HCM Control Delay, s	0	7.1
HCM LOS		

Minor Lane/Major Mvmt	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2
Capacity (veh/h)	1577	-	-	1488	-	-	286	996
HCM Lane V/C Ratio	-	-	-	0.215	-	-	0.524	0.076
HCM Control Delay (s)	0	-	-	8.1	0	-	30.7	8.9
HCM Lane LOS	A	-	-	A	A	-	D	A
HCM 95th \%tile Q(veh)	0	-	-	0.8	-	-	2.8	0.2

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	4	76
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	-	-	25
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	4	0	13
Heavy Vehicles, \%	146	4	76
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	768	788	44
Stage 1	684	684	-
Stage 2	84	104	-
Critical Hdwy	6.44	6.5	6.33
Critical Hdwy Stg 1	5.44	5.5	-
Critical Hdwy Stg 2	5.44	5.5	-
Follow-up Hdwy	3.536	4	3.417
Pot Cap-1 Maneuver	367	326	996
\quad Stage 1	497	452	-
Stage 2	934	813	-
Platoon blocked, \%	286	0	996
Mov Cap-1 Maneuver	286	0	-
Mov Cap-2 Maneuver	388	0	-
Stage 1	934	0	-
Stage 2			

Approach	SB
HCM Control Delay, s	23.4
HCM LOS	C

Minor Lane/Major Mvmt

	\rangle	\rightarrow	\geqslant	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			F			\uparrow	F			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		50	0		0
Storage Lanes	0		0	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.970				0.850			
Flt Protected		0.992						0.960				
Satd. Flow (prot)	0	1808	0	0	1755	0	0	1765	1568	0	0	0
FIt Permitted		0.992						0.960				
Satd. Flow (perm)	0	1808	0	0	1755	0	0	1765	1568	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (t)		502			143			542			648	
Travel Time (s)		11.4			3.3			12.3			14.7	
Intersection Summary												

Intersection									
Int Delay, s/veh	6.7								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	32	178	0	0	344	100	20	4	494
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	50
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	0	5	0	0	3	12	4	0	3
Mumt Flow	32	178	0	0	344	100	20	4	494
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	444	0	0	178	0	0	636	686	178
Stage 1	-	-	-	-	-	-	242	242	
Stage 2		-	-	-	-	-	394	444	
Critical Hdwy	4.1	-	-	4.1	-	-	6.44	6.5	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	5.44	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	5.44	5.5	
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.536	4	3.327
Pot Cap-1 Maneuver	1127	-	-	1410	-	-	439	373	862
Stage 1	-	-	-	-	-	-	794	709	
Stage 2	-	-	-	-	-	-	677	579	
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1127	-	-	1410	-	-	425	0	862
Mov Cap-2 Maneuver	-	-	-	-	-	-	425	0	
Stage 1	-	-	-	-	-	-	769	0	
Stage 2	-	-	-	-	-	-	677	0	

Approach	EB	WB	NB
HCM Control Delay, s	1.3	0	14.6
HCM LOS			B

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR
Capacity (veh/h)	425	862	1127	-	-	1410	-	-
HCM Lane V/C Ratio	0.056	0.573	0.028	-	-	-	-	-
HCM Control Delay (s)	14	14.6	8.3	0	-	0	-	-
HCM Lane LOS	B	B	A	A	-	A	-	-
HCM 95th \%tile Q(veh)	0.2	3.7	0.1	-	-	0	-	-

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	0	0
Conflicting Peds, \#/hr	0	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	-	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	100
Heavy Vehicles, \%	0	0	0
Mvmt Flow	0	0	0

Major/Minor
Conflicting Flow All
\quad Stage 1
\quad Stage 2
Critical Hdwy
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy
Pot Cap-1 Maneuver
\quad Stage 1
\quad Stage 2
Platoon blocked, \%
Mov Cap-1 Maneuver
Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach

HCM Control Delay, s
HCMLOS

Minor Lane/Major Mvmt

	\rangle	\rightarrow	7	\downarrow	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	F			¢			\uparrow			${ }_{\text {¢ }}$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	1		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Fit		0.999			0.999			0.966			0.883	
Flt Protected	0.950				0.999			0.976			0.995	
Satd. Flow (prot)	1570	1824	0	0	1829	0	0	1518	0	0	1456	0
Flt Permitted	0.950				0.999			0.976			0.995	
Satd. Flow (perm)	1570	1824	0	0	1829	0	0	1518	0	0	1456	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		143			173			583			174	
Travel Time (s)		3.3			3.9			13.3			4.0	
Intersection Summary												

Area Type:

Other

Intersection									
Int Delay, s/veh 1.4									
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	4	664	4	4	360	4	8	4	4
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	0	-	-	-	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	15	4	17	0	3	67	11	0	50
Mvmt Flow	4	664	4	4	360	4	8	4	4
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	364	0	0	668	0	0	1084	1046	666
Stage 1	-	-	-	-	-	-	674	674	
Stage 2	-	-	-	-	-	-	410	372	
Critical Hdwy	4.25	-	-	4.1	-	-	7.21	6.5	6.7
Critical Hdwy Stg 1	-	-	-	-	-	-	6.21	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.21	5.5	
Follow-up Hdwy	2.335	-	-	2.2	-	-	3.599	4	3.75
Pot Cap-1 Maneuver	1126	-	-	931	-	-	187	230	385
Stage 1	-	-	-	-	-	-	430	457	-
Stage 2	-	-	-	-	-	-	601	622	-
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1126	-	-	931	-	-	162	228	385
Mov Cap-2 Maneuver	-	-	-	-	-	-	162	228	
Stage 1	-	-	-	-	-	-	428	455	
Stage 2	-	-	-	-	-	-	525	619	

Approach	EB	WB	NB
HCM Control Delay, s	0	0.1	23.8
HCM LOS			C

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	207	1126	-	-	931	-	-	506
HCM Lane V/C Ratio	0.077	0.004	-	-	0.004	-	-	0.174
HCM Control Delay (s)	23.8	8.2	-	-	8.9	0	-	13.6
HCM Lane LOS	C	A	-	-	A	A	-	B
HCM 95th \%tile Q(veh)	0.2	0	-	-	0	-	-	0.6

Intersection			
Int Delay, s/veh			
Movement	8	4	76
Vol, veh/h	0	0	0
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	-	-	-
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	0	0	17
Heavy Vehicles, \%	8	4	76
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	1048	1046	362
\quad Stage 1	370	370	-
\quad Stage 2	678	676	-
Critical Hdwy	7.1	6.5	6.37
Critical Hdwy Stg 1	6.1	5.5	-
Critical Hdwy Stg 2	6.1	5.5	-
Follow-up Hdwy	3.5	4	3.453
Pot Cap-1 Maneuver	208	230	650
\quad Stage 1	654	624	-
\quad Stage 2	445	456	-
Platoon blocked, \%			
Mov Cap-1 Maneuver	202	228	650
Mov Cap-2 Maneuver	202	228	-
Stage 1	652	621	-
Stage 2	435	454	-

Approach	SB
HCM Control Delay, s	13.6
HCM LOS	B

Minor Lane/Major Mvmt

Appendix N Signal Warrant Analysis Worksheets for Existing Conditions

Project \#:	12393
Project Name:	Cowlitz Reservation Development
Analyst:	JJW
Date:	$8 / 27 / 2014$
File:	H:\projfile $\backslash 12393$-Cowlitz Reservation Development \backslash excel $\backslash 2014$
	Data 1 signal warrants \backslash [103 2014 Existing AM Sig Warrant.x\|s]Data
Intersection:	NW La Center Road and SB Ramp
Scenario:	2014 Existing

KITTELSON \& ASSOCIATES, INC.
610 SW Alder, Suite 700
Portland, Oregon 97205
(503) 228-5230

Fax: (503) 273-8169

12393
Project Name: Cowlitz Reservation Development
$\begin{array}{ll}\text { File: } & \text { H:\projfile } \backslash 12393 \text { - Cowlitz Reservation Development } \backslash \text { excel } \backslash 2014 \\ & \text { Data } \text { Ssignal warrants } \backslash[1032014 \text { Existing AM Sig Warrant.xls]Data } \\ \text { Intersection: } & \bar{N} W \text { La Center Road and SB Ramp } \\ \text { Scenario: } & 2014 \text { Existing }\end{array}$

Warrant Summary

Warrant	Name	Analyzed?	Met?
$\# 1$	Eight-Hour Vehicular Volume	Yes	No
$\# 2$	Four-Hour Vehicular volume	Yes	No
$\# 3$	Peak Hour	Yes	No
$\# 4$	Pedestrian Volume	No	-
$\# 5$	School Crossing	No	-
$\# 6$	Coordinated Signal System	No	-
$\# 7$	Crash Experience	No	-
$\# 8$	Roadway Network	No	-

Hour		Major Street		Minor Street	
Begin	End	EB	WB	NB	SB
7:00 AM	8:00 AM	112	512	0	112
2nd	Highest Hour	108	492	0	108
3rd	Highest Hour	105	481	0	105
4th	Highest Hour	90	410	0	90
5th	Highest Hour	85	389	0	85
6th	Highest Hour	76	348	0	76
7th	Highest Hour	71	323	0	71
8th	Highest Hour	67	307	0	67
9th	Highest Hour	54	246	0	54
10th	Highest Hour	50	230	0	50
11th	Highest Hour	50	230	0	50
12th	Highest Hour	48	220	0	48
13th	Highest Hour	44	200	0	44
14th	Highest Hour	40	184	0	40
15th	Highest Hour	40	184	0	40
16th	Highest Hour	39	179	0	39
17th	Highest Hour	22	102	0	22
18th	Highest Hour	12	56	0	12
19th	Highest Hour	11	51	0	11
20th	Highest Hour	4	20	0	4
21st	Highest Hour	3	15	0	3
22nd	Highest Hour	3	15	0	3
23rd	Highest Hour	2	10	0	2
24th	Highest Hour	2	10	0	2

Analysis Traffic Volumes					
Hour		Major Street		Minor Street	
Begin	End	EB	WB	NB	SB
7:00 AM	8:00 AM	112	512	0	112
2nd	Highest Hour	108	492	0	108
3 rd	Highest Hour	105	481	0	105
4th	Highest Hour	90	410	0	90
5 th	Highest Hour	85	389	0	85
6th	Highest Hour	76	348	0	76
7th	Highest Hour	71	323	0	71
8th	Highest Hour	67	307	0	67
9th	Highest Hour	54	246	0	54
10th	Highest Hour	50	230	0	50
11th	Highest Hour	50	230	0	50
12th	Highest Hour	48	220	0	48
13th	Highest Hour	44	200	0	44
14th	Highest Hour	40	184	0	40
15th	Highest Hour	40	184	0	40
16th	Highest Hour	39	179	0	39
17th	Highest Hour	22	102	0	22
18th	Highest Hour	12	56	0	12
19th	Highest Hour	11	51	0	11
20th	Highest Hour	4	20	0	4
21st	Highest Hour	3	15	0	3
22nd	Highest Hour	3	15	0	3
23rd	Highest Hour	2	10	0	2
24th	Highest Hour	2	10	0	2

Appendix O 2017 Background Conditions Worksheets - Freeway Mainline

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		\|Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	KML KAI 6/25/2014 Weekday PM Peak Hour	From/To La C Jurisdiction WSD Analysis Year 2017	er Rd to SR 503
Project Description 12393			
\checkmark Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$2775 \quad \begin{aligned} & \text { veh/h } \\ & \text { veh/day }\end{aligned}$	Peak-Hour Factor, PHF 1.00 \%Trucks and Buses, P_{T} 11	
Peak-Hr Prop. of AADT, K		\%RVs, P_{R}	
Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h	$\begin{array}{lll} \text { General Terrain: } & \text { Leve } \\ \text { Grade } & \% & \text { Length } \\ & \text { Up/Down \% } & \text { mi } \end{array}$	
Calculate Flow Adjustments			
f_{p}	1.00	$\begin{aligned} & E_{R} \quad 1.2 \\ & f_{H V}=1\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.948 \end{aligned}$	
E_{T}	1.5		
Speed Inputs		Calc Speed Adj and FFS	
Lane Width	12.0 ft	$f_{L w}$ 0.0 $f_{L C}$ 0.0 TRD Adjustment 2.3 FFS 73.1	mph mph mph mph
Rt-Side Lat. Clearance	6.0 ft		
Number of Lanes, N	3		
Total Ramp Density, TRD	$0.67 \mathrm{ramps} / \mathrm{mi}$		
FFS (measured) Base free-flow Speed, BFFS	75.4 mph		
LOS and Performance Measures		Design (N)	
Operational (LOS)		Design (N)	
$\begin{array}{lll} \left.\begin{array}{lll} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or DDHV }) /\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{Hv}} 976\right. & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \times \mathrm{f}_{\mathrm{p}} \end{array}\right) & & \mathrm{mph} \\ \mathrm{~S} \end{array}$		$\begin{aligned} & \text { Design LOS } \\ & v_{p}=(V \text { or DDHV }) /\left(\text { PHF } \times N \times f_{H V}\right. \\ & \left.\times f_{p}\right) \end{aligned}$	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
$D=v_{p} / S$	$\begin{array}{ll} 75.0 & \mathrm{mph} \\ 13.0 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \end{array}$	$D=v_{p} / s$ Required Number of Lanes, N	mph pc/mi/ln
LOS	B		
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	D - Density FFS - Free-flow speed BFFS - Base free-flow	$\begin{aligned} & E_{R} \text { - Exhibits 11-10, 11-12 } \\ & E_{T} \text { - Exhibits 11-10, 11-11, 11-13 } \\ & f_{p} \text { - Page 11-18 } \\ & \text { LOS, S, FFS, } v_{p} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}}-\text { Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}} \text { - Exhibit } 11-9 \\ & \text { TRD - Page 11-11 } \end{aligned}$

Appendix P 2017 Background Conditions Worksheets - Merge/Diverge Locations

Appendix Q 2017 Background Conditions Worksheets - Study Intersections

Intersection							
Int Delay, s/veh	4.4						
Movement		EBT	EBR	WBL	WBT	NBL	NBR
Vol, veh/h		55	20	49	51	5	78
Conflicting Peds, \#/hr		0	0	0	0	0	0
Sign Control		Free	Free	Free	Free	Stop	Stop
RT Channelized		-	None	-	None	-	None
Storage Length		-	-	-	-	0	-
Veh in Median Storage, \#		0	-	-	0	0	-
Grade, \%		0	-	-	0	0	-
Peak Hour Factor		100	100	100	100	100	100
Heavy Vehicles, \%		8	0	11	4	0	23
Mvmt Flow		55	20	49	51	5	78

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	75	0	214	65
Stage 1	-	-	-	-	65	-
Stage 2	-	-	-	-	149	-
Critical Hdwy	-	-	4.21	-	6.4	6.43
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.299	-	3.5	3.507
Pot Cap-1 Maneuver	-	-	1469	-	779	943
Stage 1	-	-	-	-	963	
Stage 2	-	-	-	-	884	
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1469	-	753	943
Mov Cap-2 Maneuver	-	-	-	-	753	
Stage 1	-	-	-	-	963	
Stage 2	-	-	-	-	854	

Approach	EB	WB	NB
HCM Control Delay, s	0	3.7	9.3
HCM LOS			A

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	929	-	-	1469	-
HCM Lane V/C Ratio	0.089	-	-	0.033	-
HCM Control Delay (s)	9.3	-	-	7.5	0
HCM Lane LOS	A	-	-	A	A
HCM 95th \%tile Q(veh)	0.3	-	-	0.1	-

	\Rightarrow	\rightarrow	\geqslant	\checkmark	\leftarrow	4	4	\uparrow	P	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		F			\uparrow						\uparrow	F
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		0	0		25
Storage Lanes	0		0	0		0	0		0	0		1
Taper Length (tt)	0			0			0			0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.968										0.850
Flt Protected					0.959						0.954	
Satd. Flow (prot)	0	1566	0	0	1747	0	0	0	0	0	1587	1442
Flt Permitted					0.959						0.954	
Satd. Flow (perm)	0	1566	0	0	1747	0	0	0	0	0	1587	1442
Link Speed (mph)		30			30			30			30	
Link Distance (t)		144			502			626			699	
Travel Time (s)		3.3			11.4			14.2			15.9	
Intersection Summary												

Intersection									
Int Delay, s/veh	33.1								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	0	101	32	530	91	0	0	0	0
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-		-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	0	22	3	4	6	0	0	0	0
Mvmt Flow	0	101	32	530	91	0	0	0	0
Major/Minor	Major1			Major2					
Conflicting Flow All	91	0	0	133	0	0			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Critical Hdwy	4.1	-	-	4.14	-	-			
Critical Hdwy Stg 1	-	-	-	-	-	-			
Critical Hdwy Stg 2	-	-	-	-	-	-			
Follow-up Hdwy	2.2	-	-	2.236	-	-			
Pot Cap-1 Maneuver	1517	-	-	1440	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1517	-	-	1440	-	-			
Mov Cap-2 Maneuver	-	-	-	-	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			

Approach	EB	WB
HCM Control Delay, s	0	7.6
HCM LOS		

Minor Lane/Major Mvmt	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2
Capacity (veh/h)	1517	-	-	1440	-	-	108	940
HCM Lane V/C Ratio	-	-	-	0.368	-	-	1.13	0.009
HCM Control Delay (s)	0	-	-	8.9	0	-	200.9	8.9
HCM Lane LOS	A	-	-	A	A	-	F	A
HCM 95th \%tile Q(veh)	0	-	-	1.7	-	-	7.7	0

Notes

~: Volume exceeds capacity $\quad \$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad *: All major volume in platoon

Intersection			
Int Delay, s/veh			
Movement	118	4	8
Vol, veh/h	0	0	0
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	-	-	25
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	13	50	12
Heavy Vehicles, \%	118	4	8
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	1268	1284	91
Stage 1	1151	1151	-
\quad Stage 2	117	133	-
Critical Hdwy	6.53	7	6.32
Critical Hdwy Stg 1	5.53	6	-
Critical Hdwy Stg 2	5.53	6	-
Follow-up Hdwy	3.617	4.45	3.408
Pot Cap-1 Maneuver	176	133	940
\quad Stage 1	287	223	-
\quad Stage 2	881	703	-
Platoon blocked, \%			
Mov Cap-1 Maneuver	~ 108	0	940
Mov Cap-2 Maneuver	~ 108	0	-
Stage 1	176	0	-
Stage 2	881	0	-

Approach	SB
HCM Control Delay, s	189.1
HCM LOS	F

[^16]| | * | \rightarrow | \rangle | \checkmark | \leftarrow | 4 | 4 | \uparrow | p | \checkmark | \downarrow | \checkmark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | | \uparrow | | | F | | | \uparrow | 7 | | | |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| Grade (\%) | | 0\% | | | 0\% | | | 0\% | | | 0\% | |
| Storage Length (ft) | 0 | | 0 | 0 | | 0 | 0 | | 50 | 0 | | 0 |
| Storage Lanes | 0 | | 0 | 0 | | 0 | 0 | | 1 | 0 | | 0 |
| Taper Length (tt) | 0 | | | 0 | | | 0 | | | 0 | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Ped Bike Factor | | | | | | | | | | | | |
| Frt | | | | | 0.972 | | | | 0.850 | | | |
| FIt Protected | | 0.986 | | | | | | 0.959 | | | | |
| Satd. Flow (prot) | 0 | 1601 | 0 | 0 | 1731 | 0 | 0 | 1696 | 1509 | 0 | 0 | 0 |
| Flt Permitted | | 0.986 | | | | | | 0.959 | | | | |
| Satd. Flow (perm) | 0 | 1601 | 0 | 0 | 1731 | 0 | 0 | 1696 | 1509 | 0 | 0 | 0 |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (ft) | | 502 | | | 143 | | | 542 | | | 648 | |
| Travel Time (s) | | 11.4 | | | 3.3 | | | 12.3 | | | 14.7 | |
| Intersection Summary | | | | | | | | | | | | |

Intersection									
Int Delay, s/veh	3.7								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	64	155	0	0	598	156	23	4	321
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	50
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	17	17	0	0	4	17	0	50	7
Mumt Flow	64	155	0	0	598	156	23	4	321
Major/Minor	Major1			Major2			inor1		
Conflicting Flow All	754	0	0	155	0	0	959	1037	155
Stage 1	-	-	-	-	-	-	283	283	
Stage 2		-	-	-	-	-	676	754	
Critical Hdwy	4.27	-	-	4.1	-	-	6.4	7	6.27
Critical Hdwy Stg 1	-	-	-	-	-	-	5.4	6	-
Critical Hdwy Stg 2	-	-	-	-	-	-	5.4	6	
Follow-up Hdwy	2.353	-	-	2.2	-	-	3.5	4.45	3.363
Pot Cap-1 Maneuver	792	-	-	1438	-	-	288	191	878
Stage 1	-	-	-	-	-	-	770	598	
Stage 2	-	-	-	-	-	-	509	354	
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	792	-	-	1438	-	-	263	0	878
Mov Cap-2 Maneuver	-	-	-	-	-	-	263	0	-
Stage 1	-	-	-	-	-	-	702	0	-
Stage 2	-	-	-	-	-	-	509	0	

Approach	EB	WB	NB
HCM Control Delay, s	2.9	0	12.1
HCM LOS			B

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR
Capacity (veh/h)	263	878	792	-	-	1438	-	-
HCM Lane V/C Ratio	0.103	0.366	0.081	-	-	-	-	-
HCM Control Delay (s)	20.2	11.4	9.9	0	-	0	-	-
HCM Lane LOS	C	B	A	A	-	A	-	-
HCM 95th \%tile Q(veh)	0.3	1.7	0.3	-	-	0	-	-

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	0	0
Conflicting Peds, \#/hr	0	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	-	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	100
Heavy Vehicles, \%	0	0	0
Mvmt Flow	0	0	0

Major/Minor
Conflicting Flow All
\quad Stage 1
\quad Stage 2
Critical Hdwy
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy
Pot Cap-1 Maneuver
\quad Stage 1
\quad Stage 2
Platoon blocked, \%
Mov Cap-1 Maneuver
Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach

HCM Control Delay, s
HCMLOS

Minor Lane/Major Mvmt

	\%	\rightarrow	7	\dagger	\leftarrow	4	4	\uparrow	1	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	F			\uparrow			¢			${ }^{\text {¢ }}$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	1		0	0		0	0		0	0		0
Taper Length (ft)	0			0			0			0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.999			0.998			0.955			0.896	
Flt Protected	0.950				0.999			0.968			0.990	
Satd. Flow (prot)	1150	1727	0	0	1817	0	0	1493	0	0	1399	0
Flt Permitted	0.950				0.999			0.968			0.990	
Satd. Flow (perm)	1150	1727	0	0	1817	0	0	1493	0	0	1399	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		143			173			583			174	
Travel Time (s)		3.3			3.9			13.3			4.0	
Intersection Summary												

Area Type:

Other

Intersection									
Int Delay, s/veh 3.9									
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	30	441	4	10	630	9	10	0	5
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	0	-	-	-	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	57	10	0	25	3	67	14	0	25
Mvmt Flow	30	441	4	10	630	9	10	0	5
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	639	0	0	445	0	0	1217	1162	443
Stage 1	-	-	-	-	-	-	503	503	
Stage 2	-	-	-	-	-	-	714	659	
Critical Hdwy	4.67	-	-	4.35	-	-	7.24	6.5	6.45
Critical Hdwy Stg 1	-	-	-	-	-	-	6.24	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.24	5.5	
Follow-up Hdwy	2.713	-	-	2.425	-	-	3.626	4	3.525
Pot Cap-1 Maneuver	730	-	-	1004	-	-	149	197	569
Stage 1	-	-	-	-	-	-	529	545	-
Stage 2	-	-	-	-	-	-	404	464	-
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	730	-	-	1004	-	-	104	186	569
Mov Cap-2 Maneuver	-	-	-	-	-	-	104	186	
Stage 1	-	-	-	-	-	-	507	523	
	-	-	-	-	-	-	293	457	

Approach	EB	WB	NB
HCM Control Delay, s	0.6	0.1	33.1
HCM LOS			D

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	143	730	-	-	1004	-	-	303
HCM Lane V/C Ratio	0.105	0.041	-	-	0.01	-	-	0.495
HCM Control Delay (s)	33.1	10.1	-	-	8.6	0	-	28
HCM Lane LOS	D	B	-	-	A	A	-	D
HCM 95th \%tile Q(veh)	0.3	0.1	-	-	0	-	-	2.6

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	31	4	115
Conflicting Peds, \#/hr	0	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	-	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	100
Heavy Vehicles, \%	23	100	17
Mvmt Flow	31	4	115

Major/Minor	Minor2		
Conflicting Flow All	1161	1160	635
\quad Stage 1	655	655	-
\quad Stage 2	506	505	-
Critical Hdwy	7.33	7.5	6.37
Critical Hdwy Stg 1	6.33	6.5	-
Critical Hdwy Stg 2	6.33	6.5	-
Follow-up Hdwy	3.707	4.9	3.453
Pot Cap-1 Maneuver	157	130	453
\quad Stage 1	422	340	-
\quad Stage 2	512	408	-
Platoon blocked, \%			
Mov Cap-1 Maneuver	149	123	453
Mov Cap-2 Maneuver	149	123	-
Stage 1	405	335	-
Stage 2	487	391	-

Approach	SB
HCM Control Delay, s	28
HCM LOS	D

[^17]Area Type: Other

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	78	0	357	76
Stage 1	-	-	-	-	76	-
Stage 2	-	-	-	-	281	-
Critical Hdwy	-	-	4.12	-	6.4	6.27
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.218	-	3.5	3.363
Pot Cap-1 Maneuver	-	-	1520	-	645	971
Stage 1	-	-	-	-	952	-
Stage 2	-	-	-	-	771	
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1520	-	602	971
Mov Cap-2 Maneuver	-	-	-	-	602	-
Stage 1	-	-	-	-	952	-
Stage 2	-	-	-	-	719	-

Approach	EB	WB	NB
HCM Control Delay, s	0	4	9.6
HCM LOS			A

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	889	-	-	1520	-
HCM Lane V/C Ratio	0.127	-	-	0.064	-
HCM Control Delay (s)	9.6	-	-	7.5	0
HCM Lane LOS	A	-	-	A	A
HCM 95th \%tile Q(veh)	0.4	-	-	0.2	-

	\Rightarrow	\rightarrow	\geqslant	\checkmark	\leftarrow	4	4	\uparrow	P	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		F			\uparrow						\uparrow	F
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		0	0		25
Storage Lanes	0		0	0		0	0		0	0		1
Taper Length (tt)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.973										0.850
Flt Protected					0.963						0.953	
Satd. Flow (prot)	0	1725	0	0	1735	0	0	0	0	0	1632	1583
Flt Permitted					0.963						0.953	
Satd. Flow (perm)	0	1725	0	0	1735	0	0	0	0	0	1632	1583
Link Speed (mph)		30			30			30			30	
Link Distance (t)		144			502			626			699	
Travel Time (s)		3.3			11.4			14.2			15.9	
Intersection Summary												

Intersection									
Int Delay, s/veh	23.3								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	0	135	34	374	116	0	0	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	0	9	0	5	7	0	0	0	0
Mvmt Flow	0	135	34	374	116	0	0	0	0
Major/Minor	Major1			Major2					
Conflicting Flow All	116	0	0	169	0	0			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Critical Hdwy	4.1	-	-	4.15	-	-			
Critical Hdwy Stg 1	-	-	-	-	-	-			
Critical Hdwy Stg 2	-	-	-	-	-	-			
Follow-up Hdwy	2.2	-	-	2.245	-	-			
Pot Cap-1 Maneuver	1485	-	-	1390	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1485	-	-	1390	-	-			
Mov Cap-2 Maneuver	-	-	-	-	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			

Approach	EB	WB
HCM Control Delay, s	0	6.5
HCM LOS		

Minor Lane/Major Mvmt	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2
Capacity (veh/h)	1485	-	-	1390	-	-	182	936
HCM Lane V/C Ratio	-	-	-	0.269	-	-	0.929	0.073
HCM Control Delay (s)	0	-	-	8.5	0	-	101	9.1
HCM Lane LOS	A	-	-	A	A	-	F	A
HCM 95th \%tile Q(veh)	0	-	-	1.1	-	-	7.2	0.2

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	4	68
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	-	-	25
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	10	50	2
Heavy Vehicles, \%	165	4	68
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	1016	1033	116
\quad Stage 1	864	864	-
\quad Stage 2	152	169	-
Critical Hdwy	6.5	7	6.22
Critical Hdwy Stg 1	5.5	6	-
Critical Hdwy Stg 2	5.5	6	-
Follow-up Hdwy	3.59	4.45	3.318
Pot Cap-1 Maneuver	255	192	936
\quad Stage 1	400	312	-
\quad Stage 2	857	676	-
Platoon blocked, \%			
Mov Cap-1 Maneuver	182	0	936
Mov Cap-2 Maneuver	182	0	-
Stage 1	285	0	-
Stage 2	857	0	-

Approach	SB
HCM Control Delay, s	74.6
HCM LOS	F

Minor Lane/Major Mvmt

	*	\rightarrow	\rangle	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			F			\uparrow	7			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		50	0		0
Storage Lanes	0		0	0		0	0		1	0		0
Taper Length (tt)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.971				0.850			
FIt Protected		0.995						0.958				
Satd. Flow (prot)	0	1741	0	0	1770	0	0	1630	1568	0	0	0
Flt Permitted		0.995						0.958				
Satd. Flow (perm)	0	1741	0	0	1770	0	0	1630	1568	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (t)		502			143			542			648	
Travel Time (s)		11.4			3.3			12.3			14.7	
Intersection Summary												

Major/Minor	Major1		Major2			Minor1			
Conflicting Flow All	555	0	0	268	0	0	828	887	268
Stage 1	-	-	-	-	-	-	332	332	
Stage 2	-	-	-		-	-	496	555	
Critical Hdwy	4.15	-	-	4.1	-	-	6.46	7	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	5.46	6	
Critical Hdwy Stg 2	-	-	-	-	-	-	5.46	6	
Follow-up Hdwy	2.245	-	-	2.2	-	-	3.554	4.45	3.327
Pot Cap-1 Maneuver	1001	-	-	1307	-	-	336	237	768
Stage 1	-	-	-	-	-	-	718	567	
Stage 2	-	-	-	-	-	-	604	443	
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1001	-	-	1307	-	-	323	0	768
Mov Cap-2 Maneuver	-	-	-	-	-	-	323	0	
Stage 1	-	-	-	-	-	-	691	0	
Stage 2	-	-	-	-	-	-	604	0	

Approach	EB	WB	NB
HCM Control Delay, s	0.9	0	23.1
HCM LOS			C

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR
Capacity (veh/h)	323	768	1001	-	-	1307	-	-
HCM Lane V/C Ratio	0.192	0.77	0.032	-	-	-	-	-
HCM Control Delay (s)	18.8	23.5	8.7	0	-	0	-	-
HCM Lane LOS	C	C	A	A	-	A	-	-
HCM 95th \%tile Q(veh)	0.7	7.5	0.1	-	-	0	-	-

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	0	0
Conflicting Peds, \#/hr	0	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	-	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	100
Heavy Vehicles, \%	0	0	0
Mvmt Flow	0	0	0

Major/Minor
Conflicting Flow All
\quad Stage 1
\quad Stage 2
Critical Hdwy
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy
Pot Cap-1 Maneuver
\quad Stage 1
\quad Stage 2
Platoon blocked, \%
Mov Cap-1 Maneuver
Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach

HCM Control Delay, s
HCM LOS

Minor Lane/Major Mvmt

	\rangle	\rightarrow	\rangle	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	F			¢			${ }_{4}$			${ }_{\dagger}$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	1		0	0		0	0		0	0		0
Taper Length (t)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.998			0.998			0.932			0.879	
Flt Protected	0.950				0.999			0.976			0.997	
Satd. Flow (prot)	1308	1818	0	0	1829	0	0	1728	0	0	1381	0
Flt Permitted	0.950				0.999			0.976			0.997	
Satd. Flow (perm)	1308	1818	0	0	1829	0	0	1728	0	0	1381	0
Link Speed (mph)		30			30			30			30	
Link Distance (t)		143			173			583			174	
Travel Time (s)		3.3			3.9			13.3			4.0	
Intersection Summary												

Area Type:

Other

Intersection									
Int Delay, s/veh 1.8									
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	32	815	12	5	448	8	5	0	5
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	0	-	-	-	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	38	4	25	25	2	77	0	0	0
Mvmt Flow	32	815	12	5	448	8	5	0	5
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	456	0	0	827	0	0	1401	1351	821
Stage 1	-	-	-	-	-	-	885	885	
Stage 2	-	-	-	-	-	-	516	466	
Critical Hdwy	4.48	-	-	4.35	-	-	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	
Follow-up Hdwy	2.542	-	-	2.425	-	-	3.5	4	3.3
Pot Cap-1 Maneuver	939	-	-	713	-	-	119	152	378
Stage 1	-	-	-	-	-	-	342	366	-
Stage 2	-	-	-	-	-	-	546	566	-
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	939	-	-	713	-	-	92	145	378
Mov Cap-2 Maneuver	-	-	-	-	-	-	92	145	
Stage 1	-	-	-	-	-	-	330	354	
Stage 2	-	-	-	-	-	-	439	561	

Approach	EB	WB	NB
HCM Control Delay, s	0.3	0.1	31.1
HCM LOS			D

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	148	939	-	-	713	-	-	419
HCM Lane V/C Ratio	0.068	0.034	-	-	0.007	-	-	0.274
HCM Control Delay (s)	31.1	9	-	-	10.1	0	-	16.8
HCM Lane LOS	D	A	-	-	B	A	-	C
HCM 95th \%tile Q(veh)	0.2	0.1	-	-	0	-	-	1.1

Intersection			
Int Delay, s/veh			
Movement	8	4	103
Vol, veh/h	0	0	0
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	-	-	-
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	0	0	23
Heavy Vehicles, \%	8	4	103
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	1350	1353	452
\quad Stage 1	462	462	-
\quad Stage 2	888	891	-
Critical Hdwy	7.1	6.5	6.43
Critical Hdwy Stg 1	6.1	5.5	-
Critical Hdwy Stg 2	6.1	5.5	-
Follow-up Hdwy	3.5	4	3.507
Pot Cap-1 Maneuver	129	151	566
\quad Stage 1	584	568	-
\quad Stage 2	341	363	-
Platoon blocked, \%			
Mov Cap-1 Maneuver	123	145	566
Mov Cap-2 Maneuver	123	145	-
Stage 1	564	563	-
Stage 2	325	351	-

Approach	SB
HCM Control Delay, s	16.8
HCM LOS	C

Minor Lane/Major Mvmt

Major/Minor	Major1	Major2			Minor1	
Conflicting Flow All	0	0	84	0	301	77
Stage 1	-	-	-	-	77	-
Stage 2	-	-	-	-	224	-
Critical Hdwy	-	-	4.16	-	6.65	6.24
Critical Hdwy Stg 1	-	-	-	-	5.65	-
Critical Hdwy Stg 2	-	-	-	-	5.65	-
Follow-up Hdwy	-	-	2.254	-	3.725	3.336
Pot Cap-1 Maneuver	-	-	1488	-	645	978
Stage 1	-	-	-	-	891	
Stage 2	-	-	-	-	762	
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1488	-	610	978
Mov Cap-2 Maneuver	-	-	-	-	610	
Stage 1	-	-	-	-	891	
Stage 2	-	-	-	-	721	

Approach	EB	WB	NB
HCM Control Delay, s	0	4	9.2
HCM LOS			A

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	938	-	-	1488	-
HCM Lane V/C Ratio	0.076	-	-	0.052	-
HCM Control Delay (s)	9.2	-	-	7.6	0
HCM Lane LOS	A	-	-	A	A
HCM 95th \%tile Q(veh)	0.2	-	-	0.2	-

	\Rightarrow	\rightarrow	\geqslant	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		F			\uparrow						\uparrow	F
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		0	0		25
Storage Lanes	0		0	0		0	0		0	0		1
Taper Length (tt)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Fit		0.958										0.850
Flt Protected					0.959						0.953	
Satd. Flow (prot)	0	1698	0	0	1773	0	0	0	0	0	1743	1429
Flt Permitted					0.959						0.953	
Satd. Flow (perm)	0	1698	0	0	1773	0	0	0	0	0	1743	1429
Link Speed (mph)		30			30			30			30	
Link Distance (t)		144			502			626			699	
Travel Time (s)		3.3			11.4			14.2			15.9	
Intersection Summary												

Intersection									
Int Delay, s/veh	18.1								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	0	93	42	365	66	0	0	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	0	5	12	2	7	0	0	0	0
Mvmt Flow	0	93	42	365	66	0	0	0	0
Major/Minor	Major1			Major2					
Conflicting Flow All	66	0	0	135	0	0			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Critical Hdwy	4.1	-	-	4.12	-	-			
Critical Hdwy Stg 1	-	-	-	-	-	-			
Critical Hdwy Stg 2	-	-	-	-	-	-			
Follow-up Hdwy	2.2	-	-	2.218	-	-			
Pot Cap-1 Maneuver	1549	-	-	1449	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1549	-	-	1449	-	-			
Mov Cap-2 Maneuver	-	-	-	-	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			

Approach	EB	WB
HCM Control Delay, s	0	7
HCM LOS		

Minor Lane/Major Mvmt	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2
Capacity (veh/h)	1549	-	-	1449	-	-	223	968
HCM Lane V/C Ratio	-	-	-	0.252	-	-	0.789	0.084
HCM Control Delay (s)	0	-	-	8.3	0	-	63.1	9.1
HCM Lane LOS	A	-	-	A	A	-	F	A
HCM 95th \%tile Q(veh)	0	-	-	1	-	-	5.7	0.3

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	4	81
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	-	-	25
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	4	0	13
Heavy Vehicles, \%	172	4	81
Mvmt Flow			

	Minor2		
Major/Minor	910	931	66
Conflicting Flow All	796	796	-
Stage 1	114	135	-
Stage 2	6.44	6.5	6.33
Critical Hdwy	5.44	5.5	-
Critical Hdwy Stg 1	5.44	5.5	-
Critical Hdwy Stg 2	3.536	4	3.417
Follow-up Hdwy	302	269	968
Pot Cap-1 Maneuver	441	402	-
Stage 1	906	789	-
Stage 2			
Platoon blocked, \%	223	0	968
Mov Cap-1 Maneuver	223	0	-
Mov Cap-2 Maneuver	326	0	-
Stage 1	906	0	-
Stage 2			

Approach	SB
HCM Control Delay, s	46.1
HCM LOS	E

Minor Lane/Major Mvmt

	*	\rightarrow	\rangle	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			F			\uparrow	7			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		50	0		0
Storage Lanes	0		0	0		0	0		1	0		0
Taper Length (tt)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.969				0.850			
FIt Protected		0.994						0.960				
Satd. Flow (prot)	0	1810	0	0	1752	0	0	1765	1568	0	0	0
Flt Permitted		0.994						0.960				
Satd. Flow (perm)	0	1810	0	0	1752	0	0	1765	1568	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (t)		502			143			542			648	
Travel Time (s)		11.4			3.3			12.3			14.7	
Intersection Summary												

Intersection									
Int Delay, s/veh	8.3								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	34	231	0	0	410	124	21	4	564
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	50
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	0	5	0	0	3	12	4	0	3
Mvmt Flow	34	231	0	0	410	124	21	4	564

Major/Minor	Major1		Major2			Minor1			
Conflicting Flow All	534	0	0	231	0	0	771	833	231
Stage 1	-	-	-	-	-	-	299	299	
Stage 2	-	-	-	-	-	-	472	534	
Critical Hdwy	4.1	-	-	4.1	-	-	6.44	6.5	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	5.44	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	5.44	5.5	
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.536	4	3.327
Pot Cap-1 Maneuver	1044	-	-	1349	-	-	366	307	806
Stage 1	-	-	-	-	-	-	748	670	
Stage 2	-	-	-	-	-	-	623	528	
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1044	-	-	1349	-	-	352	0	806
Mov Cap-2 Maneuver	-	-	-	-	-	-	352	0	
Stage 1	-	-	-	-	-	-	720	0	
Stage 2	-	-	-	-	-	-	623	0	

Approach	EB	WB	NB
HCM Control Delay, s	1.1	0	19.1
HCM LOS			C

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR
Capacity (veh/h)	352	806	1044	-	-	1349	-	-
HCM Lane V/C Ratio	0.071	0.7	0.033	-	-	-	-	-
HCM Control Delay (s)	16	19.2	8.6	0	-	0	-	-
HCM Lane LOS	C	C	A	A	-	A	-	-
HCM 95th \%tile Q(veh)	0.2	5.9	0.1	-	-	0	-	-

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	0	0
Conflicting Peds, \#/hr	0	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	-	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	100
Heavy Vehicles, \%	0	0	0
Mvmt Flow	0	0	0

Major/Minor
Conflicting Flow All
\quad Stage 1
\quad Stage 2
Critical Hdwy
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy
Pot Cap-1 Maneuver
\quad Stage 1
\quad Stage 2
Platoon blocked, \%
Mov Cap-1 Maneuver
Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach

HCM Control Delay, s
HCMLOS

Minor Lane/Major Mvmt

	\rangle	\rightarrow	7	\downarrow	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	F			¢			\dagger			${ }_{\text {¢ }}$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	1		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Fit		0.999			0.998			0.966			0.884	
Flt Protected	0.950				0.999			0.976			0.995	
Satd. Flow (prot)	1570	1824	0	0	1819	0	0	1518	0	0	1458	0
Flt Permitted	0.950				0.999			0.976			0.995	
Satd. Flow (perm)	1570	1824	0	0	1819	0	0	1518	0	0	1458	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		143			173			583			174	
Travel Time (s)		3.3			3.9			13.3			4.0	
Intersection Summary												

Area Type:

Other

Intersection									
Int Delay, s/veh 2.1									
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	16	774	5	5	421	8	10	5	5
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	0	-	-	-	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	15	4	17	0	3	67	11	0	50
Mvmt Flow	16	774	5	5	421	8	10	5	5
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	429	0	0	779	0	0	1298	1248	777
Stage 1	-	-	-	-	-	-	809	809	
Stage 2	-	-	-	-	-	-	489	439	
Critical Hdwy	4.25	-	-	4.1	-	-	7.21	6.5	6.7
Critical Hdwy Stg 1	-	-	-	-	-	-	6.21	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.21	5.5	
Follow-up Hdwy	2.335	-	-	2.2	-	-	3.599	4	3.75
Pot Cap-1 Maneuver	1064	-	-	847	-	-	133	175	330
Stage 1	-	-	-	-	-	-	361	396	-
Stage 2	-	-	-	-	-	-	544	582	-
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1064	-	-	847	-	-	106	171	330
Mov Cap-2 Maneuver	-	-	-	-	-	-	106	171	
Stage 1	-	-	-	-	-	-	356	390	
		-	-	-	-	-	444	577	

Approach	EB	WB	NB
HCM Control Delay, s	0.2	0.1	34
HCM LOS			D

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	144	1064	-	-	847	-	-	419
HCM Lane V/C Ratio	0.139	0.015	-	-	0.006	-	-	0.286
HCM Control Delay (s)	34	8.4	-	-	9.3	0	-	17
HCM Lane LOS	D	A	-	-	A	A	-	C
HCM 95th \%tile Q(veh)	0.5	0	-	-	0	-	-	1.2

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	13	4	103
Conflicting Peds, \#/hr	0	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	-	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	100
Heavy Vehicles, \%	0	0	17
Mvmt Flow	13	4	103

Major/Minor	Minor2		
Conflicting Flow All	1249	1246	425
\quad Stage 1	435	435	-
\quad Stage 2	814	811	-
Critical Hdwy	7.1	6.5	6.37
Critical Hdwy Stg 1	6.1	5.5	-
Critical Hdwy Stg 2	6.1	5.5	-
Follow-up Hdwy	3.5	4	3.453
Pot Cap-1 Maneuver	151	175	598
\quad Stage 1	604	584	-
\quad Stage 2	375	396	-
Platoon blocked, \%			
Mov Cap-1 Maneuver	143	171	598
Mov Cap-2 Maneuver	143	171	-
Stage 1	595	579	-
Stage 2	359	390	-

Approach	SB
HCM Control Delay, s	17
HCM LOS	C

[^18]
Appendix R 2017 Total Traffic Conditions Worksheets - Freeway Mainline

BASIC FREEWAY SEGMENTS WORKSHEET

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	$\begin{aligned} & \text { KML } \\ & \text { KAI } \\ & 6 / 25 / 2014 \\ & \text { Weekday PM Peak Period } \end{aligned}$	Highway/Direction of Tra From/To Jurisdiction Analysis Year	I-5 SB SR 501 to La Center WSDOT 2017_casino
Project Description 12393			
\checkmark Oper.(LOS)		es.(N)	\square Planning Data
Flow Inputs			
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D $\text { DDHV }=\text { AADT } \times K \times D$	3516 veh/h veh/day	Peak-Hour Factor, PHF \%Trucks and Buses, P_{T} \%RVs, P_{R} General Terrain:	$\begin{aligned} & 1.00 \\ & 13 \\ & 0 \\ & \text { Level } \end{aligned}$

Appendix S 2017 Total Traffic Conditions Worksheets - Merge/Diverge Locations

Appendix T 2017 Total Traffic Conditions (Build) Worksheets Northbound Off-Ramp Diverge

Appendix U 2017 Total Traffic Conditions (No Build) Worksheets - Study Intersections

	\dagger	\rightarrow	\leftarrow	4	\checkmark	\checkmark
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	$\stackrel{\text { F }}{ }$		Y	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12
Grade (\%)		0\%	0\%		0\%	
Storage Length (ft)	100			0	0	0
Storage Lanes	0			0	1	0
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt			0.900		0.999	
Flt Protected		0.998			0.953	
Satd. Flow (prot)	0	1825	1647	0	1791	0
Flt Permitted		0.998			0.953	
Satd. Flow (perm)	0	1825	1647	0	1791	0
Link Speed (mph)		30	30		30	
Link Distance (ft)		909	1364		495	
Travel Time (s)		20.7	31.0		11.3	
Intersection Summary						

Area Type:

Other

Approach	EB	WB	SB
HCM Control Delay, s	0.2	0	10.2
HCM LOS			B

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)	1382	-	-	-	803
HCM Lane V/C Ratio	0.001	-	-	-	0.138
HCM Control Delay (s)	7.6	0	-	-	10.2
HCM Lane LOS	A	A	-	-	B
HCM 95th \%tile Q(veh)	0	-	-	-	0.5

	$\stackrel{ }{\prime}$	\rightarrow	\geqslant	\checkmark	\leftarrow	4	4	\uparrow	P	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	F		\%	$\stackrel{\text { F }}{ }$			¢		7	F	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	150		0	0		0	0		0	200		0
Storage Lanes	1		0	1		0	0		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Fit		0.987			0.935			0.880				
Flt Protected				0.950				0.997		0.950		
Satd. Flow (prot)	1900	1809	0	1626	1749	0	0	1384	0	1787	1881	0
Flt Permitted				0.950				0.997		0.950		
Satd. Flow (perm)	1900	1809	0	1626	1749	0	0	1384	0	1787	1881	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1364			144			957			354	
Travel Time (s)		31.0			3.3			21.8			8.0	
Intersection Summary												

Major/Minor	Major1		Major2			Minor1			
Conflicting Flow All	338	0	0	170	0	0	529	599	163
Stage 1	-	-	-	-	-	-	163	163	
Stage 2	-	-	-	-	-	-	366	436	
Critical Hdwy	4.1	-	-	4.21	-	-	7.1	6.51	6.43
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.51	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.51	
Follow-up Hdwy	2.2	-	-	2.299	-	-	3.5	4.009	3.507
Pot Cap-1 Maneuver	1232	-	-	1355	-	-	463	417	830
Stage 1	-	-	-	-	-	-	844	765	
Stage 2	-	-	-	-	-	-	657	582	
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1232	-	-	1355	-	-	446	402	830
Mov Cap-2 Maneuver	-	-	-	-	-	-	446	402	
Stage 1	-	-	-	-	-	-	844	765	-
Stage 2	-	-	-	-	-	-	628	561	

Approach	EB	WB	NB
HCM Control Delay, s	0	1	10.5
HCM LOS			B

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2
Capacity (veh/h)	748	1232	-	-	1355	-	-	380	438
HCM Lane V/C Ratio	0.118	-	-	-	0.036	-	-	0.289	0.011
HCM Control Delay (s)	10.5	0	-	-	7.8	-	-	18.3	13.3
HCM Lane LOS	B	A	-	-	A	-	-	C	B
HCM 95th \%tile Q(veh)	0.4	0	-	-	0.1	-	-	1.2	0

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	5	0
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	200	-	-
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	1	1	1
Heavy Vehicles, \%	110	5	0
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	567	533	265
Stage 1	363	363	-
Stage 2	204	170	-
Critical Hdwy	7.11	6.51	6.21
Critical Hdwy Stg 1	6.11	5.51	-
Critical Hdwy Stg 2	6.11	5.51	-
Follow-up Hdwy	3.509	4.009	3.309
Pot Cap-1 Maneuver	436	454	776
\quad Stage 1	658	626	-
Stage 2	800	760	-
Platoon blocked, \%			
Mov Cap-1 Maneuver	380	438	776
Mov Cap-2 Maneuver	380	438	-
Stage 1	658	603	-
Stage 2	720	760	-

Approach	SB
HCM Control Delay, s	18.1
HCM LOS	C

[^19]| | \Rightarrow | \rightarrow | \geqslant | \checkmark | \leftarrow | 4 | 4 | \uparrow | P | \checkmark | \downarrow | \checkmark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | | F | | | \uparrow | | | | | | \uparrow | F |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| Grade (\%) | | 0\% | | | 0\% | | | 0\% | | | 0\% | |
| Storage Length (ft) | 0 | | 0 | 0 | | 0 | 0 | | 0 | 0 | | 25 |
| Storage Lanes | 0 | | 0 | 0 | | 0 | 0 | | 0 | 0 | | 1 |
| Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Ped Bike Factor | | | | | | | | | | | | |
| Frt | | 0.911 | | | | | | | | | | 0.850 |
| Flt Protected | | | | | 0.971 | | | | | | 0.954 | |
| Satd. Flow (prot) | 0 | 1600 | 0 | 0 | 1788 | 0 | 0 | 0 | 0 | 0 | 1587 | 1495 |
| Flt Permitted | | | | | 0.971 | | | | | | 0.954 | |
| Satd. Flow (perm) | 0 | 1600 | 0 | 0 | 1788 | 0 | 0 | 0 | 0 | 0 | 1587 | 1495 |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (ft) | | 144 | | | 502 | | | 626 | | | 699 | |
| Travel Time (s) | | 3.3 | | | 11.4 | | | 14.2 | | | 15.9 | |
| Intersection Summary | | | | | | | | | | | | |

Intersection									
Int Delay, s/veh	89.2								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	0	118	225	535	361	0	0	0	0
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-			
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	0	20	2	4	2	0	0	0	0
Mvmt Flow	0	118	225	535	361	0	0	0	0
Major/Minor	Major1			Major2					
Conflicting Flow All	361	0	0	343	0	0			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Critical Hdwy	4.1	-	-	4.14	-	-			
Critical Hdwy Stg 1	-	-	-	-	-	-			
Critical Hdwy Stg 2	-	-	-	-	-	-			
Follow-up Hdwy	2.2	-	-	2.236	-	-			
Pot Cap-1 Maneuver	1209	-	-	1205	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1209	-	-	1205	-	-			
Mov Cap-2 Maneuver	-	-	-	-	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			

Approach	EB	WB
HCM Control Delay, s	0	6.2
HCM LOS		

Minor Lane/Major Mvmt	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2
Capacity (veh/h)	1209	-	-	1205	-	-	45	670
HCM Lane V/C Ratio	-	-	-	0.444	-	-	2.711	0.037
HCM Control Delay (s)	0	-	-	10.4	0	$-\$ 965.8$	10.6	
HCM Lane LOS	A	-	-	B	A	-	F	B
HCM 95th \%tile Q(veh)	0	-	-	2.3	-	-	13.1	0.1

Notes

~: Volume exceeds capacity $\quad \$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad *: All major volume in platoon

Intersection			
Int Delay, s/veh			
	SBL	SBT	SBR
Movement	118	4	25
Vol, veh/h	0	0	0
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	-	-	25
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	13	50	8
Heavy Vehicles, \%	118	4	25
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	1662	1774	361
\quad Stage 1	1431	1431	-
\quad Stage 2	231	343	-
Critical Hdwy	6.53	7	6.28
Critical Hdwy Stg 1	5.53	6	-
Critical Hdwy Stg 2	5.53	6	-
Follow-up Hdwy	3.617	4.45	3.372
Pot Cap-1 Maneuver	~ 100	63	670
\quad Stage 1	208	159	-
$\quad 782$	560	-	
Stage 2			
Platoon blocked, \%	~ 45	0	670
Mov Cap-1 Maneuver	~ 45	0	-
Mov Cap-2 Maneuver	~ 93	0	-
Stage 1	782	0	-
Stage 2			

Approach	SB
HCM Control Delay, s	$\$ 803.4$
HCM LOS	F

[^20]| | * | \rightarrow | \rangle | \checkmark | \leftarrow | 4 | 4 | \uparrow | p | \checkmark | \downarrow | \checkmark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | | \uparrow | | | F | | | \uparrow | 7 | | | |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| Grade (\%) | | 0\% | | | 0\% | | | 0\% | | | 0\% | |
| Storage Length (ft) | 0 | | 0 | 0 | | 0 | 0 | | 50 | 0 | | 0 |
| Storage Lanes | 0 | | 0 | 0 | | 0 | 0 | | 1 | 0 | | 0 |
| Taper Length (tt) | 25 | | | 25 | | | 25 | | | 25 | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Ped Bike Factor | | | | | | | | | | | | |
| Frt | | | | | 0.972 | | | | 0.850 | | | |
| FIt Protected | | 0.984 | | | | | | 0.953 | | | | |
| Satd. Flow (prot) | 0 | 1598 | 0 | 0 | 1731 | 0 | 0 | 1781 | 1509 | 0 | 0 | 0 |
| Flt Permitted | | 0.984 | | | | | | 0.953 | | | | |
| Satd. Flow (perm) | 0 | 1598 | 0 | 0 | 1731 | 0 | 0 | 1781 | 1509 | 0 | 0 | 0 |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (t) | | 502 | | | 143 | | | 542 | | | 648 | |
| Travel Time (s) | | 11.4 | | | 3.3 | | | 12.3 | | | 14.7 | |
| Intersection Summary | | | | | | | | | | | | |

Intersection									
Int Delay, s/veh	33.9								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	77	159	0	0	604	156	292	4	321
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None			None	-	-	None
Storage Length	-	-	-			-	-		50
Veh in Median Storage, \#	-	0	-		0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	17	17	0	0	4	17	1	50	7
Mvmt Flow	77	159	0	0	604	156	292	4	321
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	760	0	0	159	0	0	995	1073	159
Stage 1	-	-	-	-	-	-	313	313	
Stage 2	-	-	-	-		-	682	760	
Critical Hdwy	4.27	-	-	4.1		-	6.41	7	6.27
Critical Hdwy Stg 1	-	-	-			-	5.41	6	
Critical Hdwy Stg 2	-	-	-	-		-	5.41	6	
Follow-up Hdwy	2.353	-	-	2.2	-	-	3.509	4.45	3.363
Pot Cap-1 Maneuver	788	-	-	1433	-	-	~ 273	181	873
Stage 1	-	-	-	-		-	744	579	
Stage 2	-	-	-	-		-	504	352	
Platoon blocked, \%		-	-						
Mov Cap-1 Maneuver	788	-	-	1433		-	~ 244	0	873
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 244	0	
Stage 1	-	-	-	-	-	-	664	0	
Stage 2	-	-	-	-	-	-	504	0	

Approach	EB	WB	NB
HCM Control Delay, s	3.3	0	87.3
HCM LOS			F

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR
Capacity (veh/h)	244	873	788	-	-	1433	-	-
HCM Lane V/C Ratio	1.213	0.368	0.098	-	-	-	-	-
HCM Control Delay (s)	169.5	11.5	10.1	0	-	0	-	-
HCM Lane LOS	F	B	B	A	-	A	-	-
HCM 95th \%tile Q(veh)	14.3	1.7	0.3	-	-	0	-	-

Notes
~: Volume exceeds capacity $\quad \$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad *: All major volume in platoon

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	0	0
Conflicting Peds, \#/hr	0	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	-	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	100
Heavy Vehicles, \%	0	0	0
Mvmt Flow	0	0	0

Major/Minor
Conflicting Flow All
\quad Stage 1
\quad Stage 2
Critical Hdwy
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy
Pot Cap-1 Maneuver
\quad Stage 1
\quad Stage 2
Platoon blocked, \%
Mov Cap-1 Maneuver
Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach

HCM Control Delay, s
HCMLOS

Minor Lane/Major Mvmt

	\rangle	\rightarrow	\rangle	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	F			¢			${ }_{4}$			${ }_{\dagger}$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	1		0	0		0	0		0	0		0
Taper Length (t)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.999			0.998			0.958			0.896	
Flt Protected	0.950				0.999			0.967			0.990	
Satd. Flow (prot)	1150	1727	0	0	1818	0	0	1499	0	0	1399	0
Flt Permitted	0.950				0.999			0.967			0.990	
Satd. Flow (perm)	1150	1727	0	0	1818	0	0	1499	0	0	1399	0
Link Speed (mph)		30			30			30			30	
Link Distance (t)		143			173			583			174	
Travel Time (s)		3.3			3.9			13.3			4.0	
Intersection Summary												

Area Type:

Other

Intersection									
Int Delay, s/veh 3.9									
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	30	445	4	9	636	9	9	0	4
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	0	-	-	-	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	57	10	0	25	3	67	14	0	25
Mvmt Flow	30	445	4	9	636	9	9	0	4
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	645	0	0	449	0	0	1225	1170	447
Stage 1	-	-	-	-	-	-	507	507	
Stage 2	-	-	-	-	-	-	718	663	
Critical Hdwy	4.67	-	-	4.35	-	-	7.24	6.5	6.45
Critical Hdwy Stg 1	-	-	-	-	-	-	6.24	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.24	5.5	
Follow-up Hdwy	2.713	-	-	2.425	-	-	3.626	4	3.525
Pot Cap-1 Maneuver	726	-	-	1000	-	-	147	195	566
Stage 1	-	-	-	-	-	-	526	543	-
Stage 2	-	-	-	-	-	-	402	462	-
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	726	-	-	1000	-	-	102	184	566
Mov Cap-2 Maneuver	-	-	-	-	-	-	102	184	
Stage 1	-	-	-	-	-	-	504	521	
Stage 2	-	-	-	-	-	-	291	456	

Approach	EB	WB	NB
HCM Control Delay, s	0.6	0.1	34.2
HCM LOS			D

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	136	726	-	-	1000	-	-	300
HCM Lane V/C Ratio	0.096	0.041	-	-	0.009	-	-	0.5
HCM Control Delay (s)	34.2	10.2	-	-	8.6	0	-	28.4
HCM Lane LOS	D	B	-	-	A	A	-	D
HCM 95th \%tile Q(veh)	0.3	0.1	-	-	0	-	-	2.6

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	31	4	115
Conflicting Peds, \#/hr	0	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	-	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	100
Heavy Vehicles, \%	23	100	17
Mvmt Flow	31	4	115

Major/Minor	Minor2		
Conflicting Flow All	1168	1168	641
Stage 1	659	659	-
\quad Stage 2	509	509	-
Critical Hdwy	7.33	7.5	6.37
Critical Hdwy Stg 1	6.33	6.5	-
Critical Hdwy Stg 2	6.33	6.5	-
Follow-up Hdwy	3.707	4.9	3.453
Pot Cap-1 Maneuver	155	129	449
\quad Stage 1	420	339	-
\quad Stage 2	510	406	-
Platoon blocked, \%			
Mov Cap-1 Maneuver	147	122	449
Mov Cap-2 Maneuver	147	122	-
Stage 1	403	334	-
Stage 2	485	389	-

Approach	SB
HCM Control Delay, s	28.4
HCM LOS	D

[^21]| | \dagger | \rightarrow | \leftarrow | 4 | \checkmark | \checkmark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | WBT | WBR | SBL | SBR |
| Lane Configurations | | \uparrow | $\stackrel{\text { F }}{ }$ | | Y | |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 |
| Grade (\%) | | 0\% | 0\% | | 0\% | |
| Storage Length (ft) | 100 | | | 0 | 0 | 0 |
| Storage Lanes | 0 | | | 0 | 1 | 0 |
| Taper Length (ft) | 25 | | | | 25 | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Ped Bike Factor | | | | | | |
| Frt | | | 0.894 | | 0.998 | |
| Flt Protected | | 0.996 | | | 0.953 | |
| Satd. Flow (prot) | 0 | 1891 | 1678 | 0 | 1789 | 0 |
| Flt Permitted | | 0.996 | | | 0.953 | |
| Satd. Flow (perm) | 0 | 1891 | 1678 | 0 | 1789 | 0 |
| Link Speed (mph) | | 30 | 30 | | 30 | |
| Link Distance (ft) | | 909 | 1364 | | 495 | |
| Travel Time (s) | | 20.7 | 31.0 | | 11.3 | |
| Intersection Summary | | | | | | |

Area Type:

Other

Intersection						
Int Delay, s/veh						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Vol, veh/h	6	78	104	377	308	4
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, \%	1	0	2	1	1	1
Mvmt Flow	6	78	104	377	308	4
Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	481	0	-	0	383	293
Stage 1	-	-	-	-	293	-
Stage 2	-	-	-	-	90	-
Critical Hdwy	4.11	-	-	-	6.41	6.21
Critical Hdwy Stg 1	-	-	-	-	5.41	-
Critical Hdwy Stg 2	-	-	-	-	5.41	-
Follow-up Hdwy	2.209	-	-	-	3.509	3.309
Pot Cap-1 Maneuver	1087	-	-	-	622	749
Stage 1	-	-	-	-	759	-
Stage 2	-	-	-	-	936	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1087	-	-	-	618	749
Mov Cap-2 Maneuver	-	-	-	-	618	-
Stage 1	-	-	-	-	759	-
Stage 2	-	-	-	-	930	-

Approach	EB	WB	SB
HCM Control Delay, s	0.6	0	16.6
HCM LOS			C

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)	1087	-	-	-	619
HCM Lane V/C Ratio	0.006	-	-	-	0.504
HCM Control Delay (s)	8.3	0	-	-	16.6
HCM Lane LOS	A	A	-	-	C
HCM 95th \%tile Q(veh)	0	-	-	-	2.8

	$\stackrel{ }{*}$	\rightarrow	7	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	F		\%	F			¢		7	F	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	150		0	0		0	0		0	150		0
Storage Lanes	1		0	1		0	0		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.998			0.933			0.893				
Flt Protected				0.950				0.994		0.950		
Satd. Flow (prot)	1900	1842	0	1770	1682	0	0	1585	0	1787	1727	0
Flt Permitted				0.950				0.994		0.950		
Satd. Flow (perm)	1900	1842	0	1770	1682	0	0	1585	0	1787	1727	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1364			144			957			513	
Travel Time (s)		31.0			3.3			21.8			11.7	
Intersection Summary												

Area Type: Other

Intersection									
Int Delay, s/veh	167.2								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	0	381	5	97	464	377	15	10	96
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-		None
Storage Length	150	-	-	0	-	-	-		
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	0	3	0	2	9	1	0	10	7
Mvmt Flow	0	381	5	97	464	377	15	10	96
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	841	0	0	386	0	0	1236	1419	384
Stage 1	-	-	-	-	-	-	384	384	
Stage 2	-	-	-	-	-	-	852	1035	
Critical Hdwy	4.1	-	-	4.12	-	-	7.1	6.6	6.27
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.6	
Critical Hdwy Stg 2	-	-	-	-	-		6.1	5.6	
Follow-up Hdwy	2.2	-	-	2.218	-	-	3.5	4.09	3.363
Pot Cap-1 Maneuver	803	-	-	1172	-	-	154	131	653
Stage 1	-	-	-	-	-		643	598	
Stage 2	-	-	-	-	-	-	357	299	-
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	803	-	-	1172	-	-	137	120	653
Mov Cap-2 Maneuver	-	-	-	-	-	-	137	120	
Stage 1	-	-	-	-	-		643	598	
Stage 2	-	-	-	-	-	-	318	274	

Approach	EB	WB	NB
HCM Control Delay, s	0	0.9	20.2
HCM LOS			C

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2
Capacity (veh/h)	356	803	-	-	1172	-	-	106	157
HCM Lane V/C Ratio	0.34	-	-	-	0.083	-	-	2.906	0.064
HCM Control Delay (s)	20.2	0	-	-	8.3	-	$-\$ 945.5$	29.5	
HCM Lane LOS	C	A	-	-	A	-	-	F	D
HCM 95th \%tile Q(veh)	1.5	0	-	-	0.3	-	-	29.2	0.2

Notes

~: Volume exceeds capacity $\quad \$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad *: All major volume in platoon

Intersection			
Int Delay, s/veh			
	SBL	SBT	SBR
Movement	308	10	0
Vol, veh/h	0	0	0
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	150	-	-
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade \%	100	100	100
Peak Hour Factor	1	10	0
Heavy Vehicles, \%	308	10	0
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	1284	1233	653
Stage 1	847	847	-
Stage 2	437	386	-
Critical Hdwy	7.11	6.6	6.2
Critical Hdwy Stg 1	6.11	5.6	-
Critical Hdwy Stg 2	6.11	5.6	-
Follow-up Hdwy	3.509	4.09	3.3
Pot Cap-1 Maneuver	~ 142	171	471
Stage 1	358	367	-
Stage 2	600	596	-
Platoon blocked, \%	~ 106	157	471
Mov Cap-1 Maneuver	~ 106	157	-
Mov Cap-2 Maneuver	358	337	-
Stage 1	503	596	-
Stage 2			

Approach	SB
HCM Control Delay, s	$\$ 916.7$
HCM LOS	F

[^22]| | \Rightarrow | \rightarrow | \geqslant | \checkmark | \leftarrow | 4 | 4 | \uparrow | P | \checkmark | \downarrow | \checkmark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | | F | | | \uparrow | | | | | | \uparrow | F |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| Grade (\%) | | 0\% | | | 0\% | | | 0\% | | | 0\% | |
| Storage Length (ft) | 0 | | 0 | 0 | | 0 | 0 | | 0 | 0 | | 25 |
| Storage Lanes | 0 | | 0 | 0 | | 0 | 0 | | 0 | 0 | | 1 |
| Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Ped Bike Factor | | | | | | | | | | | | |
| Frt | | 0.897 | | | | | | | | | | 0.850 |
| Flt Protected | | | | | 0.985 | | | | | | 0.953 | |
| Satd. Flow (prot) | 0 | 1664 | 0 | 0 | 1818 | 0 | 0 | 0 | 0 | 0 | 1632 | 1583 |
| Flt Permitted | | | | | 0.985 | | | | | | 0.953 | |
| Satd. Flow (perm) | 0 | 1664 | 0 | 0 | 1818 | 0 | 0 | 0 | 0 | 0 | 1632 | 1583 |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (t) | | 144 | | | 502 | | | 626 | | | 699 | |
| Travel Time (s) | | 3.3 | | | 11.4 | | | 14.2 | | | 15.9 | |
| Intersection Summary | | | | | | | | | | | | |

Intersection									
Int Delay, s/veh	660								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	0	185	600	374	824	0	0	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-			
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	0	7	1	5	2	0	0	0	0
Mvmt Flow	0	185	600	374	824	0	0	0	0
Major/Minor	Major1			Major2					
Conflicting Flow All	824	0	0	785	0	0			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Critical Hdwy	4.1	-	-	4.15	-	-			
Critical Hdwy Stg 1	-	-	-	-	-	-			
Critical Hdwy Stg 2	-	-	-	-	-	-			
Follow-up Hdwy	2.2	-	-	2.245	-	-			
Pot Cap-1 Maneuver	815	-	-	820	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	815	-	-	820	-	-			
Mov Cap-2 Maneuver	-	-	-	-	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			

Approach	EB	WB
HCM Control Delay, s	0	4.1
HCM LOS		

Minor Lane/Major Mvmt	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2
Capacity (veh/h)	815	-	-	820	-	-	9	373
HCM Lane V/C Ratio	-	-	-	0.456	-	-	18.778	0.306
HCM Control Delay (s)	0	-	-	13	0	$-\$ 8807.3$	18.8	
HCM Lane LOS	A	-	-	B	A	-	F	C
HCM 95th \%tile Q(veh)	0	-	-	2.4	-	-	22.8	1.3

Notes

~: Volume exceeds capacity $\quad \$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad *: All major volume in platoon

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	4	114
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	-	-	25
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	10	50	2
Heavy Vehicles, \%	165	4	114
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	2057	2357	824
Stage 1	1572	1572	-
Stage 2	485	785	-
Critical Hdwy	6.5	7	6.22
Critical Hdwy Stg 1	5.5	6	-
Critical Hdwy Stg 2	5.5	6	-
Follow-up Hdwy	3.59	4.45	3.318
Pot Cap-1 Maneuver	~ 58	25	373
\quad Stage 1	180	134	-
Stage 2	603	342	-
Platoon blocked, \%	~ 9	0	373
Mov Cap-1 Maneuver	~ 9	0	-
Mov Cap-2 Maneuver	~ 29	0	-
Stage 1	603	0	-
Stage 2			

Approach	SB
HCM Control Delay, s	$\$ 5267.1$
HCM LOS	F

[^23]| | \rangle | \rightarrow | \rangle | \checkmark | \leftarrow | 4 | 4 | \uparrow | p | \checkmark | \downarrow | \checkmark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | | \uparrow | | | F | | | \uparrow | F | | | |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| Grade (\%) | | 0\% | | | 0\% | | | 0\% | | | 0\% | |
| Storage Length (ft) | 0 | | 0 | 0 | | 0 | 0 | | 50 | 0 | | 0 |
| Storage Lanes | 0 | | 0 | 0 | | 0 | 0 | | 1 | 0 | | 0 |
| Taper Length (t) | 25 | | | 25 | | | 25 | | | 25 | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Ped Bike Factor | | | | | | | | | | | | |
| Frt | | | | | 0.972 | | | | 0.850 | | | |
| Flt Protected | | 0.990 | | | | | | 0.953 | | | | |
| Satd. Flow (prot) | 0 | 1741 | 0 | 0 | 1772 | 0 | 0 | 1784 | 1568 | 0 | 0 | 0 |
| Flt Permitted | | 0.990 | | | | | | 0.953 | | | | |
| Satd. Flow (perm) | 0 | 1741 | 0 | 0 | 1772 | 0 | 0 | 1784 | 1568 | 0 | 0 | 0 |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (t) | | 502 | | | 143 | | | 542 | | | 648 | |
| Travel Time (s) | | 11.4 | | | 3.3 | | | 12.3 | | | 14.7 | |
| Intersection Summary | | | | | | | | | | | | |

Area Type: Other

Intersection									
Int Delay, s/veh	282.7								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	69	281	0	0	451	119	747	8	591
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	50
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	4		0	0	4	5	1	50	3
Mvmt Flow	69	281	0	0	451	119	747	8	591
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	570	0	0	281	0	0	930	989	281
Stage 1	-	-	-	-	-	-	419	419	
Stage 2	-	-	-	-	-	-	511	570	
Critical Hdwy	4.14	-	-	4.1	-	-	6.41	7	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	5.41	6	
Critical Hdwy Stg 2	-	-	-	-	-	-	5.41	6	
Follow-up Hdwy	2.236	-	-	2.2	-	-	3.509	4.45	3.327
Pot Cap-1 Maneuver	993	-	-	1293	-	-	~ 298	205	755
Stage 1	-	-	-	-	-	-	~ 666	516	
Stage 2	-	-	-	-	-	-	~ 604	436	
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	993	-	-	1293	-	-	~ 274	0	755
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 274	0	
Stage 1	-	-	-	-	-	-	~ 611	0	
Stage 2	-	-	-	-	-	-	~ 604	0	

Approach	EB	WB	NB
HCM Control Delay, s	1.8	0	$\$ 475.4$
HCM LOS			F

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR
Capacity (veh/h)	274	755	993	-	-	1293	-	-
HCM Lane V/C Ratio	2.755	0.783	0.069	-	-	-	-	-
HCM Control Delay (s)	$\$ 828.2$	24.7	8.9	0	-	0	-	-
HCM Lane LOS	F	C	A	A	-	A	-	-
HCM 95th \%tile Q(veh)	64.5	7.8	0.2	-	-	0	-	-

Notes
~: Volume exceeds capacity $\quad \$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad *: All major volume in platoon

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	0	0
Conflicting Peds, \#/hr	0	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	-	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	100
Heavy Vehicles, \%	0	0	0
Mvmt Flow	0	0	0

Major/Minor
Conflicting Flow All
\quad Stage 1
\quad Stage 2
Critical Hdwy
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy
Pot Cap-1 Maneuver
\quad Stage 1
\quad Stage 2
Platoon blocked, \%
Mov Cap-1 Maneuver
Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach

HCM Control Delay, s
HCM LOS

Minor Lane/Major Mvmt

	\%	\rightarrow	7	\dagger	\leftarrow	4	4	\uparrow	1	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	F			\uparrow			¢			${ }^{\text {¢ }}$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	1		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.998			0.998			0.932			0.879	
Flt Protected	0.950				0.999			0.976			0.997	
Satd. Flow (prot)	1308	1818	0	0	1830	0	0	1728	0	0	1381	0
Flt Permitted	0.950				0.999			0.976			0.997	
Satd. Flow (perm)	1308	1818	0	0	1830	0	0	1728	0	0	1381	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		143			173			583			174	
Travel Time (s)		3.3			3.9			13.3			4.0	
Intersection Summary												

Area Type:

Other

Intersection									
Int Delay, s/veh 1.8									
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	32	828	12	5	463	8	5	0	5
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	0	-	-	-	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	38	4	25	25	2	77	0	0	0
Mvmt Flow	32	828	12	5	463	8	5	0	5
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	471	0	0	840	0	0	1429	1379	834
Stage 1	-	-	-	-	-	-	898	898	
Stage 2	-	-	-	-	-	-	531	481	
Critical Hdwy	4.48	-	-	4.35	-	-	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	
Follow-up Hdwy	2.542	-	-	2.425	-	-	3.5	4	3.3
Pot Cap-1 Maneuver	926	-	-	704	-	-	114	146	371
Stage 1	-	-	-	-	-	-	337	361	-
Stage 2	-	-	-	-	-	-	536	557	-
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	926	-	-	704	-	-	88	140	371
Mov Cap-2 Maneuver	-	-	-	-	-	-	88	140	
Stage 1	-	-	-	-	-	-	325	349	
Stage 2	-	-	-	-	-	-	429	551	

Approach	EB	WB	NB
HCM Control Delay, s	0.3	0.1	32.3
HCM LOS			D

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	142	926	-	-	704	-	-	407
HCM Lane V/C Ratio	0.07	0.035	-	-	0.007	-	-	0.283
HCM Control Delay (s)	32.3	9	-	-	10.2	0	-	17.3
HCM Lane LOS	D	A	-	-	B	A	-	C
HCM 95th \%tile Q(veh)	0.2	0.1	-	-	0	-	-	1.1

Intersection			
Int Delay, s/veh			
Movement	8	4	103
Vol, veh/h	0	0	0
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	-	-	-
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	0	0	23
Heavy Vehicles, \%	8	4	103
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	1378	1381	467
\quad Stage 1	477	477	-
\quad Stage 2	901	904	-
Critical Hdwy	7.1	6.5	6.43
Critical Hdwy Stg 1	6.1	5.5	-
Critical Hdwy Stg 2	6.1	5.5	-
Follow-up Hdwy	3.5	4	3.507
Pot Cap-1 Maneuver	123	145	555
\quad Stage 1	573	559	-
\quad Stage 2	335	358	-
Platoon blocked, \%			
Mov Cap-1 Maneuver	117	139	555
Mov Cap-2 Maneuver	117	139	-
Stage 1	553	553	-
Stage 2	319	346	-

Approach	SB
HCM Control Delay, s	17.3
HCM LOS	C

Minor Lane/Major Mvmt

	\%	\rightarrow	\leftarrow	4	\checkmark	\checkmark
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	$\stackrel{\text { F }}{ }$		M	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12
Grade (\%)		0\%	0\%		0\%	
Storage Length (ft)	100			0	0	0
Storage Lanes	0			0	1	0
Taper Length (t)	25				25	
Lane Utill. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt			0.881		0.998	
Flt Protected		0.996			0.953	
Satd. Flow (prot)	0	1747	1637	0	1789	0
Flt Permitted		0.996			0.953	
Satd. Flow (perm)	0	1747	1637	0	1789	0
Link Speed (mph)		30	30		30	
Link Distance (ft)		909	1364		495	
Travel Time (s)		20.7	31.0		11.3	
Intersection Summary						

Area Type:

Other

Intersection						
Int Delay, s/veh	6.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Vol, veh/h	7	74	65	493	328	5
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, \%	1	9	12	1	1	1
Mvmt Flow	7	74	65	493	328	5
Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	558	0	-	0	400	312
Stage 1	-	-	-	-	312	-
Stage 2	-	-	-	-	88	-
Critical Hdwy	4.11	-	-	-	6.41	6.21
Critical Hdwy Stg 1	-	-	-	-	5.41	-
Critical Hdwy Stg 2	-	-	-	-	5.41	-
Follow-up Hdwy	2.209	-	-	-	3.509	3.309
Pot Cap-1 Maneuver	1018	-	-	-	608	731
Stage 1	-	-	-	-	744	-
Stage 2	-	-	-	-	938	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1018	-	-	-	604	731
Mov Cap-2 Maneuver	-	-	-	-	604	-
Stage 1	-	-	-	-	744	-
Stage 2	-	-	-	-	931	-

Approach	EB	WB	SB
HCM Control Delay, s	0.7	0	17.9
HCM LOS			C

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)	1018	-	-	-	606
HCM Lane V/C Ratio	0.007	-	-	-	0.55
HCM Control Delay (s)	8.6	0	-	-	17.9
HCM Lane LOS	A	A	-	-	C
HCM 95th \%tile Q(veh)	0	-	-	-	3.3

	$\stackrel{ }{*}$	\rightarrow	7	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	F		\%	F			¢		7	F	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	150		0	0		0	0		0	200		0
Storage Lanes	1		0	1		0	0		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.994			0.929			0.896				
Flt Protected				0.950				0.997		0.950		
Satd. Flow (prot)	1881	1819	0	1703	1739	0	0	1621	0	1787	1881	0
Flt Permitted				0.950				0.997		0.950		
Satd. Flow (perm)	1881	1819	0	1703	1739	0	0	1621	0	1787	1881	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1364			144			957			513	
Travel Time (s)		31.0			3.3			21.8			11.7	
Intersection Summary												

Area Type: Other

Intersection									
Int Delay, s/veh	216.4								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	0	387	15	77	553	493	5	15	66
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	150	-	-	0	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	1	4	0	6	2	1	25	1	4
Mvmt Flow	0	387	15	77	553	493	5	15	66
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	1046	0	0	402	0	0	1354	1595	395
Stage 1	-	-	-	-	-	-	395	395	
Stage 2	-	-	-	-	-	-	959	1200	
Critical Hdwy	4.11	-	-	4.16	-	-	7.35	6.51	6.24
Critical Hdwy Stg 1	-	-	-	-	-	-	6.35	5.51	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.35	5.51	
Follow-up Hdwy	2.209	-	-	2.254	-	-	3.725	4.009	3.336
Pot Cap-1 Maneuver	669	-	-	1135	-	-	113	107	650
Stage 1	-	-	-	-	-	-	587	606	
Stage 2	-	-	-	-	-	-	281	259	
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	669	-	-	1135	-	-	101	100	650
Mov Cap-2 Maneuver	-	-	-	-	-	-	101	100	
Stage 1	-	-	-	-	-	-	587	606	
Stage 2	-	-	-	-	-	-	254	241	

Approach	EB	WB	NB
HCM Control Delay, s	0	0.6	22.9
HCM LOS			C

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2
Capacity (veh/h)	286	669	-	-	1135	-	-	91	140
HCM Lane V/C Ratio	0.301	-	-	-	0.068	-	-	3.615	0.071
HCM Control Delay (s)	22.9	0	-	-	8.4	-	$-\$ 1273.8$	32.7	
HCM Lane LOS	C	A	-	-	A	-	-	F	D
HCM 95th \%tile Q(veh)	1.2	0	-	-	0.2	-	-	33.4	0.2

Notes

~: Volume exceeds capacity $\quad \$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad *: All major volume in platoon

Intersection			
Int Delay, s/veh			
	SBL	SBT	SBR
Movement	329	10	0
Vol, veh/h	0	0	0
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	200	-	-
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade \%	100	100	100
Peak Hour Factor	1	1	1
Heavy Vehicles, \%	329	10	0
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	1389	1356	800
Stage 1	954	954	-
Stage 2	435	402	-
Critical Hdwy	7.11	6.51	6.21
Critical Hdwy Stg 1	6.11	5.51	-
Critical Hdwy Stg 2	6.11	5.51	-
Follow-up Hdwy	3.509	4.009	3.309
Pot Cap-1 Maneuver	~ 121	150	387
\quad Stage 1	~ 312	339	-
\quad Stage 2	602	602	-
Platoon blocked, \%	~ 91	140	387
Mov Cap-1 Maneuver	~ 91	140	-
Mov Cap-2 Maneuver	~ 312	316	-
Stage 1	527	602	-
Stage 2			

Approach	SB
HCM Control Delay, s	$\$ 1237.2$
HCM LOS	F

[^24]| | \Rightarrow | \rightarrow | \geqslant | \checkmark | \leftarrow | 4 | 4 | \uparrow | P | \checkmark | \downarrow | \checkmark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | | F | | | \uparrow | | | | | | \uparrow | F |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| Grade (\%) | | 0\% | | | 0\% | | | 0\% | | | 0\% | |
| Storage Length (ft) | 0 | | 0 | 0 | | 0 | 0 | | 0 | 0 | | 25 |
| Storage Lanes | 0 | | 0 | 0 | | 0 | 0 | | 0 | 0 | | 1 |
| Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Ped Bike Factor | | | | | | | | | | | | |
| Fit | | 0.890 | | | | | | | | | | 0.850 |
| Flt Protected | | | | | 0.986 | | | | | | 0.953 | |
| Satd. Flow (prot) | 0 | 1655 | 0 | 0 | 1850 | 0 | 0 | 0 | 0 | 0 | 1743 | 1495 |
| Flt Permitted | | | | | 0.986 | | | | | | 0.953 | |
| Satd. Flow (perm) | 0 | 1655 | 0 | 0 | 1850 | 0 | 0 | 0 | 0 | 0 | 1743 | 1495 |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (t) | | 144 | | | 502 | | | 626 | | | 699 | |
| Travel Time (s) | | 3.3 | | | 11.4 | | | 14.2 | | | 15.9 | |
| Intersection Summary | | | | | | | | | | | | |

Intersection									
Int Delay, s/veh	6153.7								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	0	146	636	375	982	0	0	0	0
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-		
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	0	3	2	2	1	0	0	0	0
Mvmt Flow	0	146	636	375	982	0	0	0	0
Major/Minor	Major1			Major2					
Conflicting Flow All	982	0	0	782	0	0			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Critical Hdwy	4.1	-	-	4.12	-	-			
Critical Hdwy Stg 1	-	-	-	-	-	-			
Critical Hdwy Stg 2	-	-	-	-	-	-			
Follow-up Hdwy	2.2	-	-	2.218	-	-			
Pot Cap-1 Maneuver	711	-	-	836	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	711	-	-	836	-	-			
Mov Cap-2 Maneuver	-	-	-	-	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			

Approach	EB	WB
HCM Control Delay, s	0	3.5
HCM LOS		

Minor Lane/Major Mvmt	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2
Capacity (veh/h)	711	-	-	836	-	-	1	294
HCM Lane V/C Ratio	-	-	-	0.449	-	-	176	0.48
HCM Control Delay (s)	0	-	-	12.8	0	$\$ 85822.9$	28	
HCM Lane LOS	A	-	-	B	A	-	F	D
HCM 95th \%tile Q(veh)	0	-	-	2.3	-	-	24.6	2.5

Notes

~: Volume exceeds capacity $\quad \$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad *: All major volume in platoon

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	4	141
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	-	-	25
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	4	0	8
Heavy Vehicles, \%	172	4	141
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	2196	2514	982
\quad Stage 1	1732	1732	-
\quad Stage 2	464	782	-
Critical Hdwy	6.44	6.5	6.28
Critical Hdwy Stg 1	5.44	5.5	-
Critical Hdwy Stg 2	5.44	5.5	-
Follow-up Hdwy	3.536	4	3.372
Pot Cap-1 Maneuver	~ 49	29	294
\quad Stage 1	~ 155	144	-
$\quad 629$	408	-	
Stage 2			
Platoon blocked, \%	~ 1	0	294
Mov Cap-1 Maneuver	~ 1	0	-
Mov Cap-2 Maneuver	~ 2	0	-
Stage 1	629	0	-
Stage 2			

Approach	SB
HCM Control Delay, s	$\$ 47661.8$
HCM LOS	F

[^25]| | * | \rightarrow | \rangle | \checkmark | \leftarrow | 4 | 4 | \uparrow | p | \checkmark | \downarrow | \checkmark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | | \uparrow | | | F | | | \uparrow | 7 | | | |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| Grade (\%) | | 0\% | | | 0\% | | | 0\% | | | 0\% | |
| Storage Length (ft) | 0 | | 0 | 0 | | 0 | 0 | | 50 | 0 | | 0 |
| Storage Lanes | 0 | | 0 | 0 | | 0 | 0 | | 1 | 0 | | 0 |
| Taper Length (tt) | 25 | | | 25 | | | 25 | | | 25 | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Ped Bike Factor | | | | | | | | | | | | |
| Frt | | | | | 0.970 | | | | 0.850 | | | |
| FIt Protected | | 0.988 | | | | | | 0.953 | | | | |
| Satd. Flow (prot) | 0 | 1804 | 0 | 0 | 1755 | 0 | 0 | 1793 | 1568 | 0 | 0 | 0 |
| Flt Permitted | | 0.988 | | | | | | 0.953 | | | | |
| Satd. Flow (perm) | 0 | 1804 | 0 | 0 | 1755 | 0 | 0 | 1793 | 1568 | 0 | 0 | 0 |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (t) | | 502 | | | 143 | | | 542 | | | 648 | |
| Travel Time (s) | | 11.4 | | | 3.3 | | | 12.3 | | | 14.7 | |
| Intersection Summary | | | | | | | | | | | | |

Intersection									
Int Delay, s/veh	410.1								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	74	244	0	0	430	124	927	4	564
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	50
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	1	5	0	0	3	12	1	0	3
Mvmt Flow	74	244	0	0	430	124	927	4	564
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	554	0	0	244	0	0	884	946	244
Stage 1	-	-	-	-	-	-	392	392	
Stage 2	-	-	-	-	-	-	492	554	
Critical Hdwy	4.11	-	-	4.1	-	-	6.41	6.5	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	5.41	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	5.41	5.5	
Follow-up Hdwy	2.209	-	-	2.2	-	-	3.509	4	3.327
Pot Cap-1 Maneuver	1021	-	-	1334	-	-	~ 317	264	792
Stage 1	-	-	-	-	-	-	~ 685	610	
Stage 2	-	-	-	-	-	-	~ 617	517	
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1021	-	-	1334	-	-	~ 290	0	792
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 290	0	
Stage 1	-	-	-	-	-	-	~ 627	0	
Stage 2	-	-	-	-	-	-	~ 617	0	

Approach	EB	WB	NB
HCM Control Delay, s	2	0	$\$ 648.8$
HCM LOS			F

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR
Capacity (veh/h)	290	792	1021	-	-	1334	-	-
HCM Lane V/C Ratio	3.21	0.712	0.072	-	-	-	-	-
HCM Control Delay (s)	$\$ 1029.8$	20	8.8	0	-	0	-	-
HCM Lane LOS	F	C	A	A	-	A	-	-
HCM 95th \%tile Q(veh)	84.3	6.1	0.2	-	-	0	-	-
Notes								

\sim : Volume exceeds capacity $\quad \$$: Delay exceeds $300 \mathrm{~s} \quad+$ Computation Not Defined \quad *: All major volume in platoon

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	0	0
Conflicting Peds, \#/hr	0	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	-	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	100
Heavy Vehicles, \%	0	0	0
Mvmt Flow	0	0	0

Major/Minor
Conflicting Flow All
\quad Stage 1
\quad Stage 2
Critical Hdwy
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy
Pot Cap-1 Maneuver
\quad Stage 1
\quad Stage 2
Platoon blocked, \%
Mov Cap-1 Maneuver
Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach

HCM Control Delay, s
HCM LOS

Minor Lane/Major Mvmt

	\Rightarrow	\rightarrow	7	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	F			¢			¢			${ }^{\text {¢ }}$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	1		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.999			0.998			0.966			0.884	
Flt Protected	0.950				0.999			0.976			0.995	
Satd. Flow (prot)	1570	1824	0	0	1820	0	0	1518	0	0	1458	0
Flt Permitted	0.950				0.999			0.976			0.995	
Satd. Flow (perm)	1570	1824	0	0	1820	0	0	1518	0	0	1458	0
Link Speed (mph)		30			30			30			30	
Link Distance (t)		143			173			583			174	
Travel Time (s)		3.3			3.9			13.3			4.0	
Intersection Summary												

Area Type:

Other

Intersection									
Int Delay, s/veh	2.2								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	16	787	5	5	441	8	10	5	5
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	0	-	-	-	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	15	4	17	0	3	67	11	0	50
Mvmt Flow	16	787	5	5	441	8	10	5	5
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	449	0	0	792	0	0	1331	1281	790
Stage 1	-	-	-	-	-	-	822	822	
Stage 2	-	-	-	-	-	-	509	459	
Critical Hdwy	4.25	-	-	4.1	-	-	7.21	6.5	6.7
Critical Hdwy Stg 1	-	-	-	-	-	-	6.21	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.21	5.5	
Follow-up Hdwy	2.335	-	-	2.2	-	-	3.599	4	3.75
Pot Cap-1 Maneuver	1046	-	-	838	-	-	126	167	324
Stage 1	-	-	-	-	-	-	355	391	-
Stage 2	-	-	-	-	-	-	530	570	-
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1046	-	-	838	-	-	100	163	324
Mov Cap-2 Maneuver	-	-	-	-	-	-	100	163	
Stage 1	-	-	-	-	-	-	350	385	
Stage 2	-	-	-	-	-	-	430	565	

Approach	EB	WB	NB
HCM Control Delay, s	0.2	0.1	35.7
HCM LOS			E

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	137	1046	-	-	838	-	-	404
HCM Lane V/C Ratio	0.146	0.015	-	-	0.006	-	-	0.297
HCM Control Delay (s)	35.7	8.5	-	-	9.3	0	-	17.6
HCM Lane LOS	E	A	-	-	A	A	-	C
HCM 95th \%tile Q(veh)	0.5	0	-	-	0	-	-	1.2

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	4	103
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	-	-	-
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	0	0	17
Heavy Vehicles, \%	13	4	103
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	1282	1279	445
\quad Stage 1	455	455	-
\quad Stage 2	827	824	-
Critical Hdwy	7.1	6.5	6.37
Critical Hdwy Stg 1	6.1	5.5	-
Critical Hdwy Stg 2	6.1	5.5	-
Follow-up Hdwy	3.5	4	3.453
Pot Cap-1 Maneuver	144	167	583
\quad Stage 1	589	572	-
\quad Stage 2	369	390	-
Platoon blocked, \%			
Mov Cap-1 Maneuver	136	163	583
Mov Cap-2 Maneuver	136	163	-
Stage 1	580	567	-
Stage 2	353	384	-

Approach	SB
HCM Control Delay, s	17.6
HCM LOS	C

[^26]
Appendix V 2017 Total Traffic Conditions (Build) Worksheets - Study Intersections

SITE LAYOUT

Site: 2017 Total Build NW 319 St and NW 31st Ave Weekday AM

2017 Total Traffic Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2017 Total Build NW 319 St and NW 31st Ave Weekday AM
2017 Total Traffic Weekday AM
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \mathrm{Mov} \\ & \mathrm{ID} \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	Flows HV $\%$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NW 31st Ave											
3	L2	5	0.0	0.117	6.0	LOS A	0.5	15.8	0.46	0.33	34.4
8	T1	5	1.0	0.117	6.0	LOS A	0.5	15.8	0.46	0.33	34.3
18	R2	78	23.0	0.117	6.0	LOS A	0.5	15.8	0.46	0.33	30.2
Appr		88	20.4	0.117	6.0	LOS A	0.5	15.8	0.46	0.33	30.7
East: NW 319th St											
1	L2	49	11.0	0.153	3.5	LOS A	0.8	21.8	0.07	0.01	34.2
6	T1	192	2.0	0.153	3.5	LOS A	0.8	21.8	0.07	0.01	33.7
16	R2	146	1.0	0.108	3.5	LOS A	0.6	14.1	0.07	0.01	32.6
Appr		387	2.8	0.153	3.5	LOS A	0.8	21.8	0.07	0.01	33.4
North: NW 31st Ave											
7	L2	110	1.0	0.120	4.8	LOS A	0.6	14.2	0.41	0.27	30.2
4	T1	5	1.0	0.120	4.8	LOS A	0.6	14.2	0.41	0.27	32.4
14	R2	1	1.0	0.120	4.8	LOS A	0.6	14.2	0.41	0.27	30.8
Appr		116	1.0	0.120	4.8	LOS A	0.6	14.2	0.41	0.27	30.4
West: NW 319th St											
5	L2	1	1.0	0.172	5.2	LOS A	0.9	22.4	0.37	0.23	34.8
2	T1	155	4.0	0.172	5.2	LOS A	0.9	22.4	0.37	0.23	32.9
12	R2	15	0.0	0.172	5.2	LOS A	0.9	22.4	0.37	0.23	33.9
Approach		171	3.6	0.172	5.2	LOS A	0.9	22.4	0.37	0.23	33.0
All Vehicles		762	4.7	0.172	4.4	LOS A	0.9	22.4	0.24	0.14	32.4

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2017 Total Build NW 319 St and NW 31st Ave Weekday AM

2017 Total Traffic Weekday AM

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { Flows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \\ & \hline \end{aligned}$	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{aligned} & \text { ueue } \\ & \text { Dist } \\ & \mathrm{ft} \end{aligned}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: NW 31st Ave													
Lane $1^{\text {d }}$	88	20.4	754	0.117	100	6.0	LOS A	0.5	15.8	Full	1600	0.0	0.0
Approach	88	20.4		0.117		6.0	LOS A	0.5	15.8				
East: NW 319th St													
Lane $1^{\text {d }}$	241	3.8	1578	0.153	100	3.5	LOS A	0.8	21.8	Full	650	0.0	0.0
Lane 2	146	1.0	1356	0.108	100	3.5	LOS A	0.6	14.1	Full	650	0.0	0.0
Approach	387	2.8		0.153		3.5	LOS A	0.8	21.8				
North: NW 31st Ave													
Lane $1^{\text {d }}$	116	1.0	966	0.120	100	4.8	LOS A	0.6	14.2	Full	1400	0.0	0.0
Approach	116	1.0		0.120		4.8	LOS A	0.6	14.2				
West: NW 319th St													
Lane $1^{\text {d }}$	171	3.6	997	0.172	100	5.2	LOS A	0.9	22.4	Full	1300	0.0	0.0
Approach	171	3.6		0.172		5.2	LOS A	0.9	22.4				
Intersection	762	4.7		0.172		4.4	LOS A	0.9	22.4				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Copyright © 2000-2014 Akcelik and Associates Pty Ltd
SIDRA INTERSECTION 6.0.22.4722 www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidral2014 Analysis $\$
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Ave\2017 AnalysisINW 319 St and NW 31st Ave.sip6
8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

SITE LAYOUT

Site: 2017 Total Build NW La Center and SB Ramps Weekday AM
2017 Total Traffic Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2017 Total Build NW La Center and SB Ramps Weekday AM

2017 Total Traffic Weekday AM

Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \\ \hline \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
East: NW La Center Rd											
1	L2	535	4.0	0.314	4.6	LOS A	0.0	0.0	0.00	0.00	32.2
6	T1	361	2.0	0.245	4.5	LOS A	0.0	0.0	0.00	0.00	38.5
Appr		896	3.2	0.314	4.6	LOS A	0.0	0.0	0.00	0.00	33.9
North: SB Ramp											
7	L2	118	13.0	0.269	10.4	LOS B	1.0	26.4	0.59	0.59	26.5
4	T1	4	50.0	0.269	10.4	LOS B	1.0	26.4	0.59	0.59	28.7
14	R2	25	8.0	0.269	10.4	LOS B	1.0	26.4	0.59	0.59	25.9
Appr		147	13.2	0.269	10.4	LOS B	1.0	26.4	0.59	0.59	26.5
West: NW La Center Rd											
2	T1	118	20.0	0.172	7.2	LOS A	0.9	26.3	0.67	0.60	29.1
12	R2	225	2.0	0.137	0.0	LOS A	0.0	0.0	0.00	0.00	35.9
Approach		343	8.2	0.172	2.5	LOS A	0.9	26.3	0.23	0.20	33.8
All V		1386	5.5	0.314	4.7	LOS A	1.0	26.4	0.12	0.11	32.8

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2017 Total Build NW La Center and SB Ramps Weekday AM

2017 Total Traffic Weekday AM
 Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \\ \hline \end{gathered}$	Cap. veh/h	Deg. Satn v/c	Lane Util. $\%$	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{aligned} & \text { ueue } \\ & \text { Dist } \\ & \text { ft } \end{aligned}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
East: NW La Center Rd													
Lane $1^{\text {d }}$	535	4.0	1706	0.314	100	4.6	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane 2	361	2.0	1471	0.245	$78{ }^{5}$	4.5	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	896	3.2		0.314		4.6	LOS A	0.0	0.0				
North: SB Ramp													
Lane $1^{\text {d }}$	147	13.2	546	0.269	100	10.4	LOS B	1.0	26.4	Full	1300	0.0	0.0
Approach	147	13.2		0.269		10.4	LOS B	1.0	26.4				
West: NW La Center Rd													
Lane $1^{\text {d }}$	118	20.0	688	0.172	100	7.2	LOS A	0.9	26.3	Full	650	0.0	0.0
Lane 2	225	2.0	1642	0.137	100	0.0	LOS A	0.0	0.0	Short	200	0.0	0.0
Approach	343	8.2		0.172		2.5	LOS A	0.9	26.3				
Intersection	1386	5.5		0.314		4.7	LOS A	1.0	26.4				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
5 Lane underutilisation determined by program
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2017 Total Build NW La Center and NB Ramps Weekday AM

2017 Total Traffic Weekday AM

Roundabout

MOVEMENT SUMMARY

Site: 2017 Total Build NW La Center and NB Ramps Weekday AM

2017 Total Traffic Weekday AM

Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{array}{r} \text { Flows } \\ \mathrm{HV} \\ \% \\ \hline \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NB Ramp											
3	L2	292	1.0	0.163	5.5	LOS A	0.8	19.4	0.44	0.31	24.9
8	T1	4	50.0	0.163	5.6	LOS A	0.8	19.6	0.44	0.31	29.1
18	R2	321	7.0	0.292	6.1	LOS A	1.6	41.8	0.46	0.33	29.7
Appr		617	4.4	0.292	5.8	LOS A	1.6	41.8	0.45	0.32	27.1
East: NW La Center Rd											
6	T1	604	4.0	0.563	11.2	LOS B	3.5	91.4	0.59	0.56	21.1
16	R2	156	17.0	0.349	10.4	LOS B	1.5	41.7	0.54	0.52	25.7
Appr		760	6.7	0.563	11.0	LOS B	3.5	91.4	0.58	0.55	22.1
West: NW La Center Rd											
5	L2	77	17.0	0.167	3.9	LOS A	0.0	0.0	0.00	0.00	34.7
2	T1	159	17.0	0.167	3.9	LOS A	0.0	0.0	0.00	0.00	34.5
Appr		236	17.0	0.167	3.9	LOS A	0.0	0.0	0.00	0.00	34.5
All Ve		1613	7.3	0.563	8.0	LOS A	3.5	91.4	0.44	0.38	25.7

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2017 Total Build NW La Center and NB Ramps Weekday AM

2017 Total Traffic Weekday AM

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	$\begin{gathered} 95 \% \text { Bac } \\ \text { Veh } \end{gathered}$	$\begin{aligned} & \text { ueue } \\ & \text { Dist } \\ & \text { ft } \end{aligned}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block \%
South: NB Ramp													
Lane 1	150	1.0	923	0.163	100	5.5	LOS A	0.8	19.4	Full	1800	0.0	0.0
Lane 2	146	2.3	898	0.163	100	5.6	LOS A	0.8	19.6	Full	180	0.0	0.0
Lane $3^{\text {d }}$	321	7.0	1098	0.292	100	6.1	LOS A	1.6	41.8	Short	250	0.0	0.0
Approach	617	4.4		0.292		5.8	LOS A	1.6	41.8				
East: NW La Center Rd													
Lane $1^{\text {d }}$	538	4.0	956	0.563	100	11.3	LOS B	3.5	91.4	Full	600	0.0	0.0
Lane 2	222	13.1	637	0.349	62^{7}	10.4	LOS B	1.5	41.7	Full	600	0.0	0.0
Approach	760	6.7		0.563		11.0	LOS B	3.5	91.4				
West: NW La Center Rd													
Lane $1^{\text {d }}$	236	17.0	1413	0.167	100	3.9	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	236	17.0		0.167		3.9	LOS A	0.0	0.0				
Intersection	1613	7.3		0.563		8.0	LOS A	3.5	91.4				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

Intersection									
Int Delay, s/veh	5.2								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	91	384	5	10	628	9	10	0	5
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	250	-	-	200	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	42	13	0	25	3	20	14	0	25
Mvmt Flow	91	384	5	10	628	9	10	0	5
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	637	0	0	389	0	0	1256	1226	387
Stage 1	-	-	-	-	-	-	569	569	
Stage 2	-	-	-	-	-	-	687	657	
Critical Hdwy	4.52	-	-	4.35	-	-	7.24	6.5	6.45
Critical Hdwy Stg 1	-	-	-	-	-	-	6.24	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.24	5.5	
Follow-up Hdwy	2.578	-	-	2.425	-	-	3.626	4	3.525
Pot Cap-1 Maneuver	782	-	-	1055	-	-	140	180	613
Stage 1	-	-	-	-	-	-	486	509	-
Stage 2	-	-	-	-	-	-	418	465	-
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	782	-	-	1055	-	-	104	158	613
Mov Cap-2 Maneuver	-	-	-	-	-	-	104	158	
Stage 1	-	-	-	-	-	-	429	450	
Stage 2	-	-	-	-	-	-	348	461	

Approach	EB	WB	NB
HCM Control Delay, s	1.9	0.1	32.9
HCM LOS			D

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	144	782	-	-	1055	-	-	190
HCM Lane V/C Ratio	0.104	0.116	-	-	0.009	-	-	0.568
HCM Control Delay (s)	32.9	10.2	-	-	8.4	-	-	46.3
HCM Lane LOS	D	B	-	-	A	-	-	E
HCM 95th \%tile Q(veh)	0.3	0.4	-	-	0	-	-	3

Intersection			
Int Delay, s/veh			
Movement	39	4	65
Vol, veh/h	SBT	SBR	
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	-	-	-
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	69	100	30
Heavy Vehicles, \%	39	4	65
Mvmt Flow			

	Minor2		
Major/Minor	1224	1224	633
Conflicting Flow All	653	653	-
Stage 1	571	571	-
Stage 2	7.79	7.5	6.5
Critical Hdwy	6.79	6.5	-
Critical Hdwy Stg 1	6.79	6.5	-
Critical Hdwy Stg 2	4.121	4.9	3.57
Follow-up Hdwy	115	118	433
Pot Cap-1 Maneuver	362	341	-
Stage 1	405	377	-
Stage 2			
Platoon blocked, \%	103	103	433
Mov Cap-1 Maneuver	103	103	-
Mov Cap-2 Maneuver	320	338	-
Stage 1	355	333	-
Stage 2			

Approach	SB
HCM Control Delay, s	46.3
HCM LOS	E

[^27]
SITE LAYOUT

Site: 2017 Total Build NW 319 St and NW 31st Ave Weekday AM 85/15 Split
2017 Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Avel2017 AnalysisINW 319 St and NW 31st Ave 85_15.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

MOVEMENT SUMMARY

Site: 2017 Total Build NW 319 St and NW 31st Ave Weekday PM
2017 Total Traffic Weekday PM
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \hline \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NW 31st Ave											
3	L2	17	0.0	0.211	8.9	LOS A	1.2	30.8	0.73	0.68	32.6
8	T1	10	10.0	0.211	8.9	LOS A	1.2	30.8	0.73	0.68	32.5
18	R2	96	7.0	0.211	8.9	LOS A	1.2	30.8	0.73	0.68	29.2
Appr		123	6.3	0.211	8.9	LOS A	1.2	30.8	0.73	0.68	30.0
East: NW 319th St											
1	L2	97	2.0	0.378	5.8	LOS A	2.9	77.6	0.18	0.06	33.0
6	T1	464	9.0	0.378	5.8	LOS A	2.9	77.6	0.18	0.06	31.8
16	R2	377	1.0	0.280	5.1	LOS A	1.9	47.5	0.17	0.05	31.5
Appr		938	5.1	0.378	5.5	LOS A	2.9	77.6	0.18	0.06	31.8
North: NW 31st Ave											
7	L2	308	1.0	0.450	11.4	LOS B	3.0	75.8	0.75	0.76	26.8
4	T1	10	10.0	0.450	11.4	LOS B	3.0	75.8	0.75	0.76	29.4
14	R2	1	0.0	0.450	11.4	LOS B	3.0	75.8	0.75	0.76	28.0
Appr		319	1.3	0.450	11.4	LOS B	3.0	75.8	0.75	0.76	26.9
West: NW 319th St											
5	L2	1	0.0	0.495	11.5	LOS B	3.6	92.3	0.73	0.67	31.4
2	T1	381	3.0	0.495	11.5	LOS B	3.6	92.3	0.73	0.67	28.8
12	R2	5	0.0	0.495	11.5	LOS B	3.6	92.3	0.73	0.67	30.7
Approach		387	3.0	0.495	11.5	LOS B	3.6	92.3	0.73	0.67	28.9
All Vehicles		1767	4.0	0.495	8.1	LOS A	3.6	92.3	0.44	0.36	30.0

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v / c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2017 Total Build NW 319 St and NW 31st Ave Weekday PM

2017 Total Traffic Weekday PM

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \\ & \hline \end{aligned}$	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{aligned} & \text { Deue } \\ & \text { Dist } \\ & \text { ft } \end{aligned}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: NW 31st Ave													
Lane $1^{\text {d }}$	123	6.3	582	0.211	100	8.9	LOS A	1.2	30.8	Full	1600	0.0	0.0
Approach	123	6.3		0.211		8.9	LOS A	1.2	30.8				
East: NW 319th St													
Lane $1^{\text {d }}$	561	7.8	1484	0.378	100	5.8	LOS A	2.9	77.6	Full	650	0.0	0.0
Lane 2	377	1.0	1348	0.280	100	5.1	LOS A	1.9	47.5	Full	650	0.0	0.0
Approach	938	5.1		0.378		5.5	LOS A	2.9	77.6				
North: NW 31st Ave													
Lane $1^{\text {d }}$	319	1.3	709	0.450	100	11.4	LOS B	3.0	75.8	Full	1400	0.0	0.0
Approach	319	1.3		0.450		11.4	LOS B	3.0	75.8				
West: NW 319th St													
Lane $1^{\text {d }}$	387	3.0	783	0.495	100	11.5	LOS B	3.6	92.3	Full	1300	0.0	0.0
Approach	387	3.0		0.495		11.5	LOS B	3.6	92.3				
Intersection	1767	4.0		0.495		8.1	LOS A	3.6	92.3				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Ave\2017 AnalysisINW 319 St and NW 31st Ave.sip6
8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

SITE LAYOUT

Site: 2017 Total Build NW La Center and SB Ramps Weekday AM
2017 Total Traffic Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2017 Total Build NW La Center and SB Ramps Weekday PM

2017 Total Traffic Weekday PM
 Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dem Total veh/h	Flows HV $\%$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
East: NW La Center Rd											
1	L2	374	5.0	0.373	5.8	LOS A	0.0	0.0	0.00	0.00	33.7
6	T1	824	2.0	0.373	5.3	LOS A	0.0	0.0	0.00	0.00	37.1
Appr		1198	2.9	0.373	5.4	LOS A	0.0	0.0	0.00	0.00	35.7
North: SB Ramp											
7	L2	165	10.0	0.531	16.8	LOS B	2.6	67.8	0.72	0.81	24.2
4	T1	4	50.0	0.531	16.8	LOS B	2.6	67.8	0.72	0.81	26.6
14	R2	114	2.0	0.531	16.8	LOS B	2.6	67.8	0.72	0.81	23.8
Approach		283	7.3	0.531	16.8	LOS B	2.6	67.8	0.72	0.81	24.1
West: NW La Center Rd											
2	T1	185	7.0	0.214	6.4	LOS A	1.2	32.0	0.64	0.54	30.5
12	R2	600	1.0	0.362	0.0	LOS A	0.0	0.0	0.00	0.00	35.9
Appr		785	2.4	0.362	1.5	LOS A	1.2	32.0	0.15	0.13	34.8
All V		2266	3.3	0.531	5.5	LOS A	2.6	67.8	0.14	0.14	33.0

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2017 Total Build NW La Center and SB Ramps Weekday PM

2017 Total Traffic Weekday PM
 Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Bac Veh	ueue Dist ft	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
East: NW La Center Rd													
Lane 1	550	4.0	1474	0.373	100	5.8	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane $2^{\text {d }}$	648	2.0	1739	0.373	100	5.2	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	1198	2.9		0.373		5.4	LOS A	0.0	0.0				
North: SB Ramp													
Lane $1^{\text {d }}$	283	7.3	533	0.531	100	16.8	LOS B	2.6	67.8	Full	1300	0.0	0.0
Approach	283	7.3		0.531		16.8	LOS B	2.6	67.8				
West: NW La Center Rd													
Lane $1^{\text {d }}$	185	7.0	864	0.214	100	6.4	LOS A	1.2	32.0	Full	650	0.0	0.0
Lane 2	600	1.0	1658	0.362	100	0.0	LOS A	0.0	0.0	Short	200	0.0	0.0
Approach	785	2.4		0.362		1.5	LOS A	1.2	32.0				
Intersection	2266	3.3		0.531		5.5	LOS A	2.6	67.8				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Processed: Friday, August 29, 2014 1:06:28 PM SIDRA INTERSECTION 6.0.22.4722
Project: H:\profilile\12393 - Cowlitz Reservation Development\Sidral2014 Analysis\Interchange Roundabouts\103
NW La Center and SB Ramps\2017 Analysis\103 NW La Center and SB Ramps.sip6
8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

SITE LAYOUT

Site: 2017 Total Build NW La Center and NB Ramps Weekday AM

2017 Total Traffic Weekday AM

Roundabout

MOVEMENT SUMMARY

Site: 2017 Total Build NW La Center and NB Ramps Weekday PM
2017 Total Traffic Weekday PM
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { =lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles \qquad	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NB Ramp											
3	L2	747	1.0	0.407	8.6	LOS A	2.4	60.3	0.59	0.49	23.9
8	T1	8	50.0	0.407	8.6	LOS A	2.4	60.6	0.59	0.49	27.9
18	R2	591	3.0	0.543	9.9	LOS A	4.0	102.7	0.64	0.54	27.9
Appr		1346	2.2	0.543	9.1	LOS A	4.0	102.7	0.61	0.51	25.5
East: NW La Center Rd											
6	T1	451	4.0	0.503	12.0	LOS B	2.8	71.1	0.69	0.73	20.7
16	R2	119	5.0	0.342	11.0	LOS B	1.5	38.4	0.65	0.66	25.6
Appr		570	4.2	0.503	11.8	LOS B	2.8	71.1	0.69	0.71	21.8
West: NW La Center Rd											
5	L2	69	4.0	0.229	4.2	LOS A	0.0	0.0	0.00	0.00	35.8
2	T1	281	9.0	0.229	4.2	LOS A	0.0	0.0	0.00	0.00	36.0
Approach		350	8.0	0.229	4.2	LOS A	0.0	0.0	0.00	0.00	35.9
All Vehicles		2266	3.6	0.543	9.1	LOS A	4.0	102.7	0.54	0.48	25.5

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2017 Total Build NW La Center and NB Ramps Weekday PM

2017 Total Traffic Weekday PM
 Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay \qquad sec	Level of Service	$\begin{gathered} 95 \% \mathrm{Ba} \\ \text { Veh } \end{gathered}$	$\begin{array}{r} \text { Queue } \\ \text { Dist } \\ \mathrm{ft} \end{array}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \qquad \%
South: NB Ramp													
Lane 1	381	1.0	937	0.407	100	8.5	LOS A	2.4	60.3	Full	1800	0.0	0.0
Lane 2	374	2.0	918	0.407	100	8.6	LOS A	2.4	60.6	Full	1800	0.0	0.0
Lane $3^{\text {d }}$	591	3.0	1088	0.543	100	9.9	LOS A	4.0	102.7	Short	250	0.0	0.0
Approach	1346	2.2		0.543		9.1	LOS A	4.0	102.7				
East: NW La Center Rd													
Lane $1^{\text {d }}$	369	4.0	733	0.503	100	12.3	LOS B	2.8	71.1	Full	600	0.0	0.0
Lane 2	201	4.6	589	0.342	68^{7}	11.0	LOS B	1.5	38.4	Full	600	0.0	0.0
Approach	570	4.2		0.503		11.8	LOS B	2.8	71.1				
West: NW La Center Rd													
Lane $1^{\text {d }}$	350	8.0	1531	0.229	100	4.2	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	350	8.0		0.229		4.2	LOS A	0.0	0.0				
Intersection	2266	3.6		0.543		9.1	LOS A	4.0	102.7				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

Intersection									
Int Delay, s/veh 3.3									
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	114	745	12	5	460	8	5	0	5
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	250	-	-	200	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	21	4	25	25	2	20	0	0	0
Mvmt Flow	114	745	12	5	460	8	5	0	5
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	468	0	0	757	0	0	1483	1457	751
Stage 1	-	-	-	-	-	-	979	979	
Stage 2	-	-	-	-	-	-	504	478	
Critical Hdwy	4.31	-	-	4.35	-	-	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	
Follow-up Hdwy	2.389	-	-	2.425	-	-	3.5	4	3.3
Pot Cap-1 Maneuver	1001	-	-	759	-	-	104	131	414
Stage 1	-	-	-	-	-	-	304	331	
Stage 2	-	-	-	-	-	-	554	559	
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1001	-	-	759	-	-	83	115	414
Mov Cap-2 Maneuver	-	-	-	-	-	-	83	115	
Stage 1	-	-	-	-	-	-	269	293	
Stage 2		-	-	-	-	-	493	555	

Approach	EB	WB	NB
HCM Control Delay, s	1.2	0.1	33.1
HCM LOS		D	

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	138	1001	-	-	759	-	-	197
HCM Lane V/C Ratio	0.072	0.114	-	-	0.007	-	-	0.452
HCM Control Delay (s)	33.1	9.1	-	-	9.8	-	-	37.5
HCM Lane LOS	D	A	-	-	A	-	-	E
HCM 95th \%tile Q(veh)	0.2	0.4	-	-	0	-	-	2.1

Intersection			
Int Delay, s/veh			
Movement	30	4	55
Vol, veh/h	SBT	SBR	
Conflicting Peds, \#/hr	0	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	-	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	100
Heavy Vehicles, \%	7	0	17
Mvmt Flow	30	4	55

Major/Minor	Minor2		
Conflicting Flow All	1456	1459	464
Stage 1	474	474	-
Stage 2	982	985	-
Critical Hdwy	7.17	6.5	6.37
Critical Hdwy Stg 1	6.17	5.5	-
Critical Hdwy Stg 2	6.17	5.5	-
Follow-up Hdwy	3.563	4	3.453
Pot Cap-1 Maneuver	105	131	568
Stage 1	562	561	-
Stage 2	294	329	-
Platoon blocked, \%	94	115	568
Mov Cap-1 Maneuver	94	115	-
Mov Cap-2 Maneuver	498	557	-
Stage 1	257	292	-
Stage 2			

Approach	SB
HCM Control Delay, s	37.5
HCM LOS	E

Minor Lane/Major Mvmt

SITE LAYOUT

Site: 2017 Total Build NW 319 St and NW 31st Ave Weekday AM

2017 Total Traffic Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2017 Total Build NW 319 St and NW 31st Ave Weekend Peak

2017 Total Traffic Weekend Peak

Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NW 31st Ave											
3	L2	5	25.0	0.150	8.1	LOS A	0.8	21.3	0.73	0.65	30.4
8	T1	15	1.0	0.150	8.1	LOS A	0.8	21.3	0.73	0.65	33.3
18	R2	66	4.0	0.150	8.1	LOS A	0.8	21.3	0.73	0.65	30.1
Appr		86	4.7	0.150	8.1	LOS A	0.8	21.3	0.73	0.65	30.8
East: NW 319th St											
1	L2	77	6.0	0.395	5.7	LOS A	3.2	80.6	0.16	0.04	33.1
6	T1	553	2.0	0.395	5.7	LOS A	3.2	80.6	0.16	0.04	32.3
16	R2	493	1.0	0.350	5.7	LOS A	2.6	65.3	0.16	0.04	31.1
Appr		1123	1.8	0.395	5.7	LOS A	3.2	80.6	0.16	0.04	31.8
North: NW 31st Ave											
7	L2	329	1.0	0.487	12.4	LOS B	3.5	88.1	0.78	0.81	26.3
4	T1	10	1.0	0.487	12.4	LOS B	3.5	88.1	0.78	0.81	29.2
14	R2	1	1.0	0.487	12.4	LOS B	3.5	88.1	0.78	0.81	27.6
Appr		340	1.0	0.487	12.4	LOS B	3.5	88.1	0.78	0.81	26.4
West: NW 319th St											
5	L2	1	1.0	0.526	12.4	LOS B	4.1	105.2	0.76	0.72	30.8
2	T1	387	4.0	0.526	12.4	LOS B	4.1	105.2	0.76	0.72	28.2
12	R2	15	0.0	0.526	12.4	LOS B	4.1	105.2	0.76	0.72	30.3
Approach		403	3.8	0.526	12.4	LOS B	4.1	105.2	0.76	0.72	28.3
All Vehicles		1952	2.2	0.526	8.4	LOS A	4.1	105.2	0.41	0.34	29.9

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement LOS F will result if $v / c>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

[^28]
LANE SUMMARY

Site: 2017 Total Build NW 319 St and NW 31st Ave Weekend Peak

2017 Total Traffic Weekend Peak

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \end{aligned}$	Average Delay sec	Level of Service	95\% Bac Veh	Queue Dist Dist	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: NW 31st Ave													
Lane $1^{\text {d }}$	86	4.7	574	0.150	100	8.1	LOS A	0.8	21.3	Full	1600	0.0	0.0
Approach	86	4.7		0.150		8.1	LOS A	0.8	21.3				
East: NW 319th St													
Lane $1^{\text {d }}$	630	2.5	1595	0.395	100	5.7	LOS A	3.2	80.6	Full	650	0.0	0.0
Lane 2	493	1.0	1409	0.350	100	5.7	LOS A	2.6	65.3	Full	650	0.0	0.0
Approach	1123	1.8		0.395		5.7	LOS A	3.2	80.6				
North: NW 31st Ave													
Lane $1^{\text {d }}$	340	1.0	698	0.487	100	12.4	LOS B	3.5	88.1	Full	1400	0.0	0.0
Approach	340	1.0		0.487		12.4	LOS B	3.5	88.1				
West: NW 319th St													
Lane $1^{\text {d }}$	403	3.8	767	0.526	100	12.4	LOS B	4.1	105.2	Full	1300	0.0	0.0
Approach	403	3.8		0.526		12.4	LOS B	4.1	105.2				
Intersection	1952	2.2		0.526		8.4	LOS A	4.1	105.2				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v / c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Processed: Friday, August 29, 2014 11:54:13 AM SIDRA INTERSECTION 6.0.22.4722 www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Avel2017 Analysis\NW 319 St and NW 31st Ave.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

SITE LAYOUT

Site: 2017 Total Build NW La Center and SB Ramps Weekday AM
2017 Total Traffic Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2017 Total Build NW La Center and SB Ramps Weekend

2017 Total Traffic Weekend Peak

Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance \qquad	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
East: NW La Center Rd											
1	L2	375	2.0	0.415	6.1	LOS A	0.0	0.0	0.00	0.00	34.7
6	T1	982	1.0	0.415	5.7	LOS A	0.0	0.0	0.00	0.00	37.2
Appr		1357	1.3	0.415	5.8	LOS A	0.0	0.0	0.00	0.00	36.2
North: SB Ramp											
7	L2	172	4.0	0.609	20.2	LOS C	3.3	85.3	0.78	0.90	23.1
4	T1	4	0.0	0.609	20.2	LOS C	3.3	85.3	0.78	0.90	25.9
14	R2	141	8.0	0.609	20.2	LOS C	3.3	85.3	0.78	0.90	22.4
Appr		317	5.7	0.609	20.2	LOS C	3.3	85.3	0.78	0.90	22.8
West: NW La Center Rd											
2	T1	146	3.0	0.159	5.5	LOS A	0.9	22.7	0.61	0.49	31.6
12	R2	636	2.0	0.387	0.0	LOS A	0.0	0.0	0.00	0.00	35.9
Appr		782	2.2	0.387	1.0	LOS A	0.9	22.7	0.11	0.09	35.2
All V		2456	2.1	0.609	6.2	LOS A	3.3	85.3	0.14	0.14	32.9

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2017 Total Build NW La Center and SB Ramps Weekend

2017 Total Traffic Weekend Peak
 Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Cap. veh/h	Deg. Satn v/c	Lane Util. $\%$	Average Delay sec	Level of Service	95\% Ba Veh	$\begin{array}{r} \text { ueue } \\ \text { Dist } \\ \text { ft } \end{array}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
East: NW La Center Rd													
Lane 1	628	1.6	1511	0.415	100	6.1	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane $2^{\text {d }}$	729	1.0	1757	0.415	100	5.6	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	1357	1.3		0.415		5.8	LOS A	0.0	0.0				
North: SB Ramp													
Lane $1^{\text {d }}$	317	5.7	520	0.609	100	20.2	LOS C	3.3	85.3	Full	1300	0.0	0.0
Approach	317	5.7		0.609		20.2	LOS C	3.3	85.3				
West: NW La Center Rd													
Lane $1^{\text {d }}$	146	3.0	917	0.159	100	5.5	LOS A	0.9	22.7	Full	650	0.0	0.0
Lane 2	636	2.0	1642	0.387	100	0.0	LOS A	0.0	0.0	Short	200	0.0	0.0
Approach	782	2.2		0.387		1.0	LOS A	0.9	22.7				
Intersection	2456	2.1		0.609		6.2	LOS A	3.3	85.3				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Processed: Friday, August 29, 2014 1:06:31 PM
SIDRA INTERSECTION 6.0.22.4722
ww.sidrasolutions.com
NW La Center and SB Ramps\2017 Analysis\103 NW La Center and SB Ramps.sip6
8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

SITE LAYOUT

Site: 2017 Total Build NW La Center and NB Ramps Weekday AM

2017 Total Traffic Weekday AM

Roundabout

MOVEMENT SUMMARY

Site: 2017 Total Build NW La Center and NB Ramps Weekend

2017 Total Traffic Weekend Peak

Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} =\text { lows } \\ \text { HV } \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NB Ramp											
3	L2	927	1.0	0.452	8.6	LOS A	2.8	71.0	0.57	0.45	22.0
8	T1	4	0.0	0.452	8.6	LOS A	2.8	71.0	0.57	0.45	28.1
18	R2	564	3.0	0.501	8.9	LOS A	3.3	85.4	0.59	0.46	28.4
Appr		1495	1.8	0.501	8.7	LOS A	3.3	85.4	0.58	0.46	24.0
East: NW La Center Rd											
6	T1	430	3.0	0.546	14.2	LOS B	3.1	79.8	0.74	0.79	19.8
16	R2	124	12.0	0.382	14.1	LOS B	1.7	45.1	0.70	0.73	23.8
Approach		554	5.0	0.546	14.2	LOS B	3.1	79.8	0.73	0.78	20.7
West: NW La Center Rd											
5	L2	74	1.0	0.200	3.8	LOS A	0.0	0.0	0.00	0.00	35.7
2	T1	244	5.0	0.200	3.8	LOS A	0.0	0.0	0.00	0.00	36.0
Appr		318	4.1	0.200	3.8	LOS A	0.0	0.0	0.00	0.00	35.9
All Ve		2367	2.8	0.546	9.3	LOS A	3.3	85.4	0.54	0.47	24.1

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2017 Total Build NW La Center and NB Ramps Weekend

2017 Total Traffic Weekend Peak
 Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	$\begin{gathered} 95 \% \mathrm{Ba} \\ \text { Veh } \end{gathered}$	$\begin{aligned} & \text { ueue } \\ & \text { Dist } \\ & \text { ft } \end{aligned}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \qquad \%
South: NB Ramp													
Lane 1	465	1.0	1030	0.452	100	8.6	LOS A	2.8	71.0	Full	1800	0.0	0.0
Lane 2	466	1.0	1030	0.452	100	8.6	LOS A	2.8	71.0	Full	1800	0.0	0.0
Lane $3^{\text {d }}$	564	3.0	1126	0.501	100	8.9	LOS A	3.3	85.4	Short	250	0.0	0.0
Approach	1495	1.8		0.501		8.7	LOS A	3.3	85.4				
East: NW La Center Rd													
Lane $1^{\text {d }}$	373	3.0	682	0.546	100	14.2	LOS B	3.1	79.8	Full	600	0.0	0.0
Lane 2	181	9.2	474	0.382	70^{7}	14.1	LOS B	1.7	45.1	Full	600	0.0	0.0
Approach	554	5.0		0.546		14.2	LOS B	3.1	79.8				
West: NW La Center Rd													
Lane $1^{\text {d }}$	318	4.1	1589	0.200	100	3.8	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	318	4.1		0.200		3.8	LOS A	0.0	0.0				
Intersection	2367	2.8		0.546		9.3	LOS A	3.3	85.4				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

Intersection									
Int Delay, s/veh 2.8									
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	82	721	5	5	455	8	10	5	5
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	250	-	-	200	-	-	-		
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	13	4	17	0	3	17	11	0	50
Mumt Flow	82	721	5	5	455	8	10	5	5
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	463	0	0	726	0	0	1376	1361	724
Stage 1	-	-	-	-	-	-	888	888	
Stage 2	-	-	-	-	-	-	488	473	
Critical Hdwy	4.23	-	-	4.1	-	-	7.21	6.5	6.7
Critical Hdwy Stg 1	-	-	-	-	-	-	6.21	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.21	5.5	
Follow-up Hdwy	2.317	-	-	2.2	-	-	3.599	4	3.75
Pot Cap-1 Maneuver	1043	-	-	886	-	-	117	150	355
Stage 1	-	-	-	-	-	-	326	365	
Stage 2	-	-	-	-	-	-	545	562	
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1043	-	-	886	-	-	101	137	355
Mov Cap-2 Maneuver	-	-	-	-	-	-	101	137	
Stage 1	-	-	-	-	-	-	300	336	
Stage 2		-	-	-	-	-	507	559	

Approach	EB	WB	NB
HCM Control Delay, s	0.9	0.1	36.5
HCM LOS			E

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	134	1043	-	-	886	-	-	191
HCM Lane V/C Ratio	0.149	0.079	-	-	0.006	-	-	0.351
HCM Control Delay (s)	36.5	8.7	-	-	9.1	-	-	33.7
HCM Lane LOS	E	A	-	-	A	-	-	D
HCM 95th \%tile Q(veh)	0.5	0.3	-	-	0	-	-	1.5

Intersection			
Int Delay, s/veh			
Movement	30	4	33
Vol, veh/h	SBT	SBR	
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	-	-	-
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	0	0	13
Heavy Vehicles, \%	30	4	33
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	1362	1359	459
Stage 1	469	469	-
Stage 2	893	890	-
Critical Hdwy	7.1	6.5	6.33
Critical Hdwy Stg 1	6.1	5.5	-
Critical Hdwy Stg 2	6.1	5.5	-
Follow-up Hdwy	3.5	4	3.417
Pot Cap-1 Maneuver	126	150	580
Stage 1	579	564	-
Stage 2	339	364	-
Platoon blocked, \%			
Mov Cap-1 Maneuver	113	137	580
Mov Cap-2 Maneuver	113	137	-
Stage 1	533	561	-
Stage 2	303	335	-

Approach	SB
HCM Control Delay, s	33.7
HCM LOS	D

[^29]Appendix W 2017 Trip Distribution Sensitivity Analysis Worksheets for 85/15 Split

SITE LAYOUT

Site: 2017 Total Build NW 319 St and NW 31st Ave Weekday AM 85/15 Split
2017 Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Avel2017 AnalysisINW 319 St and NW 31st Ave 85_15.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

MOVEMENT SUMMARY

Site: 2017 Total Build NW 319 St and NW 31st Ave Weekday AM 85/15 Split
2017 Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	Flows HV $\%$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NW 31st Ave											
3	L2	5	0.0	0.117	6.0	LOS A	0.5	15.8	0.46	0.33	34.4
8	T1	5	1.0	0.117	6.0	LOS A	0.5	15.8	0.46	0.33	34.4
18	R2	78	23.0	0.117	6.0	LOS A	0.5	15.8	0.46	0.33	30.2
Appr		88	20.4	0.117	6.0	LOS A	0.5	15.8	0.46	0.33	30.7
East: NW 319 St											
1	L2	49	11.0	0.108	3.7	LOS A	0.6	14.5	0.08	0.02	33.4
6	T1	89	2.0	0.108	3.7	LOS A	0.6	14.5	0.08	0.02	32.9
16	R2	249	1.0	0.153	3.4	LOS A	0.9	21.5	0.07	0.01	32.7
Appr		387	2.5	0.153	3.5	LOS A	0.9	21.5	0.07	0.01	32.8
North: NW 31st Ave											
7	L2	187	1.0	0.182	5.0	LOS A	0.9	22.5	0.33	0.19	30.1
4	T1	5	1.0	0.182	5.0	LOS A	0.9	22.5	0.33	0.19	32.3
14	R2	1	1.0	0.182	5.0	LOS A	0.9	22.5	0.33	0.19	30.7
Appr		193	1.0	0.182	5.0	LOS A	0.9	22.5	0.33	0.19	30.1
West: NW 319 St											
5	L2	1	1.0	0.101	4.8	LOS A	0.5	12.3	0.42	0.27	35.0
2	T1	78	4.0	0.101	4.8	LOS A	0.5	12.3	0.42	0.27	33.2
12	R2	15	0.0	0.101	4.8	LOS A	0.5	12.3	0.42	0.27	34.1
Approach		94	3.3	0.101	4.8	LOS A	0.5	12.3	0.42	0.27	33.4
All Vehicles		762	4.3	0.182	4.3	LOS A	0.9	22.5	0.23	0.13	31.9

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement LOS F will result if $v / c>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

[^30]
LANE SUMMARY

Site: 2017 Total Build NW 319 St and NW 31st Ave Weekday AM 85/15 Split

```
2017 Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout
```

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { Flows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. $\%$	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{aligned} & \text { ueue } \\ & \text { Dist } \\ & \text { ft } \end{aligned}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: NW 31st Ave													
Lane $1^{\text {d }}$	88	20.4	755	0.117	100	6.0	LOS A	0.5	15.8	Full	1600	0.0	0.0
Approach	88	20.4		0.117		6.0	LOS A	0.5	15.8				
East: NW 319 St													
Lane 1	138	5.2	1280	0.108	100	3.7	LOS A	0.6	14.5	Full	650	0.0	0.0
Lane $2^{\text {d }}$	249	1.0	1623	0.153	100	3.4	LOS A	0.9	21.5	Full	650	0.0	0.0
Approach	387	2.5		0.153		3.5	LOS A	0.9	21.5				
North: NW 31st Ave													
Lane $1^{\text {d }}$	193	1.0	1063	0.182	100	5.0	LOS A	0.9	22.5	Full	1400	0.0	0.0
Approach	193	1.0		0.182		5.0	LOS A	0.9	22.5				
West: NW 319 St													
Lane $1^{\text {d }}$	94	3.3	934	0.101	100	4.8	LOS A	0.5	12.3	Full	1300	0.0	0.0
Approach	94	3.3		0.101		4.8	LOS A	0.5	12.3				
Intersection	762	4.3		0.182		4.3	LOS A	0.9	22.5				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D),
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2017 Total Build NW La Center and SB Ramps Weekday AM 85_15 Split

2017 Total Traffic Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2017 Total Build NW La Center and SB Ramps Weekday AM 85_15 Split
2017 Total Traffic Weekday AM
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { =lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
East: NW La Center Rd											
1	L2	535	4.0	0.361	5.1	LOS A	0.0	0.0	0.00	0.00	32.9
6	T1	361	2.0	0.361	4.4	LOS A	0.0	0.0	0.00	0.00	36.6
Appr		896	3.2	0.361	4.8	LOS A	0.0	0.0	0.00	0.00	34.0
North: SB Ramp											
7	L2	118	13.0	0.273	10.5	LOS B	1.0	27.7	0.61	0.61	26.4
4	T1	4	50.0	0.273	10.5	LOS B	1.0	27.7	0.61	0.61	28.6
14	R2	25	8.0	0.273	10.5	LOS B	1.0	27.7	0.61	0.61	25.8
Appr		147	13.2	0.273	10.5	LOS B	1.0	27.7	0.61	0.61	26.4
West: NW La Center Rd											
2	T1	118	20.0	0.172	7.2	LOS A	0.9	26.3	0.67	0.60	29.0
12	R2	225	2.0	0.137	0.0	LOS A	0.0	0.0	0.00	0.00	35.9
Approach		343	8.2	0.172	2.5	LOS A	0.9	26.3	0.23	0.21	33.8
All Vehicles		1386	5.5	0.361	4.8	LOS A	1.0	27.7	0.12	0.12	32.8

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2017 Total Build NW La Center and SB Ramps Weekday AM 85_15 Split

2017 Total Traffic Weekday AM
 Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \\ \hline \end{gathered}$	Cap. veh/h	Deg. Satn v/c	Lane Util. $\%$	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{aligned} & \text { ueue } \\ & \text { Dist } \\ & \text { ft } \end{aligned}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
East: NW La Center Rd													
Lane $1^{\text {d }}$	618	3.7	1710	0.361	100	5.1	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane 2	278	2.0	1400	0.199	55^{7}	4.2	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	896	3.2		0.361		4.8	LOS A	0.0	0.0				
North: SB Ramp													
Lane $1^{\text {d }}$	147	13.2	539	0.273	100	10.5	LOS B	1.0	27.7	Full	1300	0.0	0.0
Approach	147	13.2		0.273		10.5	LOS B	1.0	27.7				
West: NW La Center Rd													
Lane $1^{\text {d }}$	118	20.0	688	0.172	100	7.2	LOS A	0.9	26.3	Full	650	0.0	0.0
Lane 2	225	2.0	1642	0.137	100	0.0	LOS A	0.0	0.0	Short	200	0.0	0.0
Approach	343	8.2		0.172		2.5	LOS A	0.9	26.3				
Intersection	1386	5.5		0.361		4.8	LOS A	1.0	27.7				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2017 Total Build NW La Center and NB Ramps Weekday AM 85/15 Split
2017 Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout

MOVEMENT SUMMARY

Site: 2017 Total Build NW La Center and NB Ramps Weekday AM 85/15 Split

```
2017 Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout
```

Movement Performance - Vehicles											
$\begin{gathered} \text { Mov } \\ \text { ID } \end{gathered}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NB Ramp											
3	L2	292	1.0	0.231	5.7	LOS A	1.2	29.7	0.44	0.31	24.8
8	T1	4	50.0	0.231	5.7	LOS A	1.2	29.7	0.44	0.31	29.0
18	R2	321	7.0	0.292	6.1	LOS A	1.6	41.8	0.46	0.33	29.7
Appro		617	4.4	0.292	5.9	LOS A	1.6	41.8	0.45	0.32	27.1
East: NW La Center Rd											
6	T1	604	4.0	0.566	11.3	LOS B	3.7	96.7	0.61	0.57	21.1
16	R2	156	17.0	0.351	10.4	LOS B	1.6	43.5	0.55	0.52	25.7
Appro		760	6.7	0.566	11.1	LOS B	3.7	96.7	0.60	0.56	22.1
West: NW La Center Rd											
5	L2	77	17.0	0.167	3.9	LOS A	0.0	0.0	0.00	0.00	34.7
2	T1	159	17.0	0.167	3.9	LOS A	0.0	0.0	0.00	0.00	34.5
Appro		236	17.0	0.167	3.9	LOS A	0.0	0.0	0.00	0.00	34.5
All Ve		1613	7.3	0.566	8.1	LOS A	3.7	96.7	0.45	0.39	25.6

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2017 Total Build NW La Center and NB Ramps Weekday AM 85/15 Split

```
2017 Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout
```

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Cap. veh/h	Deg. Satn v/c	Lane Util. Util. \%	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{aligned} & \text { ueue } \\ & \text { Dist } \\ & \text { ft } \end{aligned}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: NB Ramp													
Lane 1	57	1.0	712	0.081	35^{7}	5.9	LOS A	0.3	8.8	Full	1800	0.0	0.0
Lane 2	239	1.8	1034	0.231	100	5.7	LOS A	1.2	29.7	Full	1800	0.0	0.0
Lane $3^{\text {d }}$	321	7.0	1098	0.292	100	6.1	LOS A	1.6	41.8	Short	250	0.0	0.0
Approach	617	4.4		0.292		5.9	LOS A	1.6	41.8				
East: NW La Center Rd													
Lane $1^{\text {d }}$	537	4.0	949	0.566	100	11.4	LOS B	3.7	96.7	Full	600	0.0	0.0
Lane 2	223	13.1	637	0.351	62^{7}	10.4	LOS B	1.6	43.5	Full	600	0.0	0.0
Approach	760	6.7		0.566		11.1	LOS B	3.7	96.7				
West: NW La Center Rd													
Lane $1^{\text {d }}$	236	17.0	1413	0.167	100	3.9	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	236	17.0		0.167		3.9	LOS A	0.0	0.0				
Intersection	1613	7.3		0.566		8.1	LOS A	3.7	96.7				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2017 Total Build NW 319 St and NW 31st Ave Weekday AM 85/15 Split
2017 Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Avel2017 AnalysisINW 319 St and NW 31st Ave 85_15.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

MOVEMENT SUMMARY

Site: 2017 Total Build NW 319 St and NW 31st Ave Weekday PM 85/15 Split

```
2017 Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout
```

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NW 31st Ave											
3	L2	17	0.0	0.216	9.1	LOS A	1.2	32.3	0.74	0.69	32.4
8	T1	10	10.0	0.216	9.1	LOS A	1.2	32.3	0.74	0.69	32.3
18	R2	96	7.0	0.216	9.1	LOS A	1.2	32.3	0.74	0.69	29.1
Appr		123	6.3	0.216	9.1	LOS A	1.2	32.3	0.74	0.69	29.9
East: NW 319 St											
1	L2	97	2.0	0.252	5.3	LOS A	1.6	42.5	0.17	0.06	32.7
6	T1	200	9.0	0.252	5.3	LOS A	1.6	42.5	0.17	0.06	31.5
16	R2	641	1.0	0.403	5.8	LOS A	3.3	82.4	0.18	0.06	31.0
Appr		938	2.8	0.403	5.6	LOS A	3.3	82.4	0.18	0.06	31.3
North: NW 31st Ave											
7	L2	524	1.0	0.581	12.1	LOS B	4.7	119.6	0.69	0.61	26.4
4	T1	10	10.0	0.581	12.1	LOS B	4.7	119.6	0.69	0.61	29.1
14	R2	1	0.0	0.581	12.1	LOS B	4.7	119.6	0.69	0.61	27.7
Appr		535	1.2	0.581	12.1	LOS B	4.7	119.6	0.69	0.61	26.5
West: NW 319 St											
5	L2	1	0.0	0.272	9.2	LOS A	1.6	41.3	0.74	0.69	32.6
2	T1	165	3.0	0.272	9.2	LOS A	1.6	41.3	0.74	0.69	30.2
12	R2	5	0.0	0.272	9.2	LOS A	1.6	41.3	0.74	0.69	31.8
Approach		171	2.9	0.272	9.2	LOS A	1.6	41.3	0.74	0.69	30.3
All Vehicles		1767	2.6	0.581	8.2	LOS A	4.7	119.6	0.43	0.33	29.4

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement LOS F will result if $v / c>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

[^31]
LANE SUMMARY

Site: 2017 Total Build NW 319 St and NW 31st Ave Weekday PM 85/15 Split

```
2017 Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout
```

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	$\begin{gathered} 95 \% \text { Bac } \\ \text { Veh } \end{gathered}$	$\begin{aligned} & \text { Queue } \\ & \text { Dist } \\ & \mathrm{ft} \end{aligned}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: NW 31st Ave													
Lane $1^{\text {d }}$	123	6.3	569	0.216	100	9.1	LOS A	1.2	32.3	Full	1600	0.0	0.0
Approach	123	6.3		0.216		9.1	LOS A	1.2	32.3				
East: NW 319 St													
Lane 1	297	6.7	1180	0.252	100	5.3	LOS A	1.6	42.5	Full	650	0.0	0.0
Lane $2^{\text {d }}$	641	1.0	1591	0.403	100	5.8	LOS A	3.3	82.4	Full	650	0.0	0.0
Approach	938	2.8		0.403		5.6	LOS A	3.3	82.4				
North: NW 31st Ave													
Lane $1{ }^{\text {d }}$	535	1.2	920	0.581	100	12.1	LOS B	4.7	119.6	Full	1400	0.0	0.0
Approach	535	1.2		0.581		12.1	LOS B	4.7	119.6				
West: NW 319 St													
Lane $1^{\text {d }}$	171	2.9	629	0.272	100	9.2	LOS A	1.6	41.3	Full	1300	0.0	0.0
Approach	171	2.9		0.272		9.2	LOS A	1.6	41.3				
Intersection	1767	2.6		0.581		8.2	LOS A	4.7	119.6				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D),
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2017 Total Build NW La Center and SB Ramps Weekday AM 85_15 Split

2017 Total Traffic Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2017 Total Build NW La Center and SB Ramps Weekday PM 85_15 Split
2017 Total Traffic Weekday PM
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{array}{r} \text { Flows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
East: NW La Center Rd											
1	L2	374	5.0	0.369	5.7	LOS A	0.0	0.0	0.00	0.00	33.7
6	T1	824	2.0	0.369	5.3	LOS A	0.0	0.0	0.00	0.00	37.2
Appr		1198	2.9	0.377	5.4	LOS A	0.0	0.0	0.00	0.00	35.7
North: SB Ramp											
7	L2	165	10.0	0.532	16.8	LOS B	2.6	68.2	0.73	0.81	24.2
4	T1	4	50.0	0.532	16.8	LOS B	2.6	68.2	0.73	0.81	26.6
14	R2	114	2.0	0.532	16.8	LOS B	2.6	68.2	0.73	0.81	23.8
Appr		283	7.3	0.532	16.8	LOS B	2.6	68.2	0.73	0.81	24.1
West: NW La Center Rd											
2	T1	185	7.0	0.214	6.4	LOS A	1.2	32.0	0.64	0.54	30.5
12	R2	600	1.0	0.362	0.0	LOS A	0.0	0.0	0.00	0.00	35.9
Appr		785	2.4	0.362	1.5	LOS A	1.2	32.0	0.15	0.13	34.8
All V		2266	3.3	0.532	5.5	LOS A	2.6	68.2	0.14	0.14	33.0

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2017 Total Build NW La Center and SB Ramps Weekday PM 85_15 Split

2017 Total Traffic Weekday PM
 Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	$\begin{gathered} 95 \% \mathrm{Ba} \\ \text { Veh } \end{gathered}$	ueue Dist ft	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
East: NW La Center Rd													
Lane 1	543	4.1	1471	0.369	98^{7}	5.7	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane $2^{\text {d }}$	655	2.0	1739	0.377	100	5.2	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	1198	2.9		0.377		5.4	LOS A	0.0	0.0				
North: SB Ramp													
Lane $1^{\text {d }}$	283	7.3	532	0.532	100	16.8	LOS B	2.6	68.2	Full	1300	0.0	0.0
Approach	283	7.3		0.532		16.8	LOS B	2.6	68.2				
West: NW La Center Rd													
Lane $1{ }^{\text {d }}$	185	7.0	864	0.214	100	6.4	LOS A	1.2	32.0	Full	650	0.0	0.0
Lane 2	600	1.0	1658	0.362	100	0.0	LOS A	0.0	0.0	Short	200	0.0	0.0
Approach	785	2.4		0.362		1.5	LOS A	1.2	32.0				
Intersection	2266	3.3		0.532		5.5	LOS A	2.6	68.2				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2017 Total Build NW La Center and NB Ramps Weekday AM 85/15 Split
2017 Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout

MOVEMENT SUMMARY

Site: 2017 Total Build NW La Center and NB Ramps Weekday PM 85/15 Split

```
2017 Total Traffic Weekday PM
85/15 Split Sensitivity Analysis
Roundabout
```

Movement Performance - Vehicles											
$\begin{gathered} \text { Mov } \\ \text { ID } \end{gathered}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NB Ramp											
3	L2	747	1.0	0.561	9.7	LOS A	4.3	109.2	0.63	0.54	23.5
8	T1	8	50.0	0.561	10.1	LOS B	4.3	109.2	0.65	0.55	27.3
18	R2	591	3.0	0.591	11.6	LOS B	4.9	125.7	0.69	0.63	27.2
Appro		1346	2.2	0.591	10.6	LOS B	4.9	125.7	0.66	0.58	25.0
East: NW La Center Rd											
6	T1	451	4.0	0.535	13.4	LOS B	3.5	89.6	0.76	0.80	20.1
16	R2	119	5.0	0.358	11.8	LOS B	1.8	45.5	0.70	0.72	25.1
Appro		570	4.2	0.535	13.0	LOS B	3.5	89.6	0.75	0.79	21.2
West: NW La Center Rd											
5	L2	69	4.0	0.229	4.2	LOS A	0.0	0.0	0.00	0.00	35.8
2	T1	281	9.0	0.229	4.2	LOSA	0.0	0.0	0.00	0.00	36.0
Appro		350	8.0	0.229	4.2	LOS A	0.0	0.0	0.00	0.00	35.9
All Ve		2266	3.6	0.591	10.2	LOS B	4.9	125.7	0.58	0.54	25.0

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2017 Total Build NW La Center and NB Ramps Weekday PM 85/15 Split

```
2017 Total Traffic Weekday PM
85/15 Split Sensitivity Analysis
Roundabout
```

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Back Veh	Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: NB Ramp													
Lane 1	134	1.0	657	0.205	37^{7}	7.9	LOS A	1.0	24.3	Full	1800	0.0	0.0
Lane $2{ }^{\text {d }}$	621	1.6	1106	0.561	100	10.1	LOS B	4.3	109.2	Full	1800	0.0	0.0
Lane 3	591	3.0	1000	0.591	100	11.6	LOS B	4.9	125.7	Short	250	0.0	0.0
Approach	1346	2.2		0.591		10.6	LOS B	4.9	125.7				
East: NW La Center Rd													
Lane $1^{\text {d }}$	371	4.0	693	0.535	100	13.7	LOS B	3.5	89.6	Full	600	0.0	0.0
Lane 2	199	4.6	557	0.358	67^{7}	11.8	LOS B	1.8	45.5	Full	600	0.0	0.0
Approach	570	4.2		0.535		13.0	LOS B	3.5	89.6				
West: NW La Center Rd													
Lane $1^{\text {d }}$	350	8.0	1531	0.229	100	4.2	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	350	8.0		0.229		4.2	LOS A	0.0	0.0				
Intersection	2266	3.6		0.591		10.2	LOS B	4.9	125.7				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2017 Total Build NW 319 St and NW 31st Ave Weekday AM 85/15 Split
2017 Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Avel2017 AnalysisINW 319 St and NW 31st Ave 85_15.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

MOVEMENT SUMMARY

Site: 2017 Total Build NW 319 St and NW 31st Ave Weekend Peak 85/15 Split

```
2017 Total Traffic Weekend Peak 85/15 Split Sensitivity Analysis
```

Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{array}{r} \text { Flows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NW 31st Ave											
3	L2	5	25.0	0.153	8.3	LOS A	0.9	22.2	0.74	0.66	30.4
8	T1	15	1.0	0.153	8.3	LOS A	0.9	22.2	0.74	0.66	33.2
18	R2	66	4.0	0.153	8.3	LOS A	0.9	22.2	0.74	0.66	30.0
Appr		86	4.7	0.153	8.3	LOS A	0.9	22.2	0.74	0.66	30.7
East: NW 319 St											
1	L2	77	6.0	0.244	5.4	LOS A	1.5	39.6	0.15	0.05	32.8
6	T1	203	2.0	0.244	5.4	LOS A	1.5	39.6	0.15	0.05	31.9
16	R2	839	1.0	0.513	7.1	LOS A	4.9	123.7	0.18	0.05	30.2
Appr		1119	1.5	0.513	6.6	LOS A	4.9	123.7	0.17	0.05	30.7
North: NW 31st Ave											
7	L2	559	1.0	0.590	11.9	LOS B	4.8	121.3	0.67	0.56	26.5
4	T1	10	1.0	0.590	11.9	LOS B	4.8	121.3	0.67	0.56	29.3
14	R2	1	1.0	0.590	11.9	LOS B	4.8	121.3	0.67	0.56	27.7
Appr		570	1.0	0.590	11.9	LOS B	4.8	121.3	0.67	0.56	26.6
West: NW 319 St											
5	L2	1	1.0	0.283	9.6	LOS A	1.7	43.5	0.76	0.71	32.2
2	T1	157	4.0	0.283	9.6	LOS A	1.7	43.5	0.76	0.71	29.8
12	R2	15	0.0	0.283	9.6	LOS A	1.7	43.5	0.76	0.71	31.6
Appr		173	3.6	0.283	9.6	LOS A	1.7	43.5	0.76	0.71	30.1
All V		1948	1.7	0.590	8.5	LOS A	4.9	123.7	0.39	0.28	29.3

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2017 Total Build NW 319 St and NW 31st Ave Weekend Peak 85/15 Split

2017 Total Traffic Weekend Peak 85/15 Split Sensitivity Analysis

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \end{aligned}$	Average Delay sec	Level of Service	$\begin{gathered} 95 \% \mathrm{Bac} \\ \text { Veh } \end{gathered}$	$\begin{aligned} & \text { Queue } \\ & \text { Dist } \\ & \mathrm{ft} \end{aligned}$	Lane Config	Lane Length ft	$\begin{gathered} \hline \text { Cap. } \\ \text { Adj. } \\ \% \end{gathered}$	Prob. Block. \%
South: NW 31st Ave													
Lane ${ }^{\text {d }}$	86	4.7	564	0.153	100	8.3	LOS A	0.9	22.2	Full	1600	0.0	0.0
Approach	86	4.7		0.153		8.3	LOS A	0.9	22.2				
East: NW 319 St													
Lane 1	280	3.1	1146	0.244	100	5.4	LOS A	1.5	39.6	Full	650	0.0	0.0
Lane $2^{\text {d }}$	839	1.0	1636	0.513	100	7.1	LOS A	4.9	123.7	Full	650	0.0	0.0
Approach	1119	1.5		0.513		6.6	LOS A	4.9	123.7				
North: NW 31st Ave													
Lane $1^{\text {d }}$	570	1.0	967	0.590	100	11.9	LOS B	4.8	121.3	Full	1400	0.0	0.0
Approach	570	1.0		0.590		11.9	LOS B	4.8	121.3				
West: NW 319 St													
Lane $1^{\text {d }}$	173	3.6	611	0.283	100	9.6	LOS A	1.7	43.5	Full	1300	0.0	0.0
Approach	173	3.6		0.283		9.6	LOS A	1.7	43.5				
Intersection	1948	1.7		0.590		8.5	LOS A	4.9	123.7				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Processed: Friday, August 29, 2014 12:20:51 PM
SIDRA INTERSECTION 6.0.22.4722

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Avel2017 Analysis\NW 319 St and NW 31st Ave 85_15.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

SITE LAYOUT

Site: 2017 Total Build NW La Center and SB Ramps Weekday AM 85_15 Split

2017 Total Traffic Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2017 Total Build NW La Center and SB Ramps Weekend 85_15 Split

2017 Total Traffic Weekend Peak

Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dem Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed \qquad mph
East: NW La Center Rd											
1	L2	375	2.0	0.370	5.7	LOS A	0.0	0.0	0.00	0.00	34.2
6	T1	982	1.0	0.370	6.0	LOS A	0.0	0.0	0.00	0.00	37.5
Appr		1357	1.3	0.462	5.9	LOS A	0.0	0.0	0.00	0.00	36.2
North: SB Ramp											
7	L2	172	4.0	0.625	21.3	LOS C	3.5	92.8	0.79	0.92	22.7
4	T1	4	0.0	0.625	21.3	LOS C	3.5	92.8	0.79	0.92	25.5
14	R2	141	8.0	0.625	21.3	LOS C	3.5	92.8	0.79	0.92	22.0
Appr		317	5.7	0.625	21.3	LOS C	3.5	92.8	0.79	0.92	22.4
West: NW La Center Rd											
2	T1	146	3.0	0.159	5.5	LOS A	0.9	22.7	0.61	0.49	31.6
12	R2	636	2.0	0.387	0.0	LOS A	0.0	0.0	0.00	0.00	35.9
Approach		782	2.2	0.387	1.0	LOS A	0.9	22.7	0.11	0.09	35.2
All V		2456	2.1	0.625	6.4	LOS A	3.5	92.8	0.14	0.15	32.8

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2017 Total Build NW La Center and SB Ramps Weekend 85_15 Split

2017 Total Traffic Weekend Peak
 Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	$\begin{gathered} 95 \% \mathrm{Ba} \\ \text { Veh } \end{gathered}$	$\begin{aligned} & \text { ueue } \\ & \text { Dist } \\ & \text { ft } \end{aligned}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
East: NW La Center Rd													
Lane 1	545	1.7	1476	0.370	80^{7}	5.7	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane $2^{\text {d }}$	812	1.0	1757	0.462	100	6.1	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	1357	1.3		0.462		5.9	LOS A	0.0	0.0				
North: SB Ramp													
Lane $1^{\text {d }}$	317	5.7	507	0.625	100	21.3	LOS C	3.5	92.8	Full	1300	0.0	0.0
Approach	317	5.7		0.625		21.3	LOS C	3.5	92.8				
West: NW La Center Rd													
Lane $1^{\text {d }}$	146	3.0	916	0.159	100	5.5	LOS A	0.9	22.7	Full	650	0.0	0.0
Lane 2	636	2.0	1642	0.387	100	0.0	LOS A	0.0	0.0	Short	200	0.0	0.0
Approach	782	2.2		0.387		1.0	LOS A	0.9	22.7				
Intersection	2456	2.1		0.625		6.4	LOS A	3.5	92.8				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2017 Total Build NW La Center and NB Ramps Weekday AM 85/15 Split
2017 Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout

MOVEMENT SUMMARY

Site: 2017 Total Build NW La Center and NB Ramps Weekend 85/15 Split

2017 Total Traffic Weekend
85/15 Split Sensitivity Analysis
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	Flows HV $\%$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NB Ramp											
3	L2	927	1.0	0.670	11.7	LOS B	6.6	167.5	0.67	0.58	21.2
8	T1	4	0.0	0.670	12.4	LOS B	6.6	167.5	0.70	0.61	26.7
18	R2	564	3.0	0.574	11.3	LOS B	4.5	114.5	0.65	0.57	27.3
Appr		1495	1.8	0.670	11.6	LOS B	6.6	167.5	0.67	0.58	23.1
East: NW La Center Rd											
6	T1	430	3.0	0.617	17.9	LOS B	4.5	116.1	0.85	0.93	18.3
16	R2	124	12.0	0.425	16.7	LOS B	2.2	59.6	0.78	0.81	22.6
Appr		554	5.0	0.617	17.7	LOS B	4.5	116.1	0.83	0.90	19.3
West: NW La Center Rd											
5	L2	74	1.0	0.200	3.8	LOS A	0.0	0.0	0.00	0.00	35.7
2	T1	244	5.0	0.200	3.8	LOS A	0.0	0.0	0.00	0.00	36.0
Approach		318	4.1	0.200	3.8	LOS A	0.0	0.0	0.00	0.00	35.9
All Vehicles		2367	2.8	0.670	12.0	LOS B	6.6	167.5	0.62	0.57	23.1

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2017 Total Build NW La Center and NB Ramps Weekend 85/15 Split

2017 Total Traffic Weekend 85/15 Split Sensitivity Analysis
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	$\begin{gathered} 95 \% \text { Ba } \\ \text { Veh } \end{gathered}$	$\begin{aligned} & \text { Queue } \\ & \text { Dist } \end{aligned}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
South: NB Ramp													
Lane 1	146	1.0	681	0.215	32^{7}	7.8	LOS A	1.0	25.7	Full	1800	0.0	0.0
Lane $2^{\text {d }}$	785	1.0	1171	0.670	100	12.4	LOS B	6.6	167.5	Full	1800	0.0	0.0
Lane 3	564	3.0	983	0.574	100	11.3	LOS B	4.5	114.5	Short	250	0.0	0.0
Approach	1495	1.8		0.670		11.6	LOS B	6.6	167.5				
East: NW La Center Rd													
Lane $1^{\text {d }}$	373	3.0	605	0.617	100	18.1	LOS B	4.5	116.1	Full	600	0.0	0.0
Lane 2	181	9.2	426	0.425	69^{7}	16.7	LOS B	2.2	59.6	Full	600	0.0	0.0
Approach	554	5.0		0.617		17.7	LOS B	4.5	116.1				
West: NW La Center Rd													
Lane $1^{\text {d }}$	318	4.1	1589	0.200	100	3.8	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	318	4.1		0.200		3.8	LOS A	0.0	0.0				
Intersection	2367	2.8		0.670		12.0	LOS B	6.6	167.5				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

Appendix X 2037 Total Traffic Conditions Worksheets - Freeway Mainline

Appendix Y 2037 Total Traffic Conditions Worksheets - Merge/Diverge Locations

Appendix Z 2037 Total Traffic Conditions (No Build) Worksheets - Study Intersections

SITE LAYOUT

Site: 2037 Total NoBuild NW 319 St and NW 31st Ave Weekday AM
2037 No Build Weekday AM
Roundabout

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Avel2037 Analysis - UpdatelNW 319 St and NW 31st Ave_2037 NB.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

MOVEMENT SUMMARY

Site: 2037 Total NoBuild NW 319 St and NW 31st Ave Weekday AM
2037 No Build Weekday AM
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dem Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NW 31st Ave											
3	L2	5	0.0	0.226	7.0	LOS A	1.2	34.8	0.54	0.43	33.9
8	T1	5	1.0	0.226	7.0	LOS A	1.2	34.8	0.54	0.43	33.9
18	R2	168	23.0	0.226	7.0	LOS A	1.2	34.8	0.54	0.43	29.7
Appr		178	21.7	0.226	7.0	LOS A	1.2	34.8	0.54	0.43	29.9
East: NW 319 St											
1	L2	193	11.0	0.258	4.2	LOS A	1.6	43.2	0.08	0.02	32.7
6	T1	234	2.0	0.258	4.2	LOS A	1.6	43.2	0.08	0.02	32.1
16	R2	146	1.0	0.114	3.7	LOS A	0.6	15.2	0.08	0.02	32.5
Appr		573	4.8	0.258	4.1	LOS A	1.6	43.2	0.08	0.02	32.4
North: NW 31st Ave											
7	L2	110	1.0	0.124	5.0	LOS A	0.6	15.6	0.52	0.40	30.1
4	T1	5	1.0	0.124	5.0	LOS A	0.6	15.6	0.52	0.40	32.4
14	R2	1	1.0	0.124	5.0	LOS A	0.6	15.6	0.52	0.40	30.7
Approach		116	1.0	0.124	5.0	LOS A	0.6	15.6	0.52	0.40	30.3
West: NW 319 St											
5	L2	1	0.0	0.232	5.9	LOS A	1.2	31.8	0.50	0.38	34.5
2	T1	211	4.0	0.232	5.9	LOS A	1.2	31.8	0.50	0.38	32.4
12	R2	15	0.0	0.232	5.9	LOS A	1.2	31.8	0.50	0.38	33.5
Appr		227	3.7	0.232	5.9	LOS A	1.2	31.8	0.50	0.38	32.5
All V		1094	6.9	0.258	5.1	LOS A	1.6	43.2	0.29	0.20	31.7

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement LOS F will result if $v / c>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Tuesday, February 17, 2015 8:13:48 AM SIDRA INTERSECTION 6.0.22.4722
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Avel2037 Analysis - UpdatelNW 319 St and NW 31st Ave_2037 NB.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

LANE SUMMARY

Site: 2037 Total NoBuild NW 319 St and NW 31st Ave Weekday AM

2037 No Build Weekday AM

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \end{aligned}$	Average Delay sec	Level of Service	95\% Back Veh	$\begin{gathered} \text { ueue } \\ \text { Dist } \\ \text { ft } \end{gathered}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: NW 31st Ave													
Lane $1^{\text {d }}$	178	21.7	786	0.226	100	7.0	LOS A	1.2	34.8	Full	1600	0.0	0.0
Approach	178	21.7		0.226		7.0	LOS A	1.2	34.8				
East: NW 319 St													
Lane $1^{\text {d }}$	427	6.1	1655	0.258	100	4.2	LOS A	1.6	43.2	Full	650	0.0	0.0
Lane 2	146	1.0	1282	0.114	100	3.7	LOS A	0.6	15.2	Full	650	0.0	0.0
Approach	573	4.8		0.258		4.1	LOS A	1.6	43.2				
North: NW 31st Ave													
Lane $1^{\text {d }}$	116	1.0	932	0.124	100	5.0	LOS A	0.6	15.6	Full	1400	0.0	0.0
Approach	116	1.0		0.124		5.0	LOS A	0.6	15.6				
West: NW 319 St													
Lane $1^{\text {d }}$	227	3.7	980	0.232	100	5.9	LOS A	1.2	31.8	Full	1300	0.0	0.0
Approach	227	3.7		0.232		5.9	LOS A	1.2	31.8				
Intersection	1094	6.9		0.258		5.1	LOS A	1.6	43.2				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation
d Dominant lane on roundabout approach

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidral2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Avel2037 Analysis - UpdatelNW 319 St and NW 31st Ave_2037 NB.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

SITE LAYOUT

Site: 2037 Total NoBuild NW La Center and SB Ramps Weekday AM
2037 No Build Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2037 Total NoBuild NW La Center and SB Ramps Weekday AM
2037 No Build Weekday AM
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h		Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
East: NW La Center Rd											
1	L2	627	4.0	0.413	6.1	LOS A	0.0	0.0	0.00	0.00	32.2
6	T1	445	2.0	0.324	5.5	LOS A	0.0	0.0	0.00	0.00	38.5
Appr		1072	3.2	0.413	5.8	LOS A	0.0	0.0	0.00	0.00	34.0
North: SB Ramp											
7	L2	177	13.0	0.501	14.1	LOS B	2.5	67.1	0.69	0.76	25.3
4	T1	3	50.0	0.501	14.1	LOS B	2.5	67.1	0.69	0.76	27.6
14	R2	127	8.0	0.501	14.1	LOS B	2.5	67.1	0.69	0.76	24.7
Appro		307	11.3	0.501	14.1	LOS B	2.5	67.1	0.69	0.76	25.0
West: NW La Center Rd											
2	T1	225	20.0	0.329	9.5	LOS A	2.1	60.0	0.80	0.76	27.1
12	R2	264	2.0	0.161	0.0	LOSA	0.0	0.0	0.00	0.00	35.9
Approach		489	10.3	0.329	4.4	LOS A	2.1	60.0	0.37	0.35	32.0
All Vehicles		1868	6.4	0.501	6.8	LOS A	2.5	67.1	0.21	0.22	31.4

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total NoBuild NW La Center and SB Ramps Weekday AM

2037 No Build Weekday AM

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Back Veh	ueue Dist ft	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
East: NW La Center Rd													
Lane $1^{\text {d }}$	627	4.0	1518	0.413	100	6.1	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane 2	445	2.0	1375	0.324	$78{ }^{5}$	5.5	LOSA	0.0	0.0	Full	600	0.0	0.0
Approach	1072	3.2		0.413		5.8	LOS A	0.0	0.0				
North: SB Ramp													
Lane $1^{\text {d }}$	307	11.3	613	0.501	100	14.1	LOS B	2.5	67.1	Full	1300	0.0	0.0
Approach	307	11.3		0.501		14.1	LOS B	2.5	67.1				
West: NW La Center Rd													
Lane $1^{\text {d }}$	225	20.0	683	0.329	100	9.5	LOS A	2.1	60.0	Full	650	0.0	0.0
Lane 2	264	2.0	1642	0.161	100	0.0	LOSA	0.0	0.0	Short	200	0.0	0.0
Approach	489	10.3		0.329		4.4	LOS A	2.1	60.0				
Intersection	1868	6.4		0.501		6.8	LOS A	2.5	67.1				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

5 Lane underutilisation determined by program
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2037 Total NoBuild NW La Center and NB Ramps Weekday AM

2037 No Build Weekday AM
Roundabout

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\104 NW La Center and NB Ramps\2037 Analysis - Updatel104 NW La Center and NB Ramps_2037NB.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

MOVEMENT SUMMARY

Site: 2037 Total NoBuild NW La Center and NB Ramps Weekday AM

2037 No Build Weekday AM
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \mathrm{Mov} \\ & \mathrm{ID} \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NB Ramp											
3	L2	346	1.0	0.200	6.2	LOS A	1.0	25.5	0.55	0.45	24.7
8	T1	2	50.0	0.200	6.2	LOS A	1.0	25.5	0.55	0.45	28.8
18	R2	408	7.0	0.375	7.2	LOS A	2.3	59.8	0.60	0.49	29.2
Appr		756	4.4	0.375	6.7	LOS A	2.3	59.8	0.58	0.47	26.8
East: NW La Center Rd											
6	T1	727	4.0	0.667	13.5	LOS B	5.2	135.1	0.69	0.70	20.1
16	R2	227	17.0	0.420	11.5	LOS B	2.0	57.0	0.60	0.61	25.0
Appr		954	7.1	0.667	13.0	LOS B	5.2	135.1	0.67	0.68	21.3
West: NW La Center Rd											
5	L2	106	17.0	0.274	4.7	LOS A	0.0	0.0	0.00	0.00	35.0
2	T1	297	17.0	0.274	4.7	LOS A	0.0	0.0	0.00	0.00	34.9
Approach		403	17.0	0.274	4.7	LOS A	0.0	0.0	0.00	0.00	35.0
All Vehicles		2113	8.0	0.667	9.2	LOS A	5.2	135.1	0.51	0.48	25.4

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total NoBuild NW La Center and NB Ramps Weekday AM

2037 No Build Weekday AM

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \\ & \hline \end{aligned}$	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{array}{r} \text { Queue } \\ \text { Dist } \\ \mathrm{ft} \end{array}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: NB Ramp													
Lane 1	175	1.0	876	0.200	100	6.1	LOS A	1.0	25.5	Full	1800	0.0	0.0
Lane 2	173	1.6	866	0.200	100	6.2	LOS A	1.0	25.5	Full	1800	0.0	0.0
Lane $3^{\text {d }}$	408	7.0	1088	0.375	100	7.2	LOS A	2.3	59.8	Short	250	0.0	0.0
Approach	756	4.4		0.375		6.7	LOS A	2.3	59.8				
East: NW La Center Rd													
Lane $1^{\text {d }}$	679	4.0	1019	0.667	100	13.6	LOS B	5.2	135.1	Full	600	0.0	0.0
Lane 2	275	14.7	655	0.420	63^{7}	11.5	LOS B	2.0	57.0	Full	600	0.0	0.0
Approach	954	7.1		0.667		13.0	LOS B	5.2	135.1				
West: NW La Center Rd													
Lane $1^{\text {d }}$	403	17.0	1468	0.274	100	4.7	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	403	17.0		0.274		4.7	LOS A	0.0	0.0				
Intersection	2113	8.0		0.667		9.2	LOS A	5.2	135.1				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

Intersection									
Int Delay, s/veh	104.8								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	96	439	170	147	728	11	78	2	52
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	250	-	-	200	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	42	13	0	25	3	20	14	0	25
Mvmt Flow	96	439	170	147	728	11	78	2	52
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	739	0	0	609	0	0	1786	1749	524
Stage 1	-	-	-	-	-	-	716	716	
Stage 2	-	-	-	-	-	-	1070	1033	
Critical Hdwy	4.52	-	-	4.35	-	-	7.24	6.5	6.45
Critical Hdwy Stg 1	-	-	-	-	-	-	6.24	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.24	5.5	
Follow-up Hdwy	2.578	-	-	2.425	-	-	3.626	4	3.525
Pot Cap-1 Maneuver	711	-	-	867	-	-	~ 59	87	511
Stage 1	-	-	-	-	-	-	403	437	-
Stage 2	-	-	-	-	-	-	254	312	-
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	711	-	-	867	-	-	~32	62	511
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 32	62	
Stage 1	-	-	-	-	-	-	349	378	
Stage 2	-	-	-	-	-	-	162	259	

Approach	EB	WB	NB
HCM Control Delay, s	1.5	1.7	$\$ 891.1$
HCM LOS			F

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	51	711	-	-	867	-	-	68
HCM Lane V/C Ratio	2.588	0.135	-	-	0.17	-	-	1.926
HCM Control Delay (s)	$\$ 891.1$	10.9	-	-	10	-	$-\$ 565.3$	
HCM Lane LOS	F	B	-	-	A	-	-	F
HCM 95th \%tile Q(veh)	13.7	0.5	-	-	0.6	-	-	12

Notes
~: Volume exceeds capacity $\quad \$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad *: All major volume in platoon

Intersection			
Int Delay, s/veh			
Movement	SBL	SBT	SBR
Vol, veh/h	0	5	79
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	-	-	-
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	69	100	30
Heavy Vehicles, \%	47	5	79
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	1771	1829	734
Stage 1	1028	1028	-
\quad Stage 2	743	801	-
Critical Hdwy	7.79	7.5	6.5
Critical Hdwy Stg 1	6.79	6.5	-
Critical Hdwy Stg 2	6.79	6.5	-
Follow-up Hdwy	4.121	4.9	3.57
Pot Cap-1 Maneuver	~ 44	44	377
\quad Stage 1	214	213	-
$\quad 319$	284	-	
Stage 2			
Motoon blocked, \% Cap-1 Maneuver	~ 30	32	377
Mov Cap-2 Maneuver	~ 30	32	-
Stage 1	185	177	-
Stage 2	247	246	-

Approach	SB
HCM Control Delay, s	$\$ 565.3$
HCM LOS	F

[^32]
SITE LAYOUT

Site: 2037 Total NoBuild NW 319 St and NW 31st Ave Weekday AM
2037 No Build Weekday AM
Roundabout

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Avel2037 Analysis - UpdatelNW 319 St and NW 31st Ave_2037 NB.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

MOVEMENT SUMMARY

Site: 2037 Total NoBuild NW 319 St and NW 31st Ave Weekday PM
2037 No Build Weekday PM
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \mathrm{Mov} \\ & \mathrm{ID} \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dem Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NW 31st Ave											
3	L2	17	0.0	0.373	10.5	LOS B	2.4	62.0	0.79	0.76	31.9
8	T1	10	10.0	0.373	10.5	LOS B	2.4	62.0	0.79	0.76	31.8
18	R2	219	7.0	0.373	10.5	LOS B	2.4	62.0	0.79	0.76	28.6
Appr		246	6.6	0.373	10.5	LOS B	2.4	62.0	0.79	0.76	29.0
East: NW 319 St											
1	L2	183	2.0	0.423	6.0	LOS A	3.6	94.4	0.19	0.06	32.4
6	T1	487	9.0	0.423	6.0	LOS A	3.6	94.4	0.19	0.06	31.2
16	R2	377	1.0	0.275	5.0	LOS A	1.9	47.5	0.17	0.05	31.5
Appr		1047	4.9	0.423	5.7	LOS A	3.6	94.4	0.18	0.06	31.6
North: NW 31st Ave											
7	L2	308	1.0	0.433	10.7	LOS B	3.0	75.4	0.79	0.79	27.1
4	T1	10	10.0	0.433	10.7	LOS B	3.0	75.4	0.79	0.79	29.7
14	R2	1	0.0	0.433	10.7	LOS B	3.0	75.4	0.79	0.79	28.2
Appr		319	1.3	0.433	10.7	LOS B	3.0	75.4	0.79	0.79	27.2
West: NW 319 St											
5	L2	1	0.0	0.474	10.6	LOS B	3.4	87.8	0.75	0.69	31.9
2	T1	386	3.0	0.474	10.6	LOS B	3.4	87.8	0.75	0.69	29.4
12	R2	4	0.0	0.474	10.6	LOS B	3.4	87.8	0.75	0.69	31.2
Approach		391	3.0	0.474	10.6	LOS B	3.4	87.8	0.75	0.69	29.4
All Vehicles		2003	4.2	0.474	8.0	LOS A	3.6	94.4	0.46	0.38	30.0

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total NoBuild NW 319 St and NW 31st Ave Weekday PM

2037 No Build Weekday PM
 Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \end{gathered}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{aligned} & \text { ueue } \\ & \text { Dist } \\ & \text { ft } \end{aligned}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: NW 31st Ave													
Lane $1^{\text {d }}$	246	6.6	660	0.373	100	10.5	LOS B	2.4	62.0	Full	1600	0.0	0.0
Approach	246	6.6		0.373		10.5	LOS B	2.4	62.0				
East: NW 319 St													
Lane $1^{\text {d }}$	670	7.1	1585	0.423	100	6.0	LOS A	3.6	94.4	Full	650	0.0	0.0
Lane 2	377	1.0	1369	0.275	100	5.0	LOS A	1.9	47.5	Full	650	0.0	0.0
Approach	1047	4.9		0.423		5.7	LOS A	3.6	94.4				
North: NW 31st Ave													
Lane $1^{\text {d }}$	319	1.3	736	0.433	100	10.7	LOS B	3.0	75.4	Full	1400	0.0	0.0
Approach	319	1.3		0.433		10.7	LOS B	3.0	75.4				
West: NW 319 St													
Lane $1^{\text {d }}$	391	3.0	826	0.474	100	10.6	LOS B	3.4	87.8	Full	1300	0.0	0.0
Approach	391	3.0		0.474		10.6	LOS B	3.4	87.8				
Intersection	2003	4.2		0.474		8.0	LOS A	3.6	94.4				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2037 Total NoBuild NW La Center and SB Ramps Weekday AM
2037 No Build Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2037 Total NoBuild NW La Center and SB Ramps Weekday PM
2037 No Build Weekday PM

Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance \qquad	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
East: NW La Center Rd											
1	L2	564	5.0	0.499	7.6	LOS A	0.0	0.0	0.00	0.00	33.0
6	T1	902	2.0	0.499	7.2	LOS A	0.0	0.0	0.00	0.00	37.4
Appr		1466	3.2	0.499	7.4	LOS A	0.0	0.0	0.00	0.00	35.1
North: SB Ramp											
7	L2	217	10.0	0.631	19.4	LOS B	3.6	95.2	0.79	0.92	23.2
4	T1	3	50.0	0.631	19.4	LOS B	3.6	95.2	0.79	0.92	25.6
14	R2	145	2.0	0.631	19.4	LOS B	3.6	95.2	0.79	0.92	22.8
Appr		365	7.2	0.631	19.4	LOS B	3.6	95.2	0.79	0.92	23.1
West: NW La Center Rd											
2	T1	304	7.0	0.380	9.1	LOS A	2.6	69.4	0.82	0.76	28.0
12	R2	609	1.0	0.367	0.0	LOS A	0.0	0.0	0.00	0.00	35.9
Appr		913	3.0	0.380	3.1	LOS A	2.6	69.4	0.27	0.25	33.5
All V		2744	3.6	0.631	7.5	LOS A	3.6	95.2	0.20	0.21	32.0

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Tuesday, February 17, 2015 9:09:38 AM
SIDRA INTERSECTION 6.0.22.4722
Copyright © 2000-2014 Akcelik and Associates Pty Ltd

NW La Center and SB Ramps 12037 Analysis - Updatel103 NW La Center and SB Ramps_2037NB.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

LANE SUMMARY

Site: 2037 Total NoBuild NW La Center and SB Ramps Weekday PM

2037 No Build Weekday PM

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{gathered}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \end{aligned}$	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{array}{r} \text { ueue } \\ \text { Dist } \\ \text { ft } \end{array}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
East: NW La Center Rd													
Lane 1	694	4.4	1390	0.499	100	7.6	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane $2^{\text {d }}$	772	2.0	1548	0.499	100	7.1	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	1466	3.2		0.499		7.4	LOS A	0.0	0.0				
North: SB Ramp													
Lane $1^{\text {d }}$	365	7.2	579	0.631	100	19.4	LOS B	3.6	95.2	Full	1300	0.0	0.0
Approach	365	7.2		0.631		19.4	LOS B	3.6	95.2				
West: NW La Center Rd													
Lane $1^{\text {d }}$	304	7.0	800	0.380	100	9.1	LOS A	2.6	69.4	Full	650	0.0	0.0
Lane 2	609	1.0	1658	0.367	100	0.0	LOS A	0.0	0.0	Short	200	0.0	0.0
Approach	913	3.0		0.380		3.1	LOS A	2.6	69.4				
Intersection	2744	3.6		0.631		7.5	LOS A	3.6	95.2				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Processed: Tuesday, February 17, 2015 9:09:38 AM
SIDRA INTERSECTION 6.0.22.4722
Project: H:\projfile\12393-Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\103 NW La Center and SB Rampsl2037 Analysis - Updatel103 NW La Center and SB Ramps_2037NB.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

SITE LAYOUT

Site: 2037 Total NoBuild NW La Center and NB Ramps Weekday AM

2037 No Build Weekday AM
Roundabout

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\104 NW La Center and NB Ramps\2037 Analysis - Updatel104 NW La Center and NB Ramps_2037NB.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

MOVEMENT SUMMARY

Site: 2037 Total NoBuild NW La Center and NB Ramps Weekday PM

2037 No Build Weekday PM

Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \hline \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{array}{r} \text { =lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NB Ramp											
3	L2	812	1.0	0.460	9.8	LOS A	3.1	77.0	0.70	0.66	23.5
8	T1	4	50.0	0.460	9.8	LOS A	3.1	77.2	0.70	0.66	27.4
18	R2	648	3.0	0.597	11.1	LOS B	5.5	140.8	0.76	0.75	27.4
Appr		1464	2.0	0.597	10.4	LOS B	5.5	140.8	0.73	0.70	25.0
East: NW La Center Rd											
6	T1	654	4.0	0.805	24.6	LOS C	7.5	192.3	0.88	1.03	16.2
16	R2	171	5.0	0.427	14.3	LOS B	2.1	53.9	0.73	0.76	23.7
Approach		825	4.2	0.805	22.4	LOS C	7.5	192.3	0.85	0.97	17.6
West: NW La Center Rd											
5	L2	177	4.0	0.326	5.0	LOS A	0.0	0.0	0.00	0.00	34.9
2	T1	345	9.0	0.326	5.0	LOSA	0.0	0.0	0.00	0.00	34.8
Appr		522	7.3	0.326	5.0	LOS A	0.0	0.0	0.00	0.00	34.9
All Ve		2811	3.6	0.805	12.9	LOS B	7.5	192.3	0.63	0.65	23.9

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total NoBuild NW La Center and NB Ramps Weekday PM

2037 No Build Weekday PM
 Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \\ & \hline \end{aligned}$	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{array}{r} \text { Queue } \\ \text { Dist } \\ \mathrm{ft} \end{array}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
South: NB Ramp													
Lane 1	410	1.0	891	0.460	100	9.7	LOS A	3.1	77.0	Full	1800	0.0	0.0
Lane 2	406	1.5	883	0.460	100	9.8	LOS A	3.1	77.2	Full	1800	0.0	0.0
Lane $3^{\text {d }}$	648	3.0	1085	0.597	100	11.1	LOS B	5.5	140.8	Short	250	0.0	0.0
Approach	1464	2.0		0.597		10.4	LOS B	5.5	140.8				
East: NW La Center Rd													
Lane $1^{\text {d }}$	607	4.0	755	0.805	100	25.3	LOS C	7.5	192.3	Full	600	0.0	0.0
Lane 2	218	4.8	510	0.427	53^{7}	14.3	LOS B	2.1	53.9	Full	600	0.0	0.0
Approach	825	4.2		0.805		22.4	LOS C	7.5	192.3				
West: NW La Center Rd													
Lane $1^{\text {d }}$	522	7.3	1601	0.326	100	5.0	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	522	7.3		0.326		5.0	LOS A	0.0	0.0				
Intersection	2811	3.6		0.805		12.9	LOS B	7.5	192.3				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

Intersection									
Int Delay, s/veh	496.3								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	120	756	116	101	470	10	215	8	174
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	250	-	-	200	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	21	4	25	25	2	20	14	0	25
Mumt Flow	120	756	116	101	470	10	215	8	174
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	480	0	0	872	0	0	1767	1736	814
Stage 1	-	-	-	-	-	-	1054	1054	
Stage 2	-	-	-	-	-	-	713	682	
Critical Hdwy	4.31	-	-	4.35	-	-	7.24	6.5	6.45
Critical Hdwy Stg 1	-	-	-	-	-	-	6.24	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.24	5.5	
Follow-up Hdwy	2.389	-	-	2.425	-	-	3.626	4	3.525
Pot Cap-1 Maneuver	990	-	-	684	-	-	~61	88	345
Stage 1	-	-	-	-	-	-	259	305	
Stage 2	-	-	-	-	-	-	404	453	
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	990	-	-	684	-	-	~39	66	345
Mov Cap-2 Maneuver	-	-	-	-	-	-	~39	66	
Stage 1	-	-	-	-	-	-	228	268	
Stage 2	-	-	-	-	-	-	298	386	

Approach	EB	WB	NB
HCM Control Delay, s	1.1	1.9	$\$ 2423.3$
HCM LOS			F

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	65	990	-	-	684	-	-	54
HCM Lane V/C Ratio	6.108	0.121	-	-	0.148	-	-	1.981
HCM Control Delay (s)	$\$ 2423.3$	9.1	-	-	11.2	-	$-\$ 621.5$	
HCM Lane LOS	F	A	-	-	B	-	-	F
HCM 95th \%tile Q(veh)	44.8	0.4	-	-	0.5	-	-	10.5
Notes								

\sim : Volume exceeds capacity $\quad \$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined $\quad *:$ All major volume in platoon

Intersection			
Int Delay, s/veh			
	SBL	SBT	SBR
Movement	36	5	66
Vol, veh/h	0	0	0
Conflicting Peds, \#/hr	Stop	Stop	Stop
Sign Control	-	-	None
RT Channelized	-	-	-
Storage Length	-	0	-
Veh in Median Storage, \#	-	0	-
Grade, \%	100	100	100
Peak Hour Factor	7	100	17
Heavy Vehicles, \%	36	5	66
Mvmt Flow			

Major/Minor	Minor2		
Conflicting Flow All	1822	1789	475
Stage 1	677	677	-
\quad Stage 2	1145	1112	-
Critical Hdwy	7.17	7.5	6.37
Critical Hdwy Stg 1	6.17	6.5	-
Critical Hdwy Stg 2	6.17	6.5	-
Follow-up Hdwy	3.563	4.9	3.453
Pot Cap-1 Maneuver	58	47	560
\quad Stage 1	434	331	-
$\quad 237$	191	-	
Stage 2			
Platoon blocked, \%	~ 21	35	560
Mov Cap-1 Maneuver	~ 21	35	-
Mov Cap-2 Maneuver	381	282	-
Stage 1	100	168	-
Stage 2			

Approach	SB
HCM Control Delay, s	$\$ 621.5$
HCM LOS	F

[^33]
SITE LAYOUT

Site: 2037 Total NoBuild NW 319 St and NW 31st Ave Weekday AM
2037 No Build Weekday AM
Roundabout

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Avel2037 Analysis - UpdatelNW 319 St and NW 31st Ave_2037 NB.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

MOVEMENT SUMMARY

Site: 2037 Total NoBuild NW 319 St and NW 31st Ave Weekend
2037 No Build Weekend Peak
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dem Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NW 31st Ave											
3	L2	5	25.0	0.292	9.3	LOS A	1.8	47.0	0.79	0.74	29.9
8	T1	15	1.0	0.292	9.3	LOS A	1.8	47.0	0.79	0.74	32.7
18	R2	168	4.0	0.292	9.3	LOS A	1.8	47.0	0.79	0.74	29.5
Appr		188	4.3	0.292	9.3	LOS A	1.8	47.0	0.79	0.74	29.8
East: NW 319 St											
1	L2	149	6.0	0.431	5.9	LOS A	3.7	94.9	0.16	0.04	32.7
6	T1	573	2.0	0.431	5.9	LOS A	3.7	94.9	0.16	0.04	31.8
16	R2	493	1.0	0.345	5.6	LOS A	2.6	65.1	0.16	0.04	31.2
Appr		1215	2.1	0.431	5.8	LOS A	3.7	94.9	0.16	0.04	31.7
North: NW 31st Ave											
7	L2	329	1.0	0.463	11.4	LOS B	3.4	84.8	0.80	0.82	26.8
4	T1	10	1.0	0.463	11.4	LOS B	3.4	84.8	0.80	0.82	29.6
14	R2	1	1.0	0.463	11.4	LOS B	3.4	84.8	0.80	0.82	28.0
Appr		340	1.0	0.463	11.4	LOS B	3.4	84.8	0.80	0.82	26.9
West: NW 319 St											
5	L2	1	1.0	0.518	11.7	LOS B	4.1	105.3	0.78	0.74	31.2
2	T1	410	4.0	0.518	11.7	LOS B	4.1	105.3	0.78	0.74	28.7
12	R2	12	0.0	0.518	11.7	LOS B	4.1	105.3	0.78	0.74	30.7
Approach		423	3.9	0.518	11.7	LOS B	4.1	105.3	0.78	0.74	28.8
All Vehicles		2166	2.5	0.518	8.1	LOS A	4.1	105.3	0.44	0.36	30.0

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total NoBuild NW 319 St and NW 31st Ave Weekend

2037 No Build Weekend Peak

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	$\begin{gathered} 95 \% \mathrm{Ba} \\ \text { Veh } \end{gathered}$	$\begin{aligned} & \text { Queue } \\ & \text { Dist } \end{aligned}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
South: NW 31st Ave													
Lane $1^{\text {d }}$	188	4.3	644	0.292	100	9.3	LOS A	1.8	47.0	Full	1600	0.0	0.0
Approach	188	4.3		0.292		9.3	LOS A	1.8	47.0				
East: NW 319 St													
Lane $1^{\text {d }}$	722	2.8	1677	0.431	100	5.9	LOS A	3.7	94.9	Full	650	0.0	0.0
Lane 2	493	1.0	1431	0.345	100	5.6	LOS A	2.6	65.1	Full	650	0.0	0.0
Approach	1215	2.1		0.431		5.8	LOS A	3.7	94.9				
North: NW 31st Ave													
Lane $1^{\text {d }}$	340	1.0	735	0.463	100	11.4	LOS B	3.4	84.8	Full	1400	0.0	0.0
Approach	340	1.0		0.463		11.4	LOS B	3.4	84.8				
West: NW 319 St													
Lane $1^{\text {d }}$	423	3.9	816	0.518	100	11.7	LOS B	4.1	105.3	Full	1300	0.0	0.0
Approach	423	3.9		0.518		11.7	LOS B	4.1	105.3				
Intersection	2166	2.5		0.518		8.1	LOS A	4.1	105.3				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2037 Total NoBuild NW La Center and SB Ramps Weekday AM
2037 No Build Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2037 Total NoBuild NW La Center and SB Ramps Weekend
2037 No Build Weekend Peak
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
East: NW La Center Rd											
1	L2	563	2.0	0.533	8.0	LOS A	0.0	0.0	0.00	0.00	34.0
6	T1	1034	1.0	0.533	7.7	LOS A	0.0	0.0	0.00	0.00	37.2
Appr		1597	1.4	0.533	7.8	LOS A	0.0	0.0	0.00	0.00	35.7
North: SB Ramp											
7	L2	229	4.0	0.725	24.8	LOS C	4.9	127.3	0.85	1.04	21.5
4	T1	3	0.0	0.725	24.8	LOS C	4.9	127.3	0.85	1.04	24.4
14	R2	182	8.0	0.725	24.8	LOS C	4.9	127.3	0.85	1.04	20.9
Appr		414	5.7	0.725	24.8	LOS C	4.9	127.3	0.85	1.04	21.2
West: NW La Center Rd											
2	T1	211	3.0	0.247	6.8	LOS A	1.6	42.0	0.77	0.67	30.2
12	R2	697	2.0	0.425	0.0	LOS A	0.0	0.0	0.00	0.00	35.8
Approach		908	2.2	0.425	1.6	LOS A	1.6	42.0	0.18	0.16	34.7
All Vehicles		2919	2.2	0.725	8.3	LOS A	4.9	127.3	0.18	0.20	31.8

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total NoBuild NW La Center and SB Ramps Weekend

2037 No Build Weekend Peak

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \end{aligned}$	Average Delay sec	Level of Service	$\begin{aligned} & \text { 95\% Bac } \\ & \text { Veh } \end{aligned}$	$\begin{aligned} & \text { Queue } \\ & \text { Dist } \\ & \mathrm{ft} \end{aligned}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block \%
East: NW La Center Rd													
Lane 1	763	1.7	1431	0.533	100	8.0	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane $2^{\text {d }}$	834	1.0	1564	0.533	100	7.6	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	1597	1.4		0.533		7.8	LOS A	0.0	0.0				
North: SB Ramp													
Lane $1^{\text {d }}$	414	5.7	571	0.725	100	24.8	LOS C	4.9	127.3	Full	1300	0.0	0.0
Approach	414	5.7		0.725		24.8	LOS C	4.9	127.3				
West: NW La Center Rd													
Lane $1^{\text {d }}$	211	3.0	853	0.247	100	6.8	LOS A	1.6	42.0	Full	650	0.0	0.0
Lane 2	697	2.0	1642	0.425	100	0.0	LOS A	0.0	0.0	Short	200	0.0	0.0
Approach	908	2.2		0.425		1.6	LOS A	1.6	42.0				
Intersection	2919	2.2		0.725		8.3	LOS A	4.9	127.3				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2037 Total NoBuild NW La Center and NB Ramps Weekday AM

2037 No Build Weekday AM
Roundabout

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\104 NW La Center and NB Ramps\2037 Analysis - Updatel104 NW La Center and NB Ramps_2037NB.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

MOVEMENT SUMMARY

Site: 2037 Total NoBuild NW La Center and NB Ramps Weekend

2037 No Build Weekend Peak

Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} =\text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NB Ramp											
3	L2	968	1.0	0.489	9.5	LOS A	3.3	83.7	0.66	0.58	21.7
8	T1	2	0.0	0.489	9.5	LOS A	3.3	83.7	0.66	0.58	27.7
18	R2	626	3.0	0.542	9.4	LOS A	4.2	106.5	0.67	0.58	28.2
Appr		1596	1.8	0.542	9.5	LOS A	4.2	106.5	0.66	0.58	23.8
East: NW La Center Rd											
6	T1	629	3.0	0.811	25.9	LOS C	7.4	189.1	0.89	1.04	15.8
16	R2	173	12.0	0.470	17.6	LOS B	2.3	61.8	0.76	0.80	22.1
Approach		802	4.9	0.811	24.1	LOS C	7.4	189.1	0.86	0.99	17.1
West: NW La Center Rd											
5	L2	131	1.0	0.265	4.3	LOS A	0.0	0.0	0.00	0.00	35.3
2	T1	308	5.0	0.265	4.3	LOS A	0.0	0.0	0.00	0.00	35.4
Appr		439	3.8	0.265	4.3	LOS A	0.0	0.0	0.00	0.00	35.4
All Ve		2837	3.0	0.811	12.8	LOS B	7.4	189.1	0.62	0.61	22.9

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total NoBuild NW La Center and NB Ramps Weekend

2037 No Build Weekend Peak

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \\ & \hline \end{aligned}$	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{array}{r} \text { Queue } \\ \text { Dist } \\ \mathrm{ft} \end{array}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
South: NB Ramp													
Lane 1	485	1.0	991	0.489	100	9.5	LOS A	3.3	83.7	Full	1800	0.0	0.0
Lane 2	485	1.0	991	0.489	100	9.5	LOS A	3.3	83.7	Full	1800	0.0	0.0
Lane $3^{\text {d }}$	626	3.0	1156	0.542	100	9.4	LOSA	4.2	106.5	Short	250	0.0	0.0
Approach	1596	1.8		0.542		9.5	LOS A	4.2	106.5				
East: NW La Center Rd													
Lane $1^{\text {d }}$	595	3.0	733	0.811	100	26.4	LOS C	7.4	189.1	Full	600	0.0	0.0
Lane 2	207	10.5	441	0.470	58^{7}	17.6	LOS B	2.3	61.8	Full	600	0.0	0.0
Approach	802	4.9		0.811		24.1	LOS C	7.4	189.1				
West: NW La Center Rd													
Lane $1^{\text {d }}$	439	3.8	1655	0.265	100	4.3	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	439	3.8		0.265		4.3	LOS A	0.0	0.0				
Intersection	2837	3.0		0.811		12.8	LOS B	7.4	189.1				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

Intersection									
Int Delay, s/veh	366.6								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	91	727	116	101	478	14	215	8	174
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None
Storage Length	250	-	-	200	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100
Heavy Vehicles, \%	13	4	17	0	3	17	11	0	50
Mumt Flow	91	727	116	101	478	14	215	8	174
Major/Minor	Major1			Major2			Minor1		
Conflicting Flow All	492	0	0	843	0	0	1677	1661	785
Stage 1	-	-	-	-	-	-	967	967	
Stage 2	-	-	-	-	-	-	710	694	
Critical Hdwy	4.23	-	-	4.1	-	-	7.21	6.5	6.7
Critical Hdwy Stg 1	-	-	-	-	-	-	6.21	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.21	5.5	
Follow-up Hdwy	2.317	-	-	2.2	-	-	3.599	4	3.75
Pot Cap-1 Maneuver	1017	-	-	802	-	-	~ 72	98	326
Stage 1	-	-	-	-	-	-	294	335	
Stage 2	-	-	-	-	-	-	410	447	
Platoon blocked, \%		-	-		-	-			
Mov Cap-1 Maneuver	1017	-	-	802	-	-	~ 53	78	326
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 53	78	
Stage 1	-	-	-	-	-	-	268	305	
Stage 2	-	-	-	-	-	-	329	391	

Approach	EB	WB	NB
HCM Control Delay, s	0.9	1.7	$\$ 1751.4$
HCM LOS			F

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	85	1017	-	-	802	-	-	51
HCM Lane V/C Ratio	4.671	0.089	-	-	0.126	-	-	1.588
HCM Control Delay (s)	$\$ 1751.4$	8.9	-	-	10.1	-	$-\$ 468.6$	
HCM Lane LOS	F	A	-	-	B	-	-	F
HCM 95th \%tile Q(veh)	42.5	0.3	-	-	0.4	-	-	7.7

Notes

\sim : Volume exceeds capacity $\quad \$$: Delay exceeds $300 s \quad+$: Computation Not Defined \quad *: All major volume in platoon

Intersection			
Int Delay, s/veh			
Movement	36	5	40
Vol, veh/h	SBT	SBR	
Conflicting Peds, \#/hr	0	0	0
Sign Control	Stop	Stop	Stop
RT Channelized	-	-	None
Storage Length	-	-	-
Veh in Median Storage, \#	-	0	-
Grade, \%	-	0	-
Peak Hour Factor	100	100	100
Heavy Vehicles, \%	0	0	13
Mvmt Flow	36	5	40

Major/Minor	Minor2			
Conflicting Flow All	1745	1712	485	
Stage 1	687	687	-	
Stage 2	1058	1025	-	
Critical Hdwy	7.1	6.5	6.33	
Critical Hdwy Stg 1	6.1	5.5	-	
Critical Hdwy Stg 2	6.1	5.5	-	
Follow-up Hdwy	3.5	4	3.417	
Pot Cap-1 Maneuver	68	91	560	
\quad Stage 1	440	450	-	
Stage 2	274	315	-	
Platoon blocked, \%	~ 25	72	560	
Mov Cap-1 Maneuver	~ 25	72	-	
Mov Cap-2 Maneuver	401	393	-	
Stage 1	113	287	-	
Stage 2				

Approach	SB
HCM Control Delay, s	$\$ 468.6$
HCM LOS	F

[^34]
Appendix AA 2037 Total Traffic Conditions (Build) Worksheets - Study Intersections

SITE LAYOUT

Site: 2037 Total Build NW La Center and SB Ramps Weekday AM
2037 Build Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2037 Total Build NW La Center and SB Ramps Weekday AM

2037 Build Weekday AM

Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \hline \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h		Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
East: NW La Center Rd											
1	L2	627	4.0	0.413	6.1	LOS A	0.0	0.0	0.00	0.00	32.2
6	T1	445	2.0	0.324	5.5	LOS A	0.0	0.0	0.00	0.00	38.5
Appr		1072	3.2	0.413	5.8	LOS A	0.0	0.0	0.00	0.00	34.0
North: SB Ramp											
7	L2	177	13.0	0.233	7.2	LOS A	0.9	24.2	0.58	0.58	27.7
4	T1	3	50.0	0.233	7.2	LOS A	0.9	24.2	0.58	0.58	29.7
14	R2	127	8.0	0.187	7.5	LOS A	0.7	17.8	0.58	0.58	29.2
Appro		307	11.3	0.233	7.3	LOS A	0.9	24.2	0.58	0.58	28.3
West: NW La Center Rd											
2	T1	225	20.0	0.183	8.1	LOS A	1.1	31.1	0.74	0.69	23.6
12	R2	264	2.0	0.161	0.0	LOSA	0.0	0.0	0.00	0.00	35.6
Approach		489	10.3	0.183	3.7	LOS A	1.1	31.1	0.34	0.32	29.9
All Vehicles		1868	6.4	0.413	5.5	LOS A	1.1	31.1	0.18	0.18	31.8

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total Build NW La Center and SB Ramps Weekday AM

2037 Build Weekday AM

Roundabout

Lane Use and Performance													
	Demand Total veh/h	Flows HV $\%$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{aligned} & \text { ueue } \\ & \text { Dist } \\ & \text { ft } \end{aligned}$	Lane Config	Lane Length	Cap. Adj. \%	Prob. Block. \%
East: NW La Center Rd													
Lane $1^{\text {d }}$	627	4.0	1518	0.413	100	6.1	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane 2	445	2.0	1375	0.324	78^{5}	5.5	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	1072	3.2		0.413		5.8	LOS A	0.0	0.0				
North: SB Ramp													
Lane $1^{\text {d }}$	180	13.6	771	0.233	100	7.2	LOS A	0.9	24.2	Full	1300	0.0	0.0
Lane 2	127	8.0	678	0.187	100	7.5	LOS A	0.7	17.8	Short	200	0.0	0.0
Approach	307	11.3		0.233		7.3	LOS A	0.9	24.2				
West: NW La Center Rd													
Lane 1	99	20.0	538	0.183	100	9.1	LOS A	1.0	28.6	Full	650	0.0	0.0
Lane $2^{\text {d }}$	126	20.0	689	0.183	100	7.3	LOS A	1.1	31.1	Full	650	0.0	0.0
Lane 3	264	2.0	1642	0.161	100	0.0	LOS A	0.0	0.0	Short	200	0.0	0.0
Approach	489	10.3		0.183		3.7	LOS A	1.1	31.1				
Intersection	1868	6.4		0.413		5.5	LOS A	1.1	31.1				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

5 Lane underutilisation determined by program
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2037 Total Build NW La Center and NB Ramps Weekday AM
2037 Build Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2037 Total Build NW La Center and NB Ramps Weekday AM

2037 Build Weekday AM

Roundabout

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total Build NW La Center and NB Ramps Weekday AM

2037 Build Weekday AM

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \\ \hline \end{gathered}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Back Veh	Queue Dist ft	Lane Config	Lane Length	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
South: NB Ramp													
Lane 1	175	1.0	1043	0.168	100	5.0	LOS A	0.6	14.9	Full	1800	0.0	0.0
Lane 2	173	1.6	1033	0.168	100	5.0	LOS A	0.6	14.9	Full	1800	0.0	0.0
Lane $3^{\text {d }}$	408	7.0	1290	0.316	100	5.7	LOS A	1.3	33.8	Short	250	0.0	0.0
Approach	756	4.4		0.316		5.4	LOS A	1.3	33.8				
East: NW La Center Rd													
Lane $1^{\text {d }}$	679	4.0	1032	0.658	100	13.2	LOS B	5.0	129.1	Full	600	0.0	0.0
Lane 2	275	14.7	664	0.414	63^{7}	11.3	LOS B	2.0	54.8	Full	600	0.0	0.0
Approach	954	7.1		0.658		12.7	LOS B	5.0	129.1				
West: NW La Center Rd													
Lane 1	185	17.0	1335	0.139	100	3.8	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane $2^{\text {d }}$	218	17.0	1570	0.139	100	3.4	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	403	17.0		0.139		3.6	LOS A	0.0	0.0				
Intersection	2113	8.0		0.658		8.3	LOS A	5.0	129.1				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	性		\%	个 ${ }_{\text {¢ }}$		\%	F		\%	F	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	250		250	200		0	250		0	100		100
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.958			0.998			0.856			0.859	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1736	3138	0	1752	3489	0	1752	1581	0	1641	1415	0
Flt Permitted	0.370			0.421			0.702			0.722		
Satd. Flow (perm)	676	3138	0	777	3489	0	1295	1581	0	1247	1415	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		107			3			52			79	
Link Speed (mph)		45			45			30			30	
Link Distance (ft)		820			2615			1342			1004	
Travel Time (s)		12.4			39.6			30.5			22.8	
Lane Group Flow (vph)	96	609	0	147	739	0	78	54	0	47	84	0
v/c Ratio	0.25	0.33		0.33	0.37		0.24	0.12		0.15	0.20	
Control Delay	10.2	6.5		11.1	7.8		13.6	5.2		12.6	5.3	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	10.2	6.5		11.1	7.8		13.6	5.2		12.6	5.3	
Queue Length 50th (ft)	9	24		14	38		10	0		6	1	
Queue Length 95th (ft)	55	100		82	141		45	19		30	25	
Internal Link Dist (ft)		740			2535			1262			924	
Turn Bay Length (ft)	250			200			250			100		
Base Capacity (vph)	650	3021		747	3355		1024	1261		986	1135	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.15	0.20		0.20	0.22		0.08	0.04		0.05	0.07	
Intersection Summary												

Area Type:
Other

	\rangle	\rightarrow	,	\downarrow	\longleftarrow	4	4	\dagger	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个 ${ }^{\text {¢ }}$		\%	个 ${ }^{\text {P }}$		\%	F		\%	1	
Volume (veh/h)	96	439	170	147	728	11	78	2	52	47	5	79
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1827	1724	1900	1845	1840	1900	1845	1847	1900	1727	1647	1900
Adj Flow Rate, veh/h	96	439	0	147	728	11	78	2	52	47	5	79
Adj No. of Lanes	1	2	0	1	2	0	1	1	0	1	1	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, \%	4	13	13	3	3	3	3	0	0	10	100	100
Cap, veh/h	498	1807	0	644	1945	29	360	11	276	382	15	241
Arrive On Green	0.55	0.55	0.00	0.55	0.55	0.55	0.18	0.18	0.18	0.18	0.18	0.18
Sat Flow, veh/h	703	3362	0	937	3526	53	1296	58	1520	1247	84	1329
Grp Volume(v), veh/h	96	439	0	147	361	378	78	0	54	47	0	84
Grp Sat Flow(s),veh/h/ln	703	1638	0	937	1748	1831	1296	0	1578	1247	0	1413
Q Serve(g_s), s	3.4	2.6	0.0	3.6	4.4	4.4	2.1	0.0	1.1	1.2	0.0	1.9
Cycle Q Clear(g_c), s	7.7	2.6	0.0	6.2	4.4	4.4	4.0	0.0	1.1	2.3	0.0	1.9
Prop In Lane	1.00		0.00	1.00		0.03	1.00		0.96	1.00		0.94
Lane Grp Cap(c), veh/h	498	1807	0	644	964	1010	360	0	287	382	0	256
V/C Ratio(X)	0.19	0.24	0.00	0.23	0.37	0.37	0.22	0.00	0.19	0.12	0.00	0.33
Avail Cap(c_a), veh/h	1085	4545	0	1427	2426	2540	1093	0	1179	1087	0	1055
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	6.9	4.4	0.0	6.0	4.7	4.7	15.1	0.0	13.0	14.0	0.0	13.3
Incr Delay (d2), s/veh	0.2	0.1	0.0	0.2	0.2	0.2	0.3	0.0	0.3	0.1	0.0	0.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.7	1.2	0.0	0.9	2.2	2.3	0.8	0.0	0.5	0.4	0.0	0.8
LnGrp Delay(d),s/veh	7.1	4.4	0.0	6.1	5.0	5.0	15.4	0.0	13.3	14.1	0.0	14.1
LnGrp LOS	A	A		A	A	A	B		B	B		B
Approach Vol, veh/h		535			886			132			131	
Approach Delay, s/veh		4.9			5.2			14.5			14.1	
Approach LOS		A			A			B			B	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s		25.7		11.8		25.7		11.8				
Change Period ($\mathrm{Y}+\mathrm{Rc}$) , s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		52.0		28.0		52.0		28.0				
Max Q Clear Time (g_c+l1), s		9.7		4.3		8.2		6.0				
Green Ext Time (p_c), s		10.9		1.3		11.0		1.2				
Intersection Summary												
HCM 2010 Ctrl Delay			6.5									
HCM 2010 LOS			A									

SITE LAYOUT

Site: 2037 Total Build NW La Center and SB Ramps Weekday AM
2037 Build Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2037 Total Build NW La Center and SB Ramps Weekday PM

2037 Build Weekday PM

Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { =lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
East: NW La Center Rd											
1	L2	564	5.0	0.499	7.6	LOS A	0.0	0.0	0.00	0.00	33.0
6	T1	902	2.0	0.499	7.2	LOS A	0.0	0.0	0.00	0.00	37.4
Appro		1466	3.2	0.499	7.4	LOS A	0.0	0.0	0.00	0.00	35.1
North: SB Ramp											
7	L2	217	10.0	0.298	8.4	LOS A	1.2	32.0	0.65	0.65	27.3
4	T1	3	50.0	0.298	8.4	LOS A	1.2	32.0	0.65	0.65	29.1
14	R2	145	2.0	0.226	8.4	LOS A	0.8	21.0	0.63	0.63	29.0
Appr		365	7.2	0.298	8.4	LOS A	1.2	32.0	0.64	0.65	27.9
West: NW La Center Rd											
2	T1	304	7.0	0.209	7.3	LOS A	1.3	34.9	0.75	0.67	24.4
12	R2	609	1.0	0.367	0.0	LOS A	0.0	0.0	0.00	0.00	35.6
Approach		913	3.0	0.367	2.4	LOS A	1.3	34.9	0.25	0.22	31.8
All Ve		2744	3.6	0.499	5.9	LOS A	1.3	34.9	0.17	0.16	32.7

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total Build NW La Center and SB Ramps Weekday PM

2037 Build Weekday PM

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	$\begin{gathered} 95 \% \mathrm{Ba} \\ \text { Veh } \end{gathered}$	$\begin{aligned} & \text { ueue } \\ & \text { Dist } \\ & \text { ft } \end{aligned}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
East: NW La Center Rd													
Lane 1	694	4.4	1390	0.499	100	7.6	LOSA	0.0	0.0	Full	600	0.0	0.0
Lane $2^{\text {d }}$	772	2.0	1548	0.499	100	7.1	LOSA	0.0	0.0	Full	600	0.0	0.0
Approach	1466	3.2		0.499		7.4	LOS A	0.0	0.0				
North: SB Ramp													
Lane $1^{\text {d }}$	220	10.5	737	0.298	100	8.4	LOS A	1.2	32.0	Full	1300	0.0	0.0
Lane 2	145	2.0	641	0.226	100	8.4	LOS A	0.8	21.0	Short	200	0.0	0.0
Approach	365	7.2		0.298		8.4	LOS A	1.2	32.0				
West: NW La Center Rd													
Lane 1	134	7.0	643	0.209	100	8.1	LOSA	1.2	32.0	Full	650	0.0	0.0
Lane $2^{\text {d }}$	170	7.0	811	0.209	100	6.7	LOSA	1.3	34.9	Full	650	0.0	0.0
Lane 3	609	1.0	1658	0.367	100	0.0	LOS A	0.0	0.0	Short	200	0.0	0.0
Approach	913	3.0		0.367		2.4	LOS A	1.3	34.9				
Intersection	2744	3.6		0.499		5.9	LOS A	1.3	34.9				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2037 Total Build NW La Center and NB Ramps Weekday AM
2037 Build Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2037 Total Build NW La Center and NB Ramps Weekday PM

2037 Build Weekday PM

Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \hline \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{array}{r} \text { =lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \text { v/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NB Ramp ft en er men men											
3	L2	812	1.0	0.381	7.3	LOS A	1.6	40.0	0.49	0.45	24.4
8	T1	4	50.0	0.381	7.4	LOSA	1.6	40.1	0.49	0.45	28.4
18	R2	648	3.0	0.489	7.7	LOSA	2.5	62.8	0.51	0.47	29.1
Appr		1464	2.0	0.489	7.5	LOS A	2.5	62.8	0.50	0.46	26.2
East: NW La Center Rd											
6	T1	654	4.0	0.761	20.6	LOS C	6.4	166.1	0.84	0.96	17.4
16	R2	171	5.0	0.403	13.1	LOS B	1.9	48.5	0.70	0.73	24.3
Approach		825	4.2	0.761	19.0	LOS B	6.4	166.1	0.81	0.91	18.7
West: NW La Center Rd											
52	L2	$\begin{aligned} & 177 \\ & 345 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 0.165 \\ & 0.165 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.4 \end{aligned}$	$\begin{aligned} & \operatorname{LOS} A \\ & \operatorname{LOS} A \end{aligned}$	0.00.0	0.0	0.00	0.00	33.0
	T1							0.0	0.00	0.00	32.8
Approach		522	7.3	0.165	3.5	LOS A	0.0	0.0	0.00	0.00	32.8
All Ve		2811	3.6	0.761	10.1	LOS B	6.4	166.1	0.50	0.51	24.9

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total Build NW La Center and NB Ramps Weekday PM

2037 Build Weekday PM

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{aligned} & \text { Queue } \\ & \text { Dist } \\ & \text { ft } \end{aligned}$	Lane Config	Lane Length ft	$\begin{gathered} \text { Cap. } \\ \text { Adj. } \\ \% \end{gathered}$	Prob. Block \%
South: NB Ramp													
Lane 1	410	1.0	1074	0.381	100	7.3	LOS A	1.6	40.0	Full	1800	0.0	0.0
Lane 2	406	1.5	1065	0.381	100	7.4	LOS A	1.6	40.1	Full	1800	0.0	0.0
Lane $3^{\text {d }}$	648	3.0	1325	0.489	100	7.7	LOS A	2.5	62.8	Short	250	0.0	0.0
Approach	1464	2.0		0.489		7.5	LOS A	2.5	62.8				
East: NW La Center Rd													
Lane $1^{\text {d }}$	607	4.0	798	0.761	100	21.1	LOS C	6.4	166.1	Full	600	0.0	0.0
Lane 2	218	4.8	540	0.403	53^{7}	13.1	LOS B	1.9	48.5	Full	600	0.0	0.0
Approach	825	4.2		0.761		19.0	LOS B	6.4	166.1				
West: NW La Center Rd													
Lane 1	245	5.4	1485	0.165	100	3.7	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane $2^{\text {d }}$	277	9.0	1685	0.165	100	3.4	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	522	7.3		0.165		3.5	LOS A	0.0	0.0				
Intersection	2811	3.6		0.761		10.1	LOS B	6.4	166.1				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	性		\%	虾		\%	F		${ }^{7}$	F	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	250		200	300		0	350		0	100		100
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.980			0.997			0.857			0.861	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1492	3406	0	1752	3516	0	1752	1581	0	1687	1413	0
Flt Permitted	0.478			0.275			0.711			0.643		
Satd. Flow (perm)	751	3406	0	507	3516	0	1312	1581	0	1142	1413	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		30			4			174			66	
Link Speed (mph)		45			45			30			30	
Link Distance (ft)		825			2615			1342			1004	
Travel Time (s)		12.5			39.6			30.5			22.8	
Lane Group Flow (vph)	120	872	0	101	480	0	215	182	0	36	71	0
v/c Ratio	0.35	0.56		0.44	0.30		0.53	0.30		0.10	0.15	
Control Delay	12.8	10.7		17.1	8.8		19.0	4.5		12.9	5.3	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	12.8	10.7		17.1	8.8		19.0	4.5		12.9	5.3	
Queue Length 50th (ft)	16	66		14	32		40	1		6	1	
Queue Length 95th (ft)	66	168		67	87		117	36		26	24	
Internal Link Dist (ft)		745			2535			1262			924	
Turn Bay Length (ft)	250			300			350			100		
Base Capacity (vph)	715	3244		483	3347		932	1173		811	1023	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.17	0.27		0.21	0.14		0.23	0.16		0.04	0.07	
Intersection Summary												

Area Type:
Other

	4	\rightarrow	∇	\checkmark	\leftarrow	4	4	4	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	个 ${ }^{\text {a }}$		*	性		*	F		\%	F	
Volume (veh/h)	120	756	116	101	470	10	215	8	174	36	5	66
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1570	1829	1900	1845	1856	1900	1845	1845	1900	1776	1641	1900
Adj Flow Rate, veh/h	120	756	0	101	470	10	215	8	174	36	5	66
Adj No. of Lanes	1	2	0	1	2	0	1	1	0	1	1	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, \%	21	4	4	3	2	2	3	3	3	7	0	0
Cap, veh/h	489	1802	0	416	1831	39	460	19	417	356	27	362
Arrive On Green	0.52	0.52	0.00	0.52	0.52	0.52	0.28	0.28	0.28	0.28	0.28	0.28
Sat Flow, veh/h	768	3567	0	698	3531	75	1311	69	1509	1141	99	1310
Grp Volume(v), veh/h	120	756	0	101	234	246	215	0	182	36	0	71
Grp Sat Flow(s), veh/h/ln	768	1738	0	698	1763	1843	1311	0	1578	1141	0	1410
Q Serve(g_s), s	5.0	6.5	0.0	5.1	3.6	3.6	7.3	0.0	4.6	1.3	0.0	1.9
Cycle Q Clear(g_c), s	8.6	6.5	0.0	11.6	3.6	3.6	9.2	0.0	4.6	5.9	0.0	1.9
Prop In Lane	1.00		0.00	1.00		0.04	1.00		0.96	1.00		0.93
Lane Grp Cap(c), veh/h	489	1802	0	416	914	955	460	0	436	356	0	390
V/C Ratio(X)	0.25	0.42	0.00	0.24	0.26	0.26	0.47	0.00	0.42	0.10	0.00	0.18
Avail Cap(c_a), veh/h	878	3564	0	771	1808	1890	904	0	971	742	0	867
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	8.9	7.2	0.0	10.8	6.5	6.5	16.9	0.0	14.4	16.8	0.0	13.4
Incr Delay (d2), s/veh	0.3	0.2	0.0	0.3	0.1	0.1	0.7	0.0	0.6	0.1	0.0	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	1.1	3.1	0.0	1.0	1.7	1.8	2.7	0.0	2.0	0.4	0.0	0.8
LnGrp Delay(d),s/veh	9.2	7.4	0.0	11.1	6.7	6.7	17.7	0.0	15.1	17.0	0.0	13.7
LnGrp LOS	A	A		B	A	A	B		B	B		B
Approach Vol, veh/h		876			581			397			107	
Approach Delay, s/veh		7.6			7.4			16.5			14.8	
Approach LOS		A			A			B			B	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s		30.3		18.5		30.3		18.5				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		50.0		30.0		50.0		30.0				
Max Q Clear Time (g_c+l1), s		10.6		7.9		13.6		11.2				
Green Ext Time (p_c), s		11.9		2.4		11.7		2.3				
Intersection Summary												
HCM 2010 Ctrl Delay			9.8									
HCM 2010 LOS			A									

SITE LAYOUT

Site: 2037 Total Build NW La Center and SB Ramps Weekday AM
2037 Build Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2037 Total Build NW La Center and SB Ramps Weekend

2037 Build Weekend Peak

Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \mathrm{Mov} \\ & \mathrm{ID} \end{aligned}$	OD Mov	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
East: NW La Center Rd											
1	L2	563	2.0	0.533	8.0	LOS A	0.0	0.0	0.00	0.00	34.0
6	T1	1034	1.0	0.533	7.7	LOS A	0.0	0.0	0.00	0.00	37.2
Appr		1597	1.4	0.533	7.8	LOS A	0.0	0.0	0.00	0.00	35.7
North: SB Ramp											
7	L2	229	4.0	0.295	8.0	LOS A	1.2	31.1	0.66	0.66	27.8
4	T1	3	0.0	0.295	8.0	LOS A	1.2	31.1	0.66	0.66	30.0
14	R2	182	8.0	0.318	10.8	LOS B	1.3	33.5	0.69	0.71	27.3
Approach		414	5.7	0.318	9.2	LOS A	1.3	33.5	0.67	0.68	27.6
West: NW La Center Rd											
2	T1	211	3.0	0.135	6.0	LOS A	0.8	21.5	0.72	0.61	25.3
12	R2	697	2.0	0.425	0.0	LOS A	0.0	0.0	0.00	0.00	35.6
Appr		908	2.2	0.425	1.4	LOS A	0.8	21.5	0.17	0.14	33.2
All Ve		2919	2.2	0.533	6.0	LOS A	1.3	33.5	0.15	0.14	33.3

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total Build NW La Center and SB Ramps Weekend

2037 Build Weekend Peak

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \end{aligned}$	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{array}{r} \text { ueue } \\ \text { Dist } \\ \text { ft } \end{array}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
East: NW La Center Rd													
Lane 1	763	1.7	1431	0.533	100	8.0	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane $2^{\text {d }}$	834	1.0	1564	0.533	100	7.6	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	1597	1.4		0.533		7.8	LOS A	0.0	0.0				
North: SB Ramp													
Lane $1^{\text {d }}$	232	3.9	786	0.295	100	8.0	LOS A	1.2	31.1	Full	1300	0.0	0.0
Lane 2	182	8.0	573	0.318	100	10.8	LOS B	1.3	33.5	Short	200	0.0	0.0
Approach	414	5.7		0.318		9.2	LOS A	1.3	33.5				
West: NW La Center Rd													
Lane 1	94	3.0	692	0.135	100	6.7	LOS A	0.8	19.8	Full	650	0.0	0.0
Lane $2^{\text {d }}$	117	3.0	867	0.135	100	5.5	LOS A	0.8	21.5	Full	650	0.0	0.0
Lane 3	697	2.0	1642	0.425	100	0.0	LOS A	0.0	0.0	Short	200	0.0	0.0
Approach	908	2.2		0.425		1.4	LOS A	0.8	21.5				
Intersection	2919	2.2		0.533		6.0	LOS A	1.3	33.5				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2037 Total Build NW La Center and NB Ramps Weekday AM
2037 Build Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2037 Total Build NW La Center and NB Ramps Weekend

2037 Build Weekend Peak

Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \mathrm{Mov} \\ & \mathrm{ID} \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NB Ramp											
3	L2	968	1.0	0.425	7.6	LOS A	1.9	47.2	0.47	0.41	22.3
8	T1	2	0.0	0.425	7.6	LOS A	1.9	47.2	0.47	0.41	28.5
18	R2	626	3.0	0.461	7.2	LOS A	2.1	54.9	0.46	0.39	29.4
Appr		1596	1.8	0.461	7.4	LOS A	2.1	54.9	0.47	0.40	24.5
East: NW La Center Rd											
6	T1	629	3.0	0.763	21.3	LOS C	6.3	161.7	0.85	0.97	17.2
16	R2	173	12.0	0.442	15.8	LOS B	2.1	55.6	0.73	0.77	22.9
Appr		802	4.9	0.763	20.1	LOS C	6.3	161.7	0.82	0.93	18.4
West: NW La Center Rd											
5	L2	131	1.0	0.134	3.4	LOS A	0.0	0.0	0.00	0.00	33.5
2	T1	308	5.0	0.134	3.1	LOS A	0.0	0.0	0.00	0.00	32.9
Approach		439	3.8	0.134	3.2	LOS A	0.0	0.0	0.00	0.00	33.1
All Vehicles		2837	3.0	0.763	10.4	LOS B	6.3	161.7	0.50	0.49	23.7

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total Build NW La Center and NB Ramps Weekend

2037 Build Weekend Peak

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \\ \hline \end{gathered}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Back Veh	Queue Dist ft	Lane Config	Lane Length	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
South: NB Ramp													
Lane 1	485	1.0	1142	0.425	100	7.6	LOS A	1.9	47.2	Full	1800	0.0	0.0
Lane 2	485	1.0	1143	0.425	100	7.6	LOS A	1.9	47.2	Full	1800	0.0	0.0
Lane $3^{\text {d }}$	626	3.0	1357	0.461	100	7.2	LOS A	2.1	54.9	Short	250	0.0	0.0
Approach	1596	1.8		0.461		7.4	LOS A	2.1	54.9				
East: NW La Center Rd													
Lane $1^{\text {d }}$	595	3.0	780	0.763	100	21.6	LOS C	6.3	161.7	Full	600	0.0	0.0
Lane 2	207	10.5	469	0.442	58^{7}	15.8	LOS B	2.1	55.6	Full	600	0.0	0.0
Approach	802	4.9		0.763		20.1	LOS C	6.3	161.7				
West: NW La Center Rd													
Lane 1	205	2.4	1527	0.134	100	3.4	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane $2^{\text {d }}$	234	5.0	1749	0.134	100	3.0	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	439	3.8		0.134		3.2	LOS A	0.0	0.0				
Intersection	2837	3.0		0.763		10.4	LOS B	6.3	161.7				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	中 ${ }^{\text {P }}$		\%	性		\%	F		${ }^{7}$	F	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	250		250	200		0	250		0	100		100
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.979			0.996			0.857			0.867	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1597	3403	0	1752	3477	0	1752	1583	0	1805	1477	0
Flt Permitted	0.472			0.289			0.728			0.643		
Satd. Flow (perm)	794	3403	0	533	3477	0	1343	1583	0	1222	1477	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		31			5			174			40	
Link Speed (mph)		45			45			30			30	
Link Distance (ft)		826			2615			1342			1004	
Travel Time (s)		12.5			39.6			30.5			22.8	
Lane Group Flow (vph)	91	843	0	101	492	0	215	182	0	36	45	0
v/c Ratio	0.26	0.55		0.42	0.32		0.52	0.30		0.10	0.09	
Control Delay	11.2	10.7		16.5	9.0		17.9	4.3		12.1	5.7	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	11.2	10.7		16.5	9.0		17.9	4.3		12.1	5.7	
Queue Length 50th (ft)	11	63		14	33		39	1		6	1	
Queue Length 95th (ft)	50	162		66	90		112	35		25	18	
Internal Link Dist (ft)		746			2535			1262			924	
Turn Bay Length (ft)	250			200			250			100		
Base Capacity (vph)	756	3243		508	3312		1007	1231		917	1118	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.12	0.26		0.20	0.15		0.21	0.15		0.04	0.04	
Intersection Summary												

Area Type:
Other

	\rangle	\rightarrow	7	\checkmark	4	4	4	\dagger	$>$	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	个 ${ }^{\text {P }}$		\%	个t		\%	F		\%	F	
Volume (veh/h)	91	727	116	101	478	14	215	8	174	36	5	40
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1681	1829	1900	1845	1838	1900	1845	1847	1900	1900	1703	1900
Adj Flow Rate, veh/h	91	727	0	101	478	14	215	8	174	36	5	40
Adj No. of Lanes	1	2	0	1	2	0	1	1	0	1	1	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, \%	13	4	4	3	3	3	3	0	0	0	0	0
Cap, veh/h	517	1796	0	439	1790	52	479	18	394	361	43	342
Arrive On Green	0.52	0.52	0.00	0.52	0.52	0.52	0.26	0.26	0.26	0.26	0.26	0.26
Sat Flow, veh/h	813	3567	0	718	3464	101	1342	69	1511	1221	164	1309
Grp Volume(v), veh/h	91	727	0	101	241	251	215	0	182	36	0	45
Grp Sat Flow(s),veh/h/ln	813	1738	0	718	1746	1820	1342	0	1580	1221	0	1472
Q Serve(g_s), s	3.2	5.8	0.0	4.5	3.5	3.5	6.5	0.0	4.3	1.1	0.0	1.0
Cycle Q Clear(g_c), s	6.7	5.8	0.0	10.3	3.5	3.5	7.6	0.0	4.3	5.5	0.0	1.0
Prop In Lane	1.00		0.00	1.00		0.06	1.00		0.96	1.00		0.89
Lane Grp Cap(c), veh/h	517	1796	0	439	902	940	479	0	413	361	0	384
V/C Ratio(X)	0.18	0.40	0.00	0.23	0.27	0.27	0.45	0.00	0.44	0.10	0.00	0.12
Avail Cap(c_a), veh/h	982	3783	0	849	1900	1981	1053	0	1088	883	0	1014
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	8.0	6.6	0.0	9.8	6.1	6.1	15.6	0.0	13.9	16.2	0.0	12.7
Incr Delay (d2), s/veh	0.2	0.1	0.0	0.3	0.2	0.2	0.7	0.0	0.7	0.1	0.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.7	2.8	0.0	0.9	1.7	1.8	2.5	0.0	2.0	0.4	0.0	0.4
LnGrp Delay(d),s/veh	8.1	6.8	0.0	10.0	6.3	6.2	16.2	0.0	14.6	16.3	0.0	12.8
LnGrp LOS	A	A		B	A	A	B		B	B		B
Approach Vol, veh/h		818			593			397			81	
Approach Delay, s/veh		6.9			6.9			15.5			14.4	
Approach LOS		A			A			B			B	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s		28.3		16.8		28.3		16.8				
Change Period ($\mathrm{Y}+\mathrm{Rc}$) , s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		49.0		31.0		49.0		31.0				
Max Q Clear Time (g_ctl1), s		8.7		7.5		12.3		9.6				
Green Ext Time (p_c), s		11.2		2.2		11.0		2.2				
Intersection Summary												
HCM 2010 Ctrl Delay			9.0									
HCM 2010 LOS			A									

Appendix BB 2037 Trip Distribution Sensitivity Analysis Worksheets for 85/15 Split

SITE LAYOUT

Site: 2037 Total NoBuild NW 319 St and NW 31st Ave Weekday AM
2037 No Build Weekday AM
Roundabout

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Avel2037 Analysis - UpdatelNW 319 St and NW 31st Ave_2037 NB.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

MOVEMENT SUMMARY

Site: 2037 Total NoBuild NW 319 St and NW 31st Ave Weekday AM
2037 No Build Weekday AM
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dem Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NW 31st Ave											
3	L2	5	0.0	0.226	7.0	LOS A	1.2	34.8	0.54	0.43	33.9
8	T1	5	1.0	0.226	7.0	LOS A	1.2	34.8	0.54	0.43	33.9
18	R2	168	23.0	0.226	7.0	LOS A	1.2	34.8	0.54	0.43	29.7
Appr		178	21.7	0.226	7.0	LOS A	1.2	34.8	0.54	0.43	29.9
East: NW 319 St											
1	L2	193	11.0	0.258	4.2	LOS A	1.6	43.2	0.08	0.02	32.7
6	T1	234	2.0	0.258	4.2	LOS A	1.6	43.2	0.08	0.02	32.1
16	R2	146	1.0	0.114	3.7	LOS A	0.6	15.2	0.08	0.02	32.5
Appr		573	4.8	0.258	4.1	LOS A	1.6	43.2	0.08	0.02	32.4
North: NW 31st Ave											
7	L2	110	1.0	0.124	5.0	LOS A	0.6	15.6	0.52	0.40	30.1
4	T1	5	1.0	0.124	5.0	LOS A	0.6	15.6	0.52	0.40	32.4
14	R2	1	1.0	0.124	5.0	LOS A	0.6	15.6	0.52	0.40	30.7
Approach		116	1.0	0.124	5.0	LOS A	0.6	15.6	0.52	0.40	30.3
West: NW 319 St											
5	L2	1	0.0	0.232	5.9	LOS A	1.2	31.8	0.50	0.38	34.5
2	T1	211	4.0	0.232	5.9	LOS A	1.2	31.8	0.50	0.38	32.4
12	R2	15	0.0	0.232	5.9	LOS A	1.2	31.8	0.50	0.38	33.5
Appr		227	3.7	0.232	5.9	LOS A	1.2	31.8	0.50	0.38	32.5
All V		1094	6.9	0.258	5.1	LOS A	1.6	43.2	0.29	0.20	31.7

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement LOS F will result if $v / c>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Tuesday, February 17, 2015 8:13:48 AM SIDRA INTERSECTION 6.0.22.4722
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Avel2037 Analysis - UpdatelNW 319 St and NW 31st Ave_2037 NB.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

LANE SUMMARY

Site: 2037 Total Build NW 319 St and NW 31st Ave Weekday AM 85_15 Split

2037 Build Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout

Lane Use and Performance													
	Demand F Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \end{aligned}$	Average Delay sec	Level of Service	95\% Back Veh	$\begin{gathered} \text { ueue } \\ \text { Dist } \\ \text { ft } \end{gathered}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
South: NW 31st Ave													
Lane $1^{\text {d }}$	178	21.7	792	0.225	100	7.0	LOS A	1.2	34.2	Full	1600	0.0	0.0
Approach	178	21.7		0.225		7.0	LOS A	1.2	34.2				
East: NW 319 St													
Lane $1^{\text {d }}$	325	7.3	1624	0.200	100	3.8	LOS A	1.2	31.6	Full	650	0.0	0.0
Lane 2	248	1.0	1469	0.169	100	3.8	LOS A	1.0	24.2	Full	650	0.0	0.0
Approach	573	4.6		0.200		3.8	LOS A	1.2	31.6				
North: NW 31st Ave													
Lane $1^{\text {d }}$	193	1.0	1004	0.192	100	5.4	LOS A	1.0	24.7	Full	1400	0.0	0.0
Approach	193	1.0		0.192		5.4	LOS A	1.0	24.7				
West: NW 319 St													
Lane $1^{\text {d }}$	150	3.6	922	0.163	100	5.5	LOS A	0.8	21.7	Full	1300	0.0	0.0
Approach	150	3.6		0.163		5.5	LOS A	0.8	21.7				
Intersection	1094	6.6		0.225		4.8	LOS A	1.2	34.2				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Processed: Tuesday, February 17, 2015 8:57:24 AM
SIDRA INTERSECTION 6.0.22.4722
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102
NW 319th St and NW 31st Avel2037 Analysis - UpdatelNW 319 St and NW 31st Ave 85_15.sip6
8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

SITE LAYOUT

Site: 2037 Total Build NW La Center and SB Ramps Weekday AM 85_15 Split
2037 Build Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2037 Total Build NW La Center and SB Ramps Weekday AM 85_15 Split

2037 Build Weekday AM

Roundabout

Movement Performance - Vehicles										
Mov OD ID Mov	Dema Total veh/h	$\begin{gathered} \text { =lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
East: NW La Center Rd 0										
1 L 2	627	4.0	0.439	6.4	LOS A	0.0	0.0	0.00	0.00	32.6
$6 \quad$ T1	445	2.0	0.439	5.5	LOS A	0.0	0.0	0.00	0.00	37.7
Approach	1072	3.2	0.439	6.0	LOS A	0.0	0.0	0.00	0.00	34.0
North: SB Ramp										
7 L2	177	13.0	0.236	7.3	LOS A	0.9	25.0	0.59	0.59	27.7
4 T1	3	50.0	0.236	7.3	LOS A	0.9	25.0	0.59	0.59	29.6
14 R2	127	8.0	0.189	7.6	LOS A	0.7	18.3	0.58	0.58	29.2
Approach	307	11.3	0.236	7.4	LOS A	0.9	25.0	0.59	0.59	28.3
West: NW La Center Rd										
2 T1	225	20.0	0.183	8.1	LOS A	1.1	31.2	0.74	0.69	23.6
12 R2	264	2.0	0.161	0.0	LOS A	0.0	0.0	0.00	0.00	35.6
Approach	489	10.3	0.183	3.7	LOS A	1.1	31.2	0.34	0.32	29.9
All Vehicles	1868	6.4	0.439	5.6	LOS A	1.1	31.2	0.19	0.18	31.8

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total Build NW La Center and SB Ramps Weekday AM 85_15 Split

2037 Build Weekday AM

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Back Veh	ueue Dist ft	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
East: NW La Center Rd													
Lane $1^{\text {d }}$	667	3.9	1520	0.439	100	6.4	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane 2	405	2.0	1339	0.303	69^{7}	5.4	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	1072	3.2		0.439		6.0	LOS A	0.0	0.0				
North: SB Ramp													
Lane $1^{\text {d }}$	180	13.6	763	0.236	100	7.3	LOS A	0.9	25.0	Full	1300	0.0	0.0
Lane 2	127	8.0	671	0.189	100	7.6	LOS A	0.7	18.3	Short	200	0.0	0.0
Approach	307	11.3		0.236		7.4	LOS A	0.9	25.0				
West: NW La Center Rd													
Lane 1	99	20.0	538	0.183	100	9.1	LOS A	1.0	28.6	Full	650	0.0	0.0
Lane $2^{\text {d }}$	126	20.0	689	0.183	100	7.3	LOS A	1.1	31.2	Full	650	0.0	0.0
Lane 3	264	2.0	1642	0.161	100	0.0	LOS A	0.0	0.0	Short	200	0.0	0.0
Approach	489	10.3		0.183		3.7	LOS A	1.1	31.2				
Intersection	1868	6.4		0.439		5.6	LOS A	1.1	31.2				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2037 Total Build NW La Center and NB Ramps Weekday AM 85_15 Split
2037 Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout

MOVEMENT SUMMARY

Site: 2037 Total Build NW La Center and NB Ramps Weekday AM 85_15 Split

2037 Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \hline \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h		$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \text { v/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NB Ramp											
3	L2	346	1.0	0.243	5.3	LOS A	0.9	23.1	0.41	0.34	25.0
8	T1	2	50.0	0.243	5.5	LOS A	0.9	23.1	0.41	0.35	29.1
18	R2	408	7.0	0.316	5.7	LOS A	1.3	33.8	0.42	0.35	30.0
Appr		756	4.4	0.316	5.5	LOS A	1.3	33.8	0.41	0.34	27.4
East: NW La Center Rd											
6	T1	727	4.0	0.664	13.4	LOS B	5.4	139.7	0.69	0.69	20.2
16	R2	227	17.0	0.418	11.4	LOS B	2.1	57.7	0.60	0.61	25.1
Appro		954	7.1	0.664	12.9	LOS B	5.4	139.7	0.67	0.67	21.3
West: NW La Center Rd											
5	L2	106	17.0	0.139	3.8	LOS A	0.0	0.0	0.00	0.00	33.4
2	T1	297	17.0	0.139	3.5	LOS A	0.0	0.0	0.00	0.00	32.4
Approach		403	17.0	0.139	3.6	LOS A	0.0	0.0	0.00	0.00	32.7
All Vehicles		2113	8.0	0.664	8.5	LOS A	5.4	139.7	0.45	0.43	25.5

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total Build NW La Center and NB Ramps Weekday AM 85_15 Split

2037 Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \end{aligned}$	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{aligned} & \text { Queue } \\ & \text { Dist } \\ & \mathrm{ft} \end{aligned}$	Lane Config	Lane Length ft	$\begin{array}{r} \text { Cap. } \\ \text { Adj. } \\ \% \end{array}$	Prob. Block \%
South: NB Ramp													
Lane 1	78	1.0	919	0.085	35^{7}	4.7	LOS A	0.3	7.1	Short	200	0.0	0.0
Lane 2	270	1.4	1109	0.243	100	5.5	LOS A	0.9	23.1	Full	1800	0.0	0.0
Lane $3^{\text {d }}$	408	7.0	1290	0.316	100	5.7	LOS A	1.3	33.8	Short	250	0.0	0.0
Approach	756	4.4		0.316		5.5	LOS A	1.3	33.8				
East: NW La Center Rd													
Lane $1^{\text {d }}$	677	4.0	1021	0.664	100	13.5	LOS B	5.4	139.7	Full	600	0.0	0.0
Lane 2	277	14.7	661	0.418	63^{7}	11.4	LOS B	2.1	57.7	Full	600	0.0	0.0
Approach	954	7.1		0.664		12.9	LOS B	5.4	139.7				
West: NW La Center Rd													
Lane 1	185	17.0	1335	0.139	100	3.8	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane $2^{\text {d }}$	218	17.0	1570	0.139	100	3.4	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	403	17.0		0.139		3.6	LOS A	0.0	0.0				
Intersection	2113	8.0		0.664		8.5	LOS A	5.4	139.7				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2037 Total NoBuild NW 319 St and NW 31st Ave Weekday AM
2037 No Build Weekday AM
Roundabout

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Avel2037 Analysis - UpdatelNW 319 St and NW 31st Ave_2037 NB.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

MOVEMENT SUMMARY

Site: 2037 Total Build NW 319 St and NW 31st Ave Weekday PM 85_15 Split
2037 Build Total Traffic Weekday PM
85/15 Split Sensitivity Analysis
Roundabout

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement
LOS F will result if v/c>1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total Build NW 319 St and NW 31st Ave Weekday PM 85_15 Split

2037 Build Total Traffic Weekday PM
85/15 Split Sensitivity Analysis
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. $\%$	Average Delay sec	Level of Service	$\begin{gathered} \text { 95\% Bac } \\ \text { Veh } \end{gathered}$	$\begin{aligned} & \text { Queue } \\ & \text { Dist } \\ & \mathrm{ft} \end{aligned}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
South: NW 31st Ave													
Lane $1^{\text {d }}$	246	6.6	642	0.383	100	11.0	LOS B	2.5	66.2	Full	1600	0.0	0.0
Approach	246	6.6		0.383		11.0	LOS B	2.5	66.2				
East: NW 319 St													
Lane 1	406	5.8	1329	0.305	100	5.4	LOS A	2.2	56.6	Full	650	0.0	0.0
Lane $2^{\text {d }}$	641	1.0	1677	0.382	100	5.4	LOS A	3.1	78.4	Full	650	0.0	0.0
Approach	1047	2.9		0.382		5.4	LOS A	3.1	78.4				
North: NW 31st Ave													
Lane $1^{\text {d }}$	535	1.2	930	0.575	100	11.9	LOS B	4.8	121.5	Full	1400	0.0	0.0
Approach	535	1.2		0.575		11.9	LOS B	4.8	121.5				
West: NW 319 St													
Lane $1^{\text {d }}$	175	2.9	661	0.265	100	8.7	LOS A	1.7	42.6	Full	1300	0.0	0.0
Approach	175	2.9		0.265		8.7	LOS A	1.7	42.6				
Intersection	2003	2.9		0.575		8.1	LOS A	4.8	121.5				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Processed: Tuesday, February 17, 2015 9:00:31 AM
SIDRA INTERSECTION 6.0.22.4722

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidral2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Ave\2037 Analysis - UpdatelNW 319 St and NW 31st Ave 85_15.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

SITE LAYOUT

Site: 2037 Total Build NW La Center and SB Ramps Weekday AM 85_15 Split
2037 Build Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2037 Total Build NW La Center and SB Ramps Weekday PM 85_15 Split
2037 Build Weekday PM
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \hline \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	Flows HV $\%$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
East: NW La Center Rd											
1	L2	564	5.0	0.487	7.5	LOS A	0.0	0.0	0.00	0.00	32.9
6	T1	902	2.0	0.487	7.3	LOS A	0.0	0.0	0.00	0.00	37.5
Appr		1466	3.2	0.513	7.4	LOS A	0.0	0.0	0.00	0.00	35.1
North: SB Ramp											
7	L2	217	10.0	0.301	8.5	LOS A	1.2	32.8	0.65	0.66	27.2
4	T1	3	50.0	0.301	8.5	LOS A	1.2	32.8	0.65	0.66	29.1
14	R2	145	2.0	0.228	8.5	LOS A	0.8	21.5	0.64	0.64	29.0
Appr		365	7.2	0.301	8.5	LOS A	1.2	32.8	0.65	0.65	27.9
West: NW La Center Rd											
2	T1	304	7.0	0.209	7.3	LOS A	1.3	35.0	0.75	0.67	24.4
12	R2	609	1.0	0.367	0.0	LOS A	0.0	0.0	0.00	0.00	35.6
Approach		913	3.0	0.367	2.4	LOS A	1.3	35.0	0.25	0.22	31.8
All Vehicles		2744	3.6	0.513	5.9	LOS A	1.3	35.0	0.17	0.16	32.7

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total Build NW La Center and SB Ramps Weekday PM 85_15 Split

2037 Build Weekday PM

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \end{gathered}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{aligned} & \text { ueue } \\ & \text { Dist } \\ & \text { ft } \end{aligned}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
East: NW La Center Rd													
Lane 1	672	4.5	1378	0.487	95^{7}	7.5	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane $2^{\text {d }}$	794	2.0	1548	0.513	100	7.3	LOSA	0.0	0.0	Full	600	0.0	0.0
Approach	1466	3.2		0.513		7.4	LOS A	0.0	0.0				
North: SB Ramp													
Lane $1^{\text {d }}$	220	10.5	731	0.301	100	8.5	LOS A	1.2	32.8	Full	1300	0.0	0.0
Lane 2	145	2.0	635	0.228	100	8.5	LOSA	0.8	21.5	Short	200	0.0	0.0
Approach	365	7.2		0.301		8.5	LOS A	1.2	32.8				
West: NW La Center Rd													
Lane 1	134	7.0	642	0.209	100	8.1	LOS A	1.2	32.0	Full	650	0.0	0.0
Lane $2^{\text {d }}$	170	7.0	811	0.209	100	6.7	LOSA	1.3	35.0	Full	650	0.0	0.0
Lane 3	609	1.0	1658	0.367	100	0.0	LOSA	0.0	0.0	Short	200	0.0	0.0
Approach	913	3.0		0.367		2.4	LOS A	1.3	35.0				
Intersection	2744	3.6		0.513		5.9	LOS A	1.3	35.0				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2037 Total Build NW La Center and NB Ramps Weekday AM 85_15 Split
2037 Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout

MOVEMENT SUMMARY

Site: 2037 Total Build NW La Center and NB Ramps Weekday PM 85_15 Split

2037 Total Traffic Weekday PM
85/15 Split Sensitivity Analysis
Roundabout

Movement Performance - Vehicles											
$\begin{gathered} \text { Mov } \\ \text { ID } \end{gathered}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NB Ramp											
3	L2	812	1.0	0.579	9.5	LOS A	3.5	87.5	0.55	0.56	23.7
8	T1	4	50.0	0.579	10.4	LOS B	3.5	87.5	0.58	0.60	27.3
18	R2	648	3.0	0.489	7.7	LOS A	2.5	62.8	0.51	0.47	29.1
Appro		1464	2.0	0.579	8.7	LOS A	3.5	87.5	0.53	0.52	25.7
East: NW La Center Rd											
6	T1	654	4.0	0.830	27.3	LOS C	9.6	247.4	0.93	1.14	15.5
16	R2	171	5.0	0.440	15.0	LOS B	2.3	60.6	0.76	0.80	23.4
Appro		825	4.2	0.830	24.7	LOS C	9.6	247.4	0.90	1.07	16.9
West: NW La Center Rd											
5	L2	177	4.0	0.165	3.7	LOS A	0.0	0.0	0.00	0.00	33.0
2	T1	345	9.0	0.165	3.4	LOS A	0.0	0.0	0.00	0.00	32.8
Appro		522	7.3	0.165	3.5	LOS A	0.0	0.0	0.00	0.00	32.8
All Ve		2811	3.6	0.830	12.4	LOS B	9.6	247.4	0.54	0.58	23.9

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total Build NW La Center and NB Ramps Weekday PM 85_15 Split

2037 Total Traffic Weekday PM
85/15 Split Sensitivity Analysis
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	$\begin{aligned} & \text { 95\% Bac } \\ & \text { Veh } \end{aligned}$	$\begin{aligned} & \text { Queue } \\ & \text { Dist } \\ & \mathrm{ft} \end{aligned}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
South: NB Ramp													
Lane 1	169	1.0	913	0.185	32^{7}	5.8	LOS A	0.7	16.4	Short	200	0.0	0.0
Lane 2	647	1.3	1118	0.579	100	10.4	LOS B	3.5	87.5	Full	1800	0.0	0.0
Lane $3^{\text {d }}$	648	3.0	1325	0.489	100	7.7	LOS A	2.5	62.8	Short	250	0.0	0.0
Approach	1464	2.0		0.579		8.7	LOS A	3.5	87.5				
East: NW La Center Rd													
Lane $1^{\text {d }}$	607	4.0	731	0.830	100	28.2	LOS C	9.6	247.4	Full	600	0.0	0.0
Lane 2	218	4.8	496	0.440	53^{7}	15.0	LOS B	2.3	60.6	Full	600	0.0	0.0
Approach	825	4.2		0.830		24.7	LOS C	9.6	247.4				
West: NW La Center Rd													
Lane 1	245	5.4	1485	0.165	100	3.7	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane $2^{\text {d }}$	277	9.0	1685	0.165	100	3.4	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	522	7.3		0.165		3.5	LOS A	0.0	0.0				
Intersection	2811	3.6		0.830		12.4	LOS B	9.6	247.4				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

Processed: Tuesday, February 17, 2015 10:31:08 AM SIDRA INTERSECTION 6.0.22.4722 www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\104 NW La Center and NB Ramps\2037 Analysis - Update\104 NW La Center and NB Ramps 85_15.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

SITE LAYOUT

Site: 2037 Total NoBuild NW 319 St and NW 31st Ave Weekday AM
2037 No Build Weekday AM
Roundabout

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Avel2037 Analysis - UpdatelNW 319 St and NW 31st Ave_2037 NB.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

MOVEMENT SUMMARY

Site: 2037 Total Build NW 319 St and NW 31st Ave Weekend 85_15 Split
2037 Build Total Traffic Weekend Peak
85/15 Split Sensitivity Analysis
Roundabout

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total Build NW 319 St and NW 31st Ave Weekend 85_15 Split

2037 Build Total Traffic Weekend Peak

85/15 Split Sensitivity Analysis
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \end{aligned}$	Average Delay sec	Level of Service	$\begin{gathered} 95 \% \mathrm{Bac} \\ \text { Veh } \end{gathered}$	$\begin{aligned} & \text { Queue } \\ & \text { Dist } \\ & \text { ft } \end{aligned}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: NW 31st Ave													
Lane ${ }^{\text {d }}$	188	4.3	632	0.297	100	9.6	LOS A	1.9	48.9	Full	1600	0.0	0.0
Approach	188	4.3		0.297		9.6	LOS A	1.9	48.9				
East: NW 319 St													
Lane 1	377	3.6	1309	0.288	100	5.3	LOS A	2.0	51.2	Full	650	0.0	0.0
Lane $2^{\text {d }}$	838	1.0	1714	0.489	100	6.5	LOS A	4.6	116.4	Full	650	0.0	0.0
Approach	1215	1.8		0.489		6.2	LOS A	4.6	116.4				
North: NW 31st Ave													
Lane $1^{\text {d }}$	569	1.0	978	0.582	100	11.6	LOS B	4.9	122.6	Full	1400	0.0	0.0
Approach	569	1.0		0.582		11.6	LOS B	4.9	122.6				
West: NW 319 St													
Lane $1^{\text {d }}$	194	3.7	648	0.299	100	9.4	LOS A	1.9	49.2	Full	1300	0.0	0.0
Approach	194	3.7		0.299		9.4	LOS A	1.9	49.2				
Intersection	2166	2.0		0.582		8.2	LOS A	4.9	122.6				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Processed: Tuesday, February 17, 2015 9:02:30 AM
SIDRA INTERSECTION 6.0.22.4722

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidral2014 Analysis\Interchange Roundabouts\102 NW 319th St and NW 31st Avel2037 Analysis - UpdatelNW 319 St and NW 31st Ave 85_15.sip6 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

SITE LAYOUT

Site: 2037 Total Build NW La Center and SB Ramps Weekday AM 85_15 Split
2037 Build Weekday AM
Roundabout

MOVEMENT SUMMARY

Site: 2037 Total Build NW La Center and SB Ramps Weekend 85_15 Split

2037 Build Weekend Peak

Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \mathrm{Mov} \\ & \mathrm{ID} \end{aligned}$	OD Mov	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
East: NW La Center Rd											
1	L2	563	2.0	0.503	7.7	LOS A	0.0	0.0	0.00	0.00	33.6
6	T1	1034	1.0	0.503	8.1	LOS A	0.0	0.0	0.00	0.00	37.6
Appr		1597	1.4	0.571	7.9	LOS A	0.0	0.0	0.00	0.00	35.7
North: SB Ramp											
7	L2	229	4.0	0.304	8.3	LOS A	1.3	33.4	0.68	0.68	27.7
4	T1	3	0.0	0.304	8.3	LOS A	1.3	33.4	0.68	0.68	29.9
14	R2	182	8.0	0.326	11.2	LOS B	1.3	35.7	0.70	0.72	27.1
Appr		414	5.7	0.326	9.5	LOS A	1.3	35.7	0.69	0.70	27.4
West: NW La Center Rd											
2	T1	211	3.0	0.136	6.0	LOS A	0.8	21.6	0.72	0.61	25.3
12	R2	697	2.0	0.425	0.0	LOS A	0.0	0.0	0.00	0.00	35.6
Approach		908	2.2	0.425	1.4	LOS A	0.8	21.6	0.17	0.14	33.2
All Vehicles		2919	2.2	0.571	6.1	LOS A	1.3	35.7	0.15	0.14	33.2

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total Build NW La Center and SB Ramps Weekend 85_15 Split

2037 Build Weekend Peak

Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \\ & \hline \end{aligned}$	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{array}{r} \text { ueue } \\ \text { Dist } \\ \text { ft } \end{array}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
East: NW La Center Rd													
Lane 1	704	1.8	1400	0.503	88^{7}	7.7	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane $2^{\text {d }}$	893	1.0	1564	0.571	100	8.2	LOSA	0.0	0.0	Full	600	0.0	0.0
Approach	1597	1.4		0.571		7.9	LOS A	0.0	0.0				
North: SB Ramp													
Lane $1^{\text {d }}$	232	3.9	764	0.304	100	8.3	LOS A	1.3	33.4	Full	1300	0.0	0.0
Lane 2	182	8.0	559	0.326	100	11.2	LOS B	1.3	35.7	Short	200	0.0	0.0
Approach	414	5.7		0.326		9.5	LOS A	1.3	35.7				
West: NW La Center Rd													
Lane 1	94	3.0	690	0.136	100	6.7	LOS A	0.8	19.8	Full	650	0.0	0.0
Lane $2^{\text {d }}$	117	3.0	866	0.136	100	5.5	LOS A	0.8	21.6	Full	650	0.0	0.0
Lane 3	697	2.0	1642	0.425	100	0.0	LOS A	0.0	0.0	Short	200	0.0	0.0
Approach	908	2.2		0.425		1.4	LOS A	0.8	21.6				
Intersection	2919	2.2		0.571		6.1	LOS A	1.3	35.7				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

SITE LAYOUT

Site: 2037 Total Build NW La Center and NB Ramps Weekday AM 85_15 Split
2037 Total Traffic Weekday AM
85/15 Split Sensitivity Analysis
Roundabout

MOVEMENT SUMMARY

Site: 2037 Total Build NW La Center and NB Ramps Weekend 85_15 Split

2037 Total Traffic Weekend 85/15 Split Sensitivity Analysis
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \hline \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h		$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \text { v/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: NB Ramp											
3	L2	968	1.0	0.574	8.3	LOS A	3.4	84.9	0.49	0.44	22.1
8	T1	2	0.0	0.574	8.9	LOS A	3.4	84.9	0.51	0.46	28.0
18	R2	626	3.0	0.561	10.1	LOS B	3.3	83.2	0.55	0.53	28.0
Appr		1596	1.8	0.574	9.0	LOS A	3.4	84.9	0.51	0.47	24.0
East: NW La Center Rd											
6	T1	629	3.0	0.850	30.7	LOS C	10.6	271.9	0.96	1.22	14.6
16	R2	173	12.0	0.493	18.7	LOS B	2.7	74.1	0.79	0.86	21.7
Appr		802	4.9	0.850	28.1	LOS C	10.6	271.9	0.92	1.14	16.0
West: NW La Center Rd											
5	L2	131	1.0	0.134	3.4	LOS A	0.0	0.0	0.00	0.00	33.5
2	T1	308	5.0	0.134	3.1	LOS A	0.0	0.0	0.00	0.00	32.9
Approach		439	3.8	0.134	3.2	LOS A	0.0	0.0	0.00	0.00	33.1
All Vehicles		2837	3.0	0.850	13.5	LOS B	10.6	271.9	0.55	0.59	22.5

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 2037 Total Build NW La Center and NB Ramps Weekend 85_15 Split

2037 Total Traffic Weekend 85/15 Split Sensitivity Analysis
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Back Veh	Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: NB Ramp													
Lane 1	169	1.0	923	0.184	32^{7}	5.7	LOS A	0.6	16.4	Short	200	0.0	0.0
Lane $2^{\text {d }}$	801	1.0	1396	0.574	100	8.9	LOS A	3.4	84.9	Full	1800	0.0	0.0
Lane 3	626	3.0	1116	0.561	100	10.1	LOS B	3.3	83.2	Short	250	0.0	0.0
Approach	1596	1.8		0.574		9.0	LOS A	3.4	84.9				
East: NW La Center Rd													
Lane $1^{\text {d }}$	590	3.0	694	0.850	100	31.5	LOS C	10.6	271.9	Full	600	0.0	0.0
Lane 2	212	10.3	430	0.493	58^{7}	18.7	LOS B	2.7	74.1	Full	600	0.0	0.0
Approach	802	4.9		0.850		28.1	LOS C	10.6	271.9				
West: NW La Center Rd													
Lane 1	205	2.4	1527	0.134	100	3.4	LOS A	0.0	0.0	Full	600	0.0	0.0
Lane $2^{\text {d }}$	234	5.0	1749	0.134	100	3.0	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	439	3.8		0.134		3.2	LOS A	0.0	0.0				
Intersection	2837	3.0		0.850		13.5	LOS B	10.6	271.9				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

7 Lane underutilisation specified by user
d Dominant lane on roundabout approach

Appendix CC NW La Center Road/I-5 Interchange IJR Methods \& Assumptions Supplement Collision Analysis

NW La Center Road/I-5 Interchange IJR Methods \& Assumptions Supplement - Collision Analysis

September 15, 2014
Project \#: 12393

To: \quad Rick Keniston, John Tevis, Barb De Ste. Croix; WSDOT Don Peterson, FHWA

From: Kelly Laustsen; Marc Butorac, PE, PTOE
Copy: Project Team (i.e., CH2MHILL, Olson Engineering, and BergerABAM)

This memorandum documents the methods and assumptions for the Collision Analysis conducted as part of Policy Point 3 for the NW La Center Road/Interstate 5 (I-5) Interchange Justification Report (IJR). It serves to supplement the IJR Methods \& Assumptions document approved in October 2013 and provide more specific information related to the collision analysis.

BACKGROUND

The Washington Department of Transportation (WSDOT) Design Manual (Reference 1) provides relevant guidance in Section 550.04(3), which details the components of Policy Point 3 for an IJR. As listed in the manual, the following are included:

- Collision Analysis - "Observed collision history": Document the observed collision history, for the most current data years, of the existing limited access freeway and the affected local roadway system. The support team will determine the number of years as well as the scope and detail of this section.
- Collision Analysis - "Proposal(s)": A collision analysis should be performed for the year of opening and design year of the existing limited access freeway and the affected local roadway system for the "no-build," "build," and possibly other scenarios as determined by the support team. The support team will also determine the year of opening and design year as well as the scope and detail of this section.

The intent of the collision analysis is to document the safety effect of the proposed interchange modifications.

OBSERVED COLLISION HISTORY

The first part of the collision analysis documents the "observed collision history." The methods and assumptions used to document the observed collision history are listed below.

Methods

- Collision data will be provided by the WSDOT Statewide Travel \& Collision Data Office in excel form, containing basic information about reported crashes. The information received about each crash is listed in Attachment A.
- The collisions will be mapped using the following:
- Primary trafficway (see diagram with roadway identification in Attachment B)
- Milepost
- Vehicle compass direction from/to and impact location (to assess side of roadway)
- Vehicle action (e.g. going wrong way)
- Collisions on the mainline will be associated with the ramp merge/diverge locations based on:
- Milepost
- Vehicle action (if listed as merging or exiting)
- Collision on the ramps will be associated with the ramp terminals based on:
- Junction relationship (if listed as being at an intersection)
- Collision types will be grouped in the following categories (WSDOT classification shown in parenthesis):
- Animal (e.g., domestic animal, vehicle strikes deer, vehicle strikes all other nondomestic animal)
- Fixed object (e.g., bridge rail, cable barrier, concrete barrier/jersey barrier, fence, guardrail, retaining wall, street light pole or base, tree or stump, wood sign post, other object)
- Rear-end (from some direction - rear-end)
- Sideswipe (from same or opposite direction - rear-end)
- Vehicle overturned
- Other
- Collisions will be summarized in tabular form by year, severity, type, and location.
- Where helpful to show observed trends, collisions will be graphed by type, severity, roadway surface condition, weather, lighting conditions, time, and/or date.

Assumptions

- Five years ($1 / 1 / 09$ through $12 / 31 / 13$) of crash data will be assessed based on the Highway Safety Manual recommendation to use 3 to 5 years of historical crash data for predictive assessments.
- Crashes will be evaluated at the following locations, consistent with the locations for operations assessment:
- I-5 mainline within a half-mile north and south of the NW La Center Road interchange striped ramp gores to capture the influence of the interchange
- I-5 mainline within a half-mile north and south of the truck weigh station south of NW La Center Road
- NW La Center Road/I-5 on- and off-ramp segments
- IJR study intersections:
- NW 31 ${ }^{\text {st }}$ Avenue/NW 319 ${ }^{\text {th }}$ Street;
- I-5 Southbound Ramp/NW La Center Road;
- I-5 Northbound Ramp/NW La Center Road; and
- NW Paradise Park Road/NW La Center Road

PROPOSAL

Given the improvements proposed for the interchange, including reconfiguration of the ramp terminals and realignment of the frontage roads, the collision analysis will focus on the proposed condition and expected change in crash frequency. The methods and assumptions used to document the proposed condition are listed below.

Methods

- Information related to the anticipated change in crash frequency with the installation of a roundabout will be provided from the Highway Safety Manual (HSM, Reference 1) and NCHRP Report 672: Roundabouts: An Informational Guide, Second Edition (Reference 3), specifically Exhibit 5-9.
- The research presented in the final report Safety Prediction Methodology and Analysis Tool for Freeways and Interchanges (Project 17-45, Reference 4) will be used to assess the change in expected crash frequency with the proposed roundabout improvements at the ramp terminals.
- This research has been approved by the American Association of State Highway and Transportation Officials (AASHTO) and will be incorporated in the next edition of the HSM.
- This research was used to develop the Enhanced Interchange Safety Analysis Tool (ISATe), which can be used to evaluate freeway and interchange safety. It will be used for the assessment at the ramp terminals.
- Expected crash frequency will be presented at the study intersections for the no-build and build scenarios in 2017 (day of opening) and 2037 (design year), accounting for the installation of roundabout traffic control at the ramp terminals.
- The anticipated safety effect of the frontage road realignment and improved access spacing will be discussed qualitatively given that no crash modification factor (CMF) currently exists for such an improvement (i.e., increased intersection spacing). The ISATe tool does include an input for "distance to the next public street intersection on the outside crossroad leg," which may help account for the effect from the realignment.
- The anticipated safety effect of the freeway ramp reconstruction (e.g., improving to current standards) will be discussed qualitatively. NCHRP 17-45 and the ISATe tool will be used to assess the impact of adding a second lane on the northbound off-ramp. It also provides information on the relationship between ramp speeds and crash frequency.
- The lane configurations, alignment, and traffic volumes developed as part of the operations assessment will be utilized for the safety analysis.

Assumptions

- Average Annual Daily Traffic is assumed to grow at the same rate as the turning movement counts used in the operations analysis, for purposes of performing the Project 17-45 analysis. This equates to a 2% annual linear growth on I-5 and the ramps and 3% annual linear growth on NW 319 ${ }^{\text {th }}$ Street and NW La Center Road.
- The interchange is considered rural for the existing and 2017 analysis and urban for the 2037 analysis.

NEXT STEPS

Please review the Collision Analysis methods and assumption memorandum and let us know if you have any questions or comments. Any feedback will be used to inform the development of the Collision Analysis as part of Policy Point 3 for the NW La Center Road/I-5 Interchange Improvement Project.

ATTACHMENTS

A. WSDOT Crash Data Fields
B. Roadway Identification Map

REFERENCES

1. Washington Department of Transportation, Design Manual, July 2014.
2. American Association of State Highway and Transportation Officials. Highway Safety Manual, $1^{\text {st }}$ Edition. 2010.
3. Rodegerdts, L., et al. NCHRP Report 672: Roundabouts: An Informational Guide, Second Edition. Washington, D.C., Transportation Research Board, National Research Council. 2010.
4. Bonneson, J., et al. Safety Prediction Methodology and Analysis Tool for Freeways and Interchanges. Washington, D.C., Transportation Research Board of the National Academies. Project No. 17-45. May 2012.

ATTACHMENT A: WSDOT CRASH DATA FIELDS

The crash data from WSDOT is provided in excel form and includes the following data fields:

- State Route Only History Indicator
- JURISDICTION
- CITY
- PRIMARY TRAFFICWAY
- BLOCK NUMBER
- MILE POST
- INTERSECTING TRAFFICWAY
- CO ONLY INTERSECTING COUNTY ROAD MILEPOST
- DIST FROM REF POINT
- MI or FT
- COMP DIR FROM REF POINT
- REFERENCE POINT NAME
- REPORT NUMBER
- DATE
- TIME
- MOST SEVERE INJURY TYPE
- \# INJ
- \#FAT
- \#VEH
- \#PEDS
- \#PEDAL
- JUNCTION RELATIONSHIP
- WEATHER
- ROADWAY SURFACE CONDITIONS
- LIGHTING CONDITIONS
- FIRST COLLISION TYPE / OBJECT STRUCK
- VEHICLE 1 TYPE
- VEH 1 ACTION
- MV DRIVER CONT CIRC 1 (UNIT 1)
- MV DRIVER CONT CIRC 2 (UNIT 1)
- MV DRIVER CONT CIRC 3 (UNIT 1)
- VEH 1 COMP DIR FROM
- VEH 1 COMP DIR TO
- VEHICLE 2 TYPE
- VEH 2 ACTION
- MV DRIVER CONT CIRC 1 (UNIT 2)
- MV DRIVER CONT CIRC 2 (UNIT 2)
- MV DRIVER CONT CIRC 3 (UNIT 2)
- VEH 2 COMP DIR FROM
- VEH 2 COMP DIR TO
- PEDESTRIAN ACTION (UNIT 2)
- PEDESTRIAN CONT CIRC 1 (UNIT 2)
- PEDESTRIAN CONT CIRC 2 (UNIT 2)
- PEDCYCLIST ACTION (UNIT 1)
- PEDCYCLIST CONT CIRC 1 (UNIT 1)
- PEDCYCLIST CONT CIRC 2 (UNIT 1)
- PEDCYCLIST ACTION (UNIT 2)
- PEDCYCLIST CONT CIRC 1 (UNIT 2)
- PEDCYCLIST CONT CIRC 2 (UNIT 2)
- IMPACT LOCATION (City, County \& Misc Trafficways - 2010 forward)

ATTACHMENT B: ROADWAY IDENTIFICATION DIAGRAM

(see next page)

Not To Scale
02/13/2013 KLK

Appendix DD Crash Data (2009-2013)

							$\pm=$		\cdots										. $2 \times$				\%	+										-									\cdots
	-											-			-			-	ㅍum	\cdots	-	-					\cdots																\pm
											-	-			-			-)	-	+	-				-	$=$					-										-
												"			$\underline{\sim}$			-	=	\%		+					-																-
												-			-	\pm		-	+	max	2-	20mer					\cdots	\%															$\underline{2}$
												\pm			-	\pm			$=$		$\underline{=}$	\pm																					3
												-mim;			$\underline{\square}$	comas			E		-	+					=a	-															-
																			-	\pm		+					2-m																$\underline{2}$
		\pm										-			$\underline{=}$	mame		-	-	=	=	$\underline{\sim}$																					+
												-			$\underline{\square}$	\pm		-		\%																							-
	-														\square				-)	\pm	\pm					2s	-	-														\cdots
	\pm	$=$										-			$=$	$=$		+	-		=	-					2	\pm	\pm														=
	-	$=$										-			-	-mman		-	=	-	-	-				-	3	=	\pm				-										\cdots
											2ame	-						-	-			+ameme	temem																				-
															-	\cdots		-	-	5	\underline{m}	-					2m	$=$															-
	-											-			-	mam		-	-	-	-	-					man	"															-
															=	comas			+		-					\cdots	\%	\pm	\cdots														
	\pm	$\underline{\sim}$									\%	-			$\underline{\square}$	-		-	-	\pm	\pm	-												\%									\square
		$\underline{+}$													-					\%ma								\cdots	\#														
																				**																							
		m										\cdots			m			为	m	-	m	-																					
												-				-		\cdots	\cdots		-						\ldots	\cdots	-														
												-			\cdots	\square		\cdots		-	\cdots																			$=$			\cdots
												-			$\underline{\square}$	-	\cdots	-	-	\cdots	0	-					\cdots																-
		\pm										\pm			$\underline{\square}$	-			-	${ }^{+\infty}$	\pm	-					-	$=$															$\underline{2}$
	-	\pm										-			\pm			\cdots	-	\%	-	+																					+20
	\pm	\pm			$\stackrel{\square}{*}$						\cdots				\pm	mam		mem	S	\%	-	$\underline{0}$																					2-m
	$\underline{-}$	\sim										-			$\underline{-}$	-mamem			5	2-m	$\underline{-}$	$\underline{-2}$	\pm																				$\underline{-}$
	-	$=$													=	moman		-	V	Examen	=	-					=	-					-										=
	\pm	\pm										$=$			=	mmam		\%	=		m																						2m
	-	\pm										\pm			$\underline{\square}$	-mman		${ }^{2}$	\pm	5	\square	-					-	-	-														-
	\pm	\pm			,							+			-	momem		-	-	=	-	-					2mer																$\underline{\square}$
		\pm			\cdots										\pm	moman		-	2	\%	zom						\pm	\pm	\pm														
																mamamer		-					\pm																				
	-	-									-	-			-	momas		-	=	\%	-	+																					2-
	-	-			$\stackrel{\square}{\square}$						\%	-			-	$=$		-	V	\pm	-	\square					-	\pm	-				-										=
															-				=	\%							2																
	\pm	\pm			$\stackrel{\square}{\square}$						\%	\pm			$\underline{\square}$	=			=	\cdots	2						2mer	"	$=$														\pm
	-				\cdots							-				mmam				2ma	$\underline{-m}$	\pm	-				-	-				"	-										=
	\cdots	-			\cdots						\%	-			\pm	mamam		emem	"mer	=	\pm	\pm																					=
	\pm	\pm			\%						\%	\pm			$\underline{\square}$	mamas			\underline{m}	-	-	-					=	mater															
	\pm	\pm			$\stackrel{\square}{\sim m}$							-			\square				\cdots	\%	-	-					2m	meme															\%
	-	\pm													\pm	commom		-	-	5	+	-					2						-										
	-				$\stackrel{*}{*}$						${ }^{\sim}$	-			\square	-			S	Ex	\pm	-					\pm	$\underline{=}$															-
	-	\pm			\%						\%	-			-	mamam		-	5	2m	2me	-				\cdots	\pm	$\underline{=}$															momem
	-	\pm									\%	\cdots		$\because:{ }^{2}$	-			-	-	5x		\pm	-mem				\pm	$\underline{*}$					-										
	-									momm	-	-		\because	$\underline{\square}$	-mm		-	=	\pm	=		$\underline{\sim}$				\cdots	$=$	$=$			-	-										$\underline{2}$
	-				${ }^{*}$						\cdots	-		\because	-	momam		-	2		-	\pm	\cdots				\cdots	-															\%
	\pm	-										-		:	4	mman			- $=$	\%	=	+																					=
												=			$\underline{=}$			\pm			20	$\underline{2}$				2																	2
												-		\%	\cdots	\pm		\cdots		\pm	m	\cdots					2m	$=$				-	-										$\underline{=}$
	-				\%						\pm	-			-			-	-	5	+				\cdots	-	-	$=$	\cdots			2	-										
	\pm				\cdots					mm	\%	"		:	$\underline{=}$	minm		=	m	a	=	\pm			\cdots	\%																	\pm
	-									$\pm=$		-		,	$\underline{ }$	mas		-	\pm	\%	-	\pm			-	-	-	-															
														:	.	- ${ }^{\text {masa }}$				\%																							+
														:	m	mmam		\cdots	=	- ${ }_{\text {en }}$	m	\cdots																					
	m	=			\%										Ses	mamman		-m	2	\pm		$\underline{+}$			$=$	-	\%	$\underline{ }$				$=$	\cdots										\pm
	-	-			-							-			-	-		-	-	-	-	-			-	-																	2-2
		\pm			${ }^{\text {m m m }}$					${ }^{2}$					m	mamam		mem	$\underline{=}$	-	=	+			2	E-							-										2-
					-						,		$\%$	\because	\cdots	-		memememer	$\underline{\square}$		-	"mem				-	+imer	2															2m
															-	-			=			-					3																

Appendix EE Predictive Crash Assessment Worksheets

Crash Frequency Assessment at Ramp Terminals with Improvements

Intersection	Observed Crashes(2009-2013)	Observed Crash Rate (/year)	Expected Crash Frequency (/year)					
			$\begin{aligned} & 2017 \text { No } \\ & \text { Build } \end{aligned}$	$\begin{aligned} & 2017 \text { Build } \\ & \text { (ISATe) } \end{aligned}$	2017 Build (w roundabout CMF)	$\begin{aligned} & 2037 \text { No } \\ & \text { Build } \end{aligned}$	$\begin{array}{\|l} 2017 \text { Build } \\ \text { (ISATe) } \end{array}$	2017 Build (w roundabout CMF)
NW La Center Rd/ I-5 SB Ramps	0	0	0.7	0.702	0.39	0.979	1.074	0.60
NW La Center Rd/ I-5 NB Ramps	13	2.6	3.1	2.868	1.61	5.546	5.112	2.86
Total	13	2.6	3.8	3.57	2.00	6.525	6.186	3.46

Build (ISATe) presents results from ISATe tool, accounting for change in distance to the frontage road intersections Build (w roundabout CMF) applies CMF from NCHRP 972 to assess impact of roundabout control at intersection

Roundabouts expected to reduce crashes by 44\%
CMF 0.56 (NCHRP 972)

Input Worksheet for Crossroad Ramp Terminals							
Clear	Echo Input Values	Check Input Values		Terminal 1		Terminal 2	
	Echo Input Values (View results in Column T)			Crash Period	Study Period	Crash Period	Study Period
			2018				
			2019				
			2020				
			2021				
			2022				
			2023				
			2024				
			2025				
			2026				
			2027				
			2028				
			2029				
			2030				
			2031				
			2032				
Outside Crossroad Leg Data			2009				
Average daily traffic (AADT out) by year, veh/d: (enter data only for those years for which it is available, leave other years blank)			2010				
			2011				
			2012				
			2013				
			2014				
			2015				
			2016				
			2017				
			2018				
			2019				
			2020				
			2021				
			2022				
			2023				
			2024				
			2025				
			2026				
			2027				
			2028				
			2029				
			2030				
			2031				
			2032				
Exit Ramp Data			2009				
Average daily traffic (AADT $T_{\text {ex }}$) by year, veh/d: (enter data only for those years for which it is available, leave other years blank)			2010				
			2011				
			2012				
			2013				
For a B4 terminal configuration, enter the AADT for the diagonal exit ramp (not the loop exit ramp).			2014				
			2015				
			2016				
			2017				
			2018				
			2019				
			2020				

Output Worksheet for Crossroad Ramp Terminals					
Signal $=$ signalized intersection modelUnsig $=$ unsignalized intersection model		Terminal 1		Terminal 2	
	Applicable Models	Crash Period	$\begin{aligned} & \text { Study } \\ & \text { Period } \end{aligned}$	Crash Period	Study Period
Crash Severity Distribution (during Study Period)					
Fatal crash frequency ($\mathrm{N}^{\star}{ }_{\text {e, w, , at, } \mathrm{k}}$), crashes:			0.002		0.014
Incapacitating injury crash freq. (N^{*} e,w,x,a,t, $)$, crashes:			0.011		0.072
Non-incapacitating inj. crash freq. ($\mathrm{N}^{*} \mathrm{e,w,x,at,B)} \mathrm{}, \mathrm{crashes:}$			0.037		0.238
Possible injury crash freq. ($\mathrm{N}^{*}{ }_{e, w, x, \mathrm{a}, \mathrm{c}, \mathrm{C}}$, crashes:			0.129		0.836
Total fatal-and-injury crash freq. ($\left.\mathrm{N}^{*}{ }_{\text {e, w, }, \text { atatif }}\right)$, crashes:			0.179		1.160
			0.449		1.908
Total crash frequency (N^{*} e,w,x,at,as)), crashes:			0.628		3.069

Input Worksheet for Crossroad Ramp Terminals							
Clear	Echo Input Values	Check Input Values		Terminal 1		Terminal 2	
	(View results in Column T)			Crash Period	Study Period	Crash Period	Study Period
			2018				
			2019				
			2020				
			2021				
			2022				
			2023				
			2024				
			2025				
			2026				
			2027				
			2028				
			2029				
			2030				
			2031				
			2032				
Outside Crossroad Leg Data			2009				
Average daily traffic (AADT out) by year, veh/d: (enter data only for those years for which it is available, leave other years blank)			2010				
			2011				
			2012				
			2013				
			2014				
			2015				
			2016				
			2017				
			2018				
			2019				
			2020				
			2021				
			2022				
			2023				
			2024				
			2025				
			2026				
			2027				
			2028				
			2029				
			2030				
			2031				
			2032				
Exit Ramp Data			2009				
Average daily traffic (AADT ${ }_{\text {ex }}$) by year, veh/d: (enter data only for those years for which it is available, leave other years blank)			2010				
			2011				
			2012				
			2013				
For a B4 terminal configuration, enter the AADT for the diagonal exit ramp (not the loop exit ramp).			2014				
			2015				
			2016				
			2017				
			2018				
			2019				
			2020				

Output Worksheet for Crossroad Ramp Terminals					
Signal = signalized intersection model		Terminal 1		Terminal 2	
Unsig = unsignalized intersection model	Applicable Models	$\begin{aligned} & \text { Crash } \\ & \text { Period } \end{aligned}$	$\begin{aligned} & \hline \text { Study } \\ & \text { Period } \end{aligned}$	Crash Period	Study Period
Crash Severity Distribution (during Study Period)					
Fatal crash frequency (N^{*} e,w,x,at,K), crashes:			0.003		0.011
Incapacitating injury crash freq. (N^{*} e, w, , at, $)$, crashes:			0.016		0.060
Non-incapacitating inj. crash freq. ($\mathrm{N}^{*} \mathrm{e,w,x,a,B}$), crashes:			0.052		0.197
Possible injury crash freq. ($\left.\mathrm{N}^{*}{ }_{\mathrm{e}, \mathrm{w}, \mathrm{x}, \mathrm{t}, \mathrm{C}}\right)$, crashes:			0.183		0.692
Total fatal-and-injury crash freq. ($\left.\mathrm{N}^{*}{ }_{\text {e, w, }, \text { atatif }}\right)$, crashes:			0.254		0.960
Property-damage-only crash freq. ($\mathrm{N}_{\text {* }}^{\text {e, w, }, \text { atatodo }}$), crashes:			0.449		1.908
Total crash frequency (N^{*} e, w, x,ata, $)^{\text {a }}$, crashes:			0.702		2.868

Output Worksheet for Crossroad Ramp Terminals					
Signal = signalized intersection model	Terminal 1	Terminal 2			
Unsig = unsignalized intersection model	Applicable	Crash Models	Study Period	Crash Period	Study Period
Period					

Input Worksheet for Crossroad Ramp Terminals							
Clear	Echo Input Values (View results in Column T)	Check Input Values		Terminal 1		Terminal 2	
				Crash Period	Study Period	Crash Period	Study Period
Basic Intersection Data							
Ramp terminal configuration:				D4	D4	D4	D4
Ramp terminal description:				SB ramps at La Center		NB ramps at La Center	
Ramp terminal traffic control type:				One stop	One stop	One stop	One stop
Is a non-ramp public street leg present at the terminal (l_{ps})?:							
Alignment Data							
Exit ramp skew angle ($\mathrm{l}_{\text {sk }}$), degrees:				0	0	0	0
Distance to the next public street intersection on the outside crossroad leg ($L_{\text {str }}$), mi:				0.021	0.021	0.024	0.024
Distance to the adjacent ramp terminal ($\mathrm{L}_{\text {rmp }}$), mi:				0.104	0.104	0.104	0.104
Traffic Control							
Left-Turn Operational Mode							
Crossroad	Inside approach	Protected-only mode ($\mathrm{I}_{\mathrm{p}, \mathrm{l}, \mathrm{in}}$)?:					
	Outside approach	Protected-only mode ($\mathrm{l}_{\mathrm{p}, \mathrm{l}, \text { out }}$)?:					
Right-Turn Control Type							
Ramp	Exit ramp approach	\|Right-turn control type:		Stop	Stop	Stop	Stop
Cross Section Data							
Crossroad median width (W_{m}), ft:				0	0	0	0
Number of Lanes							
Crossroad	Both approaches	Lanes serving through vehicles ($\mathrm{n}_{\text {th }}$):		2	2	2	2
	Inside approach	Lanes serving through vehicles ($\mathrm{n}_{\text {th, } \mathrm{n}}$):					
	Outside approach	Lanes serving through vehicles ($\mathrm{n}_{\text {th,out }}$):					
Ramp	Exit ramp approach	All lanes ($\mathrm{n}_{\text {ex }}$):		1	1	1	1
Right-Turn Channelization see note:							
Crossroad	Inside approach	Channelization present ($\mathrm{l}_{\mathrm{ch,in}}$)?:					
	Outside approach	Channelization present ($\mathrm{I}_{\text {ch,out }}$)?:					
Ramp	Exit ramp approach	Channelization present	$\left(\mathrm{l}_{\mathrm{ch}, \mathrm{ex}}\right)$?:				
Left-Turn Lane or Bay							
Crossroad	Inside approach	Lane or bay present ($\mathrm{l}_{\text {bay,lt,in }}$)?:		No	No	No	No
		Width of lane or bay ($\mathrm{W}_{\mathrm{b}, \mathrm{in}}$), ft:					
	Outside approach	Lane or bay present ($\mathrm{l}_{\text {bay, } \mathrm{lt} \text {,out) }}$)?:					
		Width of lane or bay ($\mathrm{W}_{\mathrm{b}, \mathrm{out}}$), ft:					
Right-Turn Lane or Bay							
Crossroad	Inside approach	Lane or bay present ($\mathrm{l}_{\text {bay,rt,in }}$)?:					
	Outside approach	Lane or bay present (l	y,rt,out)?:	No	No	No	No
Access Data							
Number of driveways on the outside crossroad leg (n_{dw}):							
Number of public street approaches on the outside crossroad leg (n_{ps}):				2	2	2	2
Traffic Data			Year				
Inside Crossroad Leg Data			2009				
Average daily traffic (AADT ${ }_{\text {in }}$) by year (enter data only for those years for it is available, leave other years bla		eh/d: ch	2010				
		2011					
		2012					
		2013					
		2014					
		2015					
		2016					
		2017					

Output Worksheet for Crossroad Ramp Terminals					
Signal $=$ signalized intersection modelUnsig = unsignalized intersection model		Terminal 1		Terminal 2	
	Applicable Models	Crash Period	Study Period	Crash Period	Study Period
Crash Severity Distribution					
Fatal crash frequency (N^{*} e,w,w,at,k), crashes:			0.001		0.013
Incapacitating injury crash freq. (N^{*} e,w,x,a,t, $)$, crashes:			0.007		0.066
Non-incapacitating inj. crash freq. (N^{*} e,w,x,a,t,), crashes:			0.043		0.427
Possible injury crash freq. ($\mathrm{N}^{*}{ }_{e, w, x, \mathrm{a}, \mathrm{c}, \mathrm{C}}$, crashes:			0.187		1.870
Total fatal-and-injury crash freq. ($\mathrm{N}_{\text {e, }{ }_{\text {e, }, \text {, a, } \text {, } \mathrm{f} \text {) }} \text {, crashes: }}$			0.238		2.375
			0.741		3.171
Total crash frequency (N^{*} e,w,x,at,as$)$, crashes:			0.979		5.546

Output Worksheet for Crossroad Ramp Terminals					
Signal = signalized intersection model		Terminal 1		Terminal 2	
Unsig = unsignalized intersection model	Applicable Models	Crash Period	Study Period	Crash Period	Study Period
Crash Severity Distribution (during Study Period)					
Fatal crash frequency ($\mathrm{N}^{*}{ }_{e, w, w, a t, \mathrm{~K}}$), crashes:			0.002		0.010
Incapacitating injury crash freq. (N^{*} e,w,w,a,t,A$)$, crashes:			0.009		0.054
Non-incapacitating inj. crash freq. ($\mathrm{N}_{\text {e, w, } \mathrm{\chi}, \mathrm{at,}, \mathrm{~B}}$), crashes:			0.060		0.349
Possible injury crash freq. ($\mathrm{N}^{*}{ }_{e, w, x, \mathrm{at,c}, \mathrm{C}}$, crashes:			0.262		1.528
Total fatal-and-injury crash freq. (N^{*} e,w,x,a,t,fi)), crashes:			0.333		1.941
Property-damage-only crash freq. (N^{*} e,w,x,at,pdo), , crashes:			0.741		3.171
Total crash frequency ($\mathrm{N}^{*}{ }_{e, w, \chi, \mathrm{atas}}$), crashes:			1.074		5.112

Output Worksheet for Crossroad Ramp Terminals					
Signal = signalized intersection model	Terminal 1	Terminal 2			
Unsig $=$ unsignalized intersection model	Applicable Models	Crash Period	Study Period	Crash Period	Study Period

Appendix FF Truck Speed Study

Date:
Start Time
End Time $\quad 1: 55$ PM
Surveyor: JR, Sara, Brian and Bill

Heavy Vehicle Spot Speed Survey

Item	Time	Truck Description	Truck Class	Merge Point	1000 Feet	2000 Feet	3000 Feet
1	10:45:22	Blue Bud Light-T	10	42	40	53	51
2	10:46:39	Grey Blue-T	10	37	42	53	57
3	10:47:43	White Garbage	9	48	39	64	61
4	10:48:55	White White-T	8	47	48	67	57
5	10:50:00	Red Green-T	10	38	52	51	54
6	10:51:42	Wideload	10	37	42	51	57
7	10:52:46	Wideload	10	42	53	55	57
8	10:53:41	Red White-T	10	43	47	58	61
9	10:56:17	White White-T	9	45	57	60	61
10	10:57:27	White Red-T	9	39	52	57	61
11	10:58:28	Small White Truck	9	41	56	57	54
12	11:00:06	Red w/combine	5	35	55	54	54
13	11:01:04	Baby Blue W-T	10	34	41	49	54
14	11:02:10	White w/Red Stripe	9	45	44	58	61
15	11:03:51	Gas Truck	9	45	58	58	61
16	11:04:39	Car Carrier	10	41	53	55	57
17	11:05:57	White W/C	9	44	45	60	57
18	11:07:20	White Tubing-T	10	38	39	49	51
19	11:08:14	Red GT on T	12	44	44	61	57
20	11:09:21	White w/wood	10	33	30	41	48
21	11:10:07	Black Black-T	13	32	49	61	57
22	11:11:30	Gas Truck	9	45	45	61	57
23	11:12:31	Small Red Truck	13	49	37	60	57
24	11:13:43	Red White-T	5	48	40	62	54
25	11:14:50	Lime Green	9	27	40	59	61
26	11:15:44	White w/Yellow Sign on-T	10	40	40	57	61
27	11:17:01	White Log T	9	33	35	47	46
28	11:18:46	Red White-T	9	32	43	55	61
29	11:19:47	Purple Red	10	38	53	59	57
30	11:20:45	White Gas DBL-T	13	36	38	47	51
31	11:22:08	Gray Metal-T	9	45	44	53	51
32	11:23:25	Fedex	6	49	46	59	57
33	11:24:48	Red Metal Coils	10	33	35	49	51
34	11:25:54	White w/white skirt	9	36	42	54	61
35	11:27:00	White Red H	9	44	46	57	61
36	11:28:07	Green White Canopy	13	38	40	52	54
37	11:28:58	Purple w/Canopy	9	44	53	53	57
38	11:29:53	Light Brown White-T	10	32	54	50	54
39	11:32:45	Red White-T	9	42	42	56	54
40	11:34:37	Black Chemical Tanks	13	37	29	48	48
41	11:36:39	Small Ladder Truck	6	48	47	51	57
42	11:38:30	Small White Truck	5	33	55	52	70
43	11:44:11	Gray White-T	10	32	44	50	54
44	11:44:55	Small Red Truck	5	55	43	62	61
45	11:45:50	White GT	9	40	42	54	54
46	11:47:08	Light Blue White-T	9	39	54	50	54
47	11:48:01	Blue Empty T	9	41	43	53	51

Quality Counts
 TRANSPORTATION DATA COLLECTION SERVICES

Date:
Start Time
End Time
Surveyor: JR, Sara, Brian and Bill

Heavy Vehicle Spot Speed Survey

			Average Speeds	41	44	55	56
Item	Time	Truck Description	Truck Class	Merge Point	1000 Feet	2000 Feet	3000 Feet
48	11:49:18	Yellow Penske	5	43	44	58	54
49	11:50:10	Pickup Truck Equipment	8	34	43	54	57
50	11:51:14	Purple	10	34	42	49	51
51	11:52:05	White White-T	9	41	35	56	54
52	11:53:05	White White-T	9	38	37	53	54
53	11:54:06	Baby Blue	13	37	59	53	51
54	11:55:09	Black Red-T	9	41	48	54	57
55	11:56:18	White White-T	9	40	48	53	57
56	11:57:32	White \& Blue	9	42	46	55	57
57	11:58:28	Red White-T	9	47	59	56	57
58	11:59:35	Dark Gray White-T	10	36	58	49	51
59	12:00:50	Blue Wide Load	10	36	42	49	51
60	12:01:37	Blue Black-T	9	40	50	55	54
61	12:02:24	Rite Aid	13	40	52	53	57
62	12:03:38	Carson Oil	6	43	45	55	51
63	12:05:08	White White-T	8	35	50	53	51
64	12:05:35	White McKinney	9	43	51	55	54
65	12:07:02	Green Construction	13	38	43	51	54
66	12:07:55	White no T	6	44	50	59	65
67	12:08:43	White Tank-T	9	42	40	57	61
68	12:09:39	Gray	9	44	45	57	61
69	12:10:51	Gray Orange-T	10	34	47	50	51
70	12:11:59	Orange Orange-T	9	36	48	55	57
71	12:13:13	Red Logger	9	36	47	52	51
72	12:14:14	White Green	10	35	36	52	54
73	12:15:21	Thermo King White	5	49	45	48	54
74	12:16:15	White Rite Aid	13	38	36	52	54
76	12:18:37	Tan Oil	8	42	37	53	57
77	12:19:31	White Oil	8	38	30	52	57
78	12:20:39	Orange Logger	10	40	45	53	61
79	12:21:42	White Black-T	10	42	42	51	57
80	12:22:44	White Train Wheels	9	30	29	55	57
82	12:25:16	Purple White-T	9	48	49	58	54
83	12:26:13	Red White-T	9	42	36	51	48
84	12:26:57	Red Empty-T	9	40	45	57	61
85	12:28:13	White Tow Truck	5	49	40	55	57
86	12:29:09	White Gray-T	10	36	44	53	48
88	12:31:15	Red White-T	9	33	39	60	61
89	12:32:26	Rite Aid	13	34	40	60	61
90	12:33:06	Red White	9	44	47	58	61
91	12:34:01	Black White-T	9	47	41	59	57
92	12:34:57	Yellow Penske	5	50	54	62	70
93	12:36:14	Gray Red	9	50	49	63	65
94	12:37:08	Red White Stripe	9	45	45	58	57
95	12:38:01	White White-T	9	34	32	56	61
96	12:38:48	Red Dump 2xT	10	46	47	58	48
97	12:42:45	Black Septic-T	6	31	60	61	57

Quality Counts
 TRANSPORTATION DATA COLLECTION SERVICES
 Date:
 Start Time:
 End Time 1:55 PM
 Surveyor: JR, Sara, Brian and Bill

Heavy Vehicle Spot Speed Survey

			Average Speeds	41	44	55	56
Item	Time	Truck Description	Truck Class	Merge Point	1000 Feet	2000 Feet	3000 Feet
98	12:43:36	White White-T	9	39	46	48	54
99	12:44:29	Red Red-T	9	41	40	55	54
100	12:45:20	Yellow Colored-T	9	41	32	55	54
101	12:47:47	Yellow White-T	8	39	35	53	61
102	12:49:22	Blue Logger	10	43	32	55	51
104	12:51:48	Green White-T	10	48	48	54	54
105	12:52:44	Red White-T	9	39	50	55	57
106	12:53:39	White White-T	10	44	44	56	57
107	12:56:20	Black White-T	9	30	28	51	54
108	12:57:48	Black Orange	10	34	27	49	54
109	12:59:06	Blue White	9	42	41	50	57
110	1:00:54	White White-T	9	43	36	59	57
111	1:02:17	White Swift	9	40	41	48	54
112	1:03:15	Gray Construction	13	38	31	50	54
113	1:04:32	White White-T	9	37	37	54	54
114	1:05:55	Small Uhaul	5	51	52	59	61
115	1:06:57	Red Logger	6	40	38	61	61
116	1:08:03	White empty-T	9	42	40	60	57
117	1:09:27	Green McKinney	9	43	45	59	54
118	1:10:35	Black Logger	9	37	36	56	57
119	1:11:20	Small Red	5	56	42	64	61
120	1:12:35	Small White Mayflower	5	48	52	58	57
121	1:14:21	White GT White-T	10	53	48	60	54
122	1:15:50	White White-T	9	37	40	53	57
123	1:16:53	Red Logger	10	36	31	50	61
124	1:18:29	Red Logger empty	9	47	53	59	61
125	1:20:54	Blue White-T	10	40	46	50	51
126	1:21:51	ABF Truck	9	44	50	55	57
127	1:22:58	White White-T	9	42	36	58	57
128	1:23:46	White Sound Beverage	10	35	44	49	57
130	1:26:28	Tan Oil	9	40	45	52	61
131	1:28:02	Tan White-T	9	38	41	53	65
132	1:29:05	Gray Gray-T	9	29	49	52	61
133	1:29:55	Red Green-T	10	35	51	50	54
134	1:30:52	Purple Blue White-T	9	43	38	55	54
135	1:32:29	White White-T	9	39	51	56	57
136	1:33:23	White no-T	6	43	46	52	65
137	1:34:14	Blue no-T	6	46	52	50	54
138	1:36:45	Blue White-T	9	46	43	56	61
139	1:37:40	Red White-T	9	46	41	59	61
140	1:38:43	Small White Truck	5	49	51	58	41
141	1:39:36	White	9	42	53	63	65
142	1:41:05	Tan Scrap Metal	10	38	42	51	51
143	1:41:54	Car Carrier Large	9	38	45	55	57
144	1:42:58	Red White-T	9	45	49	60	65
145	1:43:53	Red White-T	9	40	53	56	61
146	1:44:55	White White-T	9	42	51	59	61

Quality Counts
TRANSPORTATION DATA
COLLECTION SERVICES

Date:	10/21/2014
Start Time:	10:45 AM
End Time	1:55 PM
Surveyor: JR, Sara, Brian and Bill	

Heavy Vehicle Spot Speed Survey

		Average Speeds	$\mathbf{4 1}$	$\mathbf{4 4}$	$\mathbf{5 4}$	$\mathbf{5 6}$	
Item	Time	Truck Description	Truck Class	Merge Point	1000 Feet	2000 Feet	3000 Feet
147	$1: 45: 39$	Gray w/metal load	10	45	52	68	5
148	$1: 46: 39$	GMC Black	5	37	44	58	
150	$1: 48: 37$	Whtie Car Carrier	9	35	42	57	
151	$1: 49: 22$	Red White-T	9	44	48	59	57
152	$1: 51: 25$	Green Gray-T	10	38	46	57	
153	$1: 52: 24$	Blue Empty	10	52	51	59	51
154	$1: 53: 54$	White Blue-T	10	35	51	62	46
155	$1: 54: 53$	White Canvas	10	35	44	48	54

All classes
Average
Minimum
Maximum
Median

149

44	55	56
27	41	41
60	68	70
44	55	57

Appendix GG Design Criteria

NW La Center Road/l-5 Interchange Improvement Project Design Criteria Interstate Interchange Areas

Matrix 2
Row 11

This checklist is to confirm interpretation of design criteria. Your project may require that additional/different/or fewer Design Elements be addressed.

Design Class	Class I-1 (Exh. 1140-5)
Functional Class	INTERSTATE (I-5)
Design Year	2016
Design Speed	Ramp Range: 70 mph - 25mph (Exh. 1360-4, based on I-5 design speed of 80mph) Cross Road: 45 mph
ADT	
Truck Percentage	
Right of Way Width	

$\begin{gathered} \text { DESIGN } \\ \text { ELEMENT } \end{gathered}$	Design Level (B/M/F	Criteria	REFERENCE \& COMMENTS
Ramps \& Collector Distributors			
Horizontal Alignment	F	-	
Stopping Sight Distance		730ft	Exh. 1260-1
Max. Superelevation		10\%	1250.04 (Exh. 1250-4a)
Vertical Alignment	F	-	
Maximum Grade		5\%/3\%	Exh. 1360-5 (5\% max., 3\% desirable)
Stopping Sight Distance		$\begin{aligned} & \hline 730 \mathrm{ft} / \\ & 155 \mathrm{ft} \\ & \hline \end{aligned}$	Exh. 1260-1 (Vd=70mph/Vd=25mph)
Passing Sight Distance		N/A	
Decision Sight Distance		N/A	
Lane Width	F		
Number of Lanes		1/2/3	Exh. 1360-6: NB - 2 at gore, 3 at intersection; SB - 1 at gore, 2 at intersection
Lane Width		$\begin{aligned} & \hline 15 \mathrm{ft} / 25 \mathrm{ft} \\ & \hline 12 \mathrm{ft} \\ & \hline \end{aligned}$	Exh. 1360-6: single-lane ramp/two-lane ramp/aux lane
Turning Roadway Width		25 ft	Exh. 1240-2a ($\mathrm{R}=1,000$ ' to 2,999')

$\begin{gathered} \text { DESIGN } \\ \text { ELEMENT } \end{gathered}$	Design Level (B/M/F)	Criteria	REFERENCE \& COMMENTS
Shoulder Width	F		
Shoulder Width-Left		$2 \mathrm{ft} / 4 \mathrm{ft}$	Exh. 1360-6: single-lane/ two-lane (plus 2' shy at barriers)
Shoulder Width-Right		8ft/10ft	Exh. 1360-6: ramp/Exh. 1360-13c aux lane (plus 2' shy at barriers)
Lane Transition			
Channelization Tapers	F		
		70/1	Exh. 1210-1 Min. angle w/out curve $=0^{\circ} 49^{\prime}$ at 70 mph
On/Off Connections	F		
On Connection		Singlelane, tapered	Exh. 1360-13a
Off Connection		Twolane, tapered	Exh. 1360-14d
Cross Slope Lane	F		
		2\%	Section 1230.04
Cross Slope Shoulder	F		
		2\%	Section 1230.04.
Fill/Ditch Slopes	F		
Fill Slopes		6H:1V	Exh. 1230-4a or 4b-6H:1V max (0'-10' height of fill, depth of ditch), 4H:1H max (10'-20')
Ditch In-slopes		6H:1V	Exh. 1230-4a or $4 \mathrm{~b}-6 \mathrm{H}: 1 \mathrm{~V} \max \left(0^{\prime}-10^{\prime}\right.$ height of fill, depth of ditch), 4H:1H max (10'-20')
			- ${ }^{\text {a }}$
Limited Access	F		
			-
Clear Zone	F		
		Varies	Exh. 1600-2
Signing	F		
		*	Provide Permanent signing in accordance with WSDOT Standard Plans, Section M - Roadway Delineation and WSDOT Design Manual Chapter 1020
Delineation	F		
		*	Provide Permanent signing in accordance with WSDOT Standard Plans, Section M - Roadway Delineation nd WSDOT Design Manual Chapter 1030
Illumination	F		
		$\begin{array}{\|l\|} \hline \text { Varies } \\ 0.6 \text { to } \\ 0.9 \\ \hline \end{array}$	(footcandles) Exh. 1040-25 Section 1040.05
ITS	F		

$\begin{aligned} & \text { DESIGN } \\ & \text { ELEMENT } \end{aligned}$	Design Level (B/M/F)	Criteria	REFERENCE \& COMMENTS
Basic Safety			
		N/A	Exh. 1100-3 (does not apply for FULL design)
Vertical Clearance	F		
Bridge \#		16.5 ft	Exh. 720-1
Bike and Pedestrian			
	F		
			-
Ramp Terminals	F		
Design Vehicle		WB-67	Exh. 1310-12-WB-67 is desirable
Turn Radii	F		
Intersection Radii - Left		70 ft	Exh. 1310-14 (Assume $\mathrm{A}=90^{\circ}$)
Intersection Radii - Right		70ft	Exh. 1310-14 (Assume $\mathrm{A}=90^{\circ}$)
			- -
Intersection Angle	F		-
		$\begin{aligned} & 60^{\circ}- \\ & 120^{\circ} \\ & \hline \end{aligned}$	1310.03(9)
Intersection Sight Distance	F		
			1310.06 - Signalized intersections - provide sight distance for right-turning vehicles
			-
Barriers			-
Terminals \& Transition Section	F		
Standard Run	F		
Bridge Rail	F		
Cross Roads			
Lane Width	F		
Number of Lanes		4	(6 future)
Lane Width		12ft	Exh. 1140-8
Turning Roadway Width		27 ft	(for R = 1,000ft) Exh. 1240-1a. AASHTO Exh. 3-15 (page 147) to get min. Radius

DESIGN ELEMENT	Design Level (B/M/F)	Criteria	REFERENCE \& COMMENTS

DESIGN ELEMENT	Design Level $(\mathbf{B} / \mathrm{M} / \mathrm{F})$	Criteria	REFERENCE \& COMMENTS
Bridge Rail	F		

[^0]: ${ }^{1}$ La Center Junction Subarea Plan, City of La Center, 2010
 ${ }^{2}$ Cowlitz Indian Tribe Casino Project Traffic Impact Study, Parsons Brinkerhoff, 2006

[^1]: ${ }^{3}$ The City of La Center has identified one in-process development (KWRL School Bus Facility Traffic Impact Study, H. Lee \& Associates, May 26, 2010)

[^2]: ${ }^{4}$ Gaming positions include the number of slot machines, seats at gaming tables, or other positions at various gaming mechanisms.

[^3]: ${ }^{1}$ The weekday AM and weekend (Friday PM) peak hours are provided because they are the time periods with directional volumes controlling design decisions. The weekday PM peak hour is documented in the IJR for the preferred roundabout corridor alternative as currently scoped; however, this time period has lower critical movement volumes compared to the weekend peak hour (Friday PM peak) and thus was excluded from this evaluation.
 ${ }^{2}$ The Friday PM peak hour represents the development's weekend peak hour and will be referred to as "Weekend Peak Hour".

[^4]: Minor Lane/Major Mvmt

[^5]: Zone wide Queuing Penalty: 2

[^6]: Minor Lane/Major Mvmt

[^7]: Minor Lane/Major Mvmt

[^8]: Zone wide Queuing Penalty: 19

[^9]: Zone wide Queuing Penalty: 195

[^10]: ${ }^{1}$ Memo titled Cowlitz Reservation Development Trip Generation Memo and dated November 12, 2012. A copy is provided in Attachment B.

[^11]: ${ }^{2}$ IJR for I-5 / SR 501 Ridgefield, prepared by WSDOT and HDR and dated May 4, 2009

[^12]: Note: Data shown is from WSDOT for Friday, September $17^{\text {th }}, 2010$ - Sunday, September $19^{\text {th }}, 2010$

[^13]: ${ }^{1}$ Based on data from the WSDOT Travel and Collision Data Office

[^14]: Minor Lane/Major Mvmt

[^15]: Minor Lane/Major Mvmt

[^16]: Minor Lane/Major Mvmt

[^17]: Minor Lane/Major Mvmt

[^18]: Minor Lane/Major Mvmt

[^19]: Minor Lane/Major Mvmt

[^20]: Minor Lane/Major Mvmt

[^21]: Minor Lane/Major Mvmt

[^22]: Minor Lane/Major Mvmt

[^23]: Minor Lane/Major Mvmt

[^24]: Minor Lane/Major Mvmt

[^25]: Minor Lane/Major Mvmt

[^26]: Minor Lane/Major Mvmt

[^27]: Minor Lane/Major Mvmt

[^28]: Processed: Friday, August 29, 2014 11:54:13 AM SIDRA INTERSECTION 6.0.22.4722

 Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
 Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102
 NW 319th St and NW 31st Avel2017 Analysis\NW 319 St and NW 31st Ave.sip6
 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

[^29]: Minor Lane/Major Mvmt

[^30]: Processed: Friday, August 29, 2014 12:20:45 PM SIDRA INTERSECTION 6.0.22.4722

 Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com
 Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidral2014 Analysis\Interchange Roundabouts\102
 NW 319th St and NW 31st Avel2017 AnalysisINW 319 St and NW 31st Ave 85_15.sip6
 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

[^31]: Processed: Friday, August 29, 2014 12:20:48 PM SIDRA INTERSECTION 6.0.22.4722

 Copyright © 2000-2014 Akcelik and Associates Pty Ltd
 www.sidrasolutions.com
 Project: H:\projfile\12393 - Cowlitz Reservation Development\Sidra\2014 Analysis\Interchange Roundabouts\102
 NW 319th St and NW 31st Avel2017 AnalysisINW 319 St and NW 31st Ave 85_15.sip6
 8001045, KITTELSON AND ASSOCIATES INC, PLUS / Floating

[^32]: Minor Lane/Major Mvmt

[^33]: Minor Lane/Major Mvmt

[^34]: Minor Lane/Major Mvmt

